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The close-coupled theory of atomic scattering in a radiation field can be used to calculate
nonadiabatic effects on collision-broadened atomic line profiles. When the strength of the
radiation field is not too large, reduced free-free dipole matrix elements, which are indepen-
dent of the field strength and are analogous to the free-free Franck-Condon factors of line
profile theory, can be defined in terms of the S-matrix elements for light-induced atomic
scattering. The profile can then be calculated even when the molecular states are mixed by
off-diagonal terms in the molecular Hamiltonian due to the breakdown of the Born-
Oppenheimer approximation. Numerical close-coupled scattering calculations are used to
calculate the profile for the asymptotically forbidden, collision-induced radiative transition
O!S +Ar—O'D 4+ Ar+hv. The profile was calculated in two ways: (1) with the use of
the normal Born-Oppenheimer approximation for the final states and (2) with the use of
the new technique to treat the nonadiabatic mixing among the '3, 'TI, and 'A final states.
The Coriolis interaction mixes the Hund’s case-(a) A states asymptotically to give Hund’s
case-(e) states.. The central and red-wing parts of the profile which originate primarily
from large internuclear separations are strongly affected by this mixing. The calculated
profile which takes this mixing into account agrees well with the experimental profile but
differs significantly from the Born-Oppenheimer profile. The differences are explained in
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terms of intensity borrowing and Hund’s case-(e) selection rules.

I. INTRODUCTION

The phenomenon of atomic scattering in the pres-
ence of a radiation field has been the subject of
much interest recently, both experimentally and
theoretically. Several experiments have given ample
demonstration of “radiative collisions,” or laser-
switched collisions,'~® as well as providing new
studies in the more traditional area of “optical col-
lisions,” or wing line broadening.””® Theoretical
developments have included both full quantum-
mechanical close-coupling formulations®~!> and
various semiclassical approaches.>~2° Since the
atomic scattering cross section departs.from lineari-
ty in the light intensity only for very intense lasers,
typically requiring power fluxes > 10® Wcm™2, the
bulk of light-induced atomic scattering phenomena
can be treated quite satisfactorily by treating the in-
teraction between the light and the atoms perturba-
tively.'>?! In this case, the theory of light-induced
atomic scattering simply becomes a generalization
of the highly developed traditional field of
collision-broadened atomic line profiles.'”?? In
fact, we propose to show in this paper how the
quantum close-coupled treatment of light-induced
atomic scattering can be used to calculate nonadia-
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batic effects on collision-broadened profiles.

Let us restrict our attention either to the case of
asymptotically forbidden transitions or to the wings
of asymptotically allowed transitions. Thus, we
consider only that part of the profile that can be
adequately described in terms of single binary col-
lisions, represented by the equation

A+R+nhv—A'"+R'+(n+1)hv , (1)

when an atom A collides with a perturber R in the
presence of n photons of energy hv (assuming a sin-
gle mode laser) and undergoes a transition to state
A’ with the corresponding absorption or stimulated
emission of a single photon. The collision partner
R may or may not change states. Energy conserva-
tion during a particular collision requires

E=E;+e+nhv=E;+e,+(ntDhv,  (2)
where E; and E are the total internal energies of
the initial and final separated atom states and ¢;

and €, are the center-of-mass initial and final kinet-
ic energies. This may alternatively be expressed as

where hvo= | E;—E; | is the asymptotic transition

3299 Work of the U. S. Government
Not subject to U. S. copyright



3300 PAUL S. JULIENNE 26

energy and A=x+(€;—€y) is the shift from the
asymptotic energy.

The total rate of change of photon or atomic den-
sities, denoted by p and p 4, respectively, is?!

3 _ O _
+ ar o K()pspr » 4)
where the two-body rate coefficient
K(v)=(ole)v;) (5)

represents the ov average of the cross section for (1)
over the distribution of initial velocities v;, normally
taken to be thermal. The photon absorption or
stimulated emission coefficient per unit length, de-
fined by

_13
k=g (©6)

where ¢=cp is the photon flux (photons
ecm~2sec™!), is found from (4) by replacing 3/t by

cd/0z:
K(v)
¢

For the case of spontaneous emission, the total rate
of emission into frequency interval dv, summed
over all possible directions and polarizations of the
emitted photon,

k(v)=

PAPR - @)

ke (V)pgprdv , (8)
is related to the stimulated emission rate through?®!
87 K(v)
kse( = ? ¢ s 9

where A=c/v is the wavelength. Thus, a
knowledge of the profile function K(v)/¢ permits
us to characterize both the strength and frequency
dependence of absorption or spontaneous and
stimulated emission.

The object of line profile theory is to find the
function K(v)/¢. This quantity is independent of
light intensity ¢ so long as ¢ is not too large, since
K(v) is linear in ¢. In this limit, the profile func-
tion depends only on the properties of the molecular
states of the diatomic species AR and on the transi-
tion dipole moments between them. In traditional
line profile theory the quantum-mechanical profile
is written in terms of matrix elements of the type
(€;|(R) | €r), where |¢;) and |€;) represent en-
ergy normalized vibrational continuum states in the
initial and final states and p(R) represents an R-
dependent electronic transition dipole, where R is
the internuclear separation. Although fully

quantum-mechanical calculations of such matrix
elements are straightforward, they are time consum-
ing and tedious, and only a few have been report-
ed. 2% Normally, introduction of the semiclassi-
cal WKB approximation followed by applications
of the stationary-phase and random-phase approxi-
mations has been used to justify use of the simple
quasistatic expressions for the thermally averaged
profile.?6?” Semiclassical theories utilizing Fourier
transforms of the difference potential have also
been introduced.”> These do not make the
stationary-phase approximation and thus avoid
divergences associated with quasistatic theories.?®

All of these theories rely on the assumption that
the motion in the initial or final state is based on a
single molecular potential, that is, they invoke the
Born-Oppenheimer approximation. Although this
simplifying approximation is normally adequate for
describing the far wings of the profile where the
motion is often predominately based on isolated
electronic potentials, it becomes suspect if the
molecular potentials cross or come close to each
other. Generally, the possibility of a problem exists-
in the case of laser-switched collisions when one or
both of the asymptotic states is degenerate. The
asymptotically energies of the several A states ori-
ginating from the degenerate asymptote split apart
as the atoms approach each other and coalesce as
the atoms separate. The small Coriolis coupling
terms in the Hamiltonian that are pronortional to
R~? (where R is the internuclear separation) are
normally not very significant at short range, but are
dominant at long range and mix the A states asymp-
totically.”® In fact, this mixing is absolutely neces-
sary in order to go between a Hund’s case-(a) repre-
sentation where the molecular Hamiltonian is near-
ly diagonal in a rotating molecule-fixed frame at
small R to a Hund’s case-(e) representation in
which H is asymptotically diagonal in a space-fixed
frame.22~3° Although this switching of representa-
tions can often be described in terms of a quantum-
mechanical “sudden” approximation,?®3° this effect
can be nontrivial for laser-switched collisional line
profiles due to the long-range nature of the transi-
tion moments, which vary as R 3 or R ~*. Since
the molecular states are split as R ~% at long range,
the R ~2 Coriolis terms can be dominant at the large
internuclear separations which contribute to the
central-peak region of the profile. It is this aspect
of Born-Oppenheimer breakdown that we will study
in this paper. The theory is, of course, also capable
of treating other types of Born-Oppenheimer break-
down for short-range-potential crossings.

A scattering-theory formulation of the atomic
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collisions in the presence of the radiation field gives
a simple and natural alternative way to find the
profile function and avoid the difficulties associated
with the Born-Oppenheimer approximation. Since
both the radiative and internal molecular interac-
tions are treated on an equal footing, the Born-
Oppenheimer approximation need never be invoked
(other than to provide a convenient expansion
basis), and nonadiabatic effects on the profile can be
readily treated. The theory gives the cross section
required in (5) directly. If the light intensity ¢ is
not too large, the distorted-wave approximation can
be used for the S-matrix elements. The resulting
expression for the profile is identical to the expres-
sion of ordinary line profile theory, but with one
important difference: The S matrix includes the ef-
fect of nonadiabatic couplings among the molecular
states. Therefore, the scattering theory can be used
to define a generalized reduced free-free vibrational
overlap factor which is not dependent on the Born-
Oppenheimer approximation but which reduces to
the conventional factor when the Born-Oppen-
heimer approximation applies.

The present paper summarized the theory of
light-induced atomic scattering, which has been
described in detail by Mies,'? and illustrates its ap-
plication by calculating the profile for the
collision-induced emission

OS+Ar—O'D+Ar+hv . (10)

The O!S—O!D transition is forbidden asymptoti-
cally (as R — «), and the long-range induced transi-
tion dipole moment varies as R ~* The reaction
serves as a prototype of a laser-switched collision
with an asymptotically vanishing transition mo-
ment. The emission profile has previously been cal-
culated, both quantum mechanically?> and with the
quasistatic approximation,’! using the Born-
Oppenheimer approximation with ab initio poten-
tials and transition moments. Experimental mea-
surements of the total emission rate*’~3 and pro-
file’®37 have also been made. The agreement be-
tween the calculation and measurement is excellent
for the total emission coefficients (i.e., integrated
over all hv) and the quasistatic blue-wing profile.*!
However, the calculations completely fail to repro-
duce the peak and red-wing region of the profile.
We have recalculated the profile using the closed-
coupled scattering approach and now find good
agreement with the whole experimental profile.
There are intrinsic close-coupling effects associated
with the switching between a short-range molecule-
fixed and long-range space-fixed representation of

the wave function. These effects lead to a signifi-
cant redistribution of intensity in the central and
red-wing regions of the profile. An interpretation
of this redistribution is facilitated by introducing
the adiabatic electronic-rotational states described
by Mies.*®

Section II of the paper summarizes the close-
coupling scattering theory and relates it to the pro-
file function. Section III describes the molecular
Hamiltonian including the radiation field. Section
IV describes the results of the calculation and sum-
marizes the conclusions.

II. CLOSE-COUPLING THEORY

The quantum close-coupling theory of atomic
scattering in radiation fields has been described else-
where.!> We will summarize here those aspects of
the theory which are pertinent to the calculation of
the line profile function. The object is to determine
the scattering probability for the atomic collision
described by Eq. (1). Let us assume that the initial
asymptotic atomic states of 4 +R are nondegen-
erate. This assumption simplifies the notation and
discussion, corresponds to the actual system we will
study, and is not restrictive in that it may be re-
moved in a straightforward way by introducing an
additional summation over initial states.

The theory of light-induced scattering does not
treat the interactions of the atoms with light merely
as time-dependent perturbations which induce tran-
sitions between molecular states, but determines the
states of the matter-radiation system described by
the Hamiltonian

H:HAR+Hrad+Vrad . (11)

H“R is the Hamiltonian of the isolated molecule
AR, H™ is the Hamiltonian of the isolated radia-
tion field, and V™¢ gives the coupling between the
radiation and the molecule. The total wave func-
tion is expanded in a product basis set of the type

{1g)}={|IMpr) ® [nyp)} . (12)

Here |JMpr) is an eigenstate of the electronic-
rotational part of H4® and |n;, ) is an eigenstate of
H™, The quantum numbers J, M, and p, respec-
tively, represent total molecular angular momen-
tum, its space-fixed projection along an arbitrary
axis, and parity +1 with respect to inversion of all
coordinates. The corresponding operators commute
with H42 and each other, and these quantum num-
bers are rigorous (conserved) for an isolated mole-
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cule. The quantum number 7 represents all the oth-
er approximate quantum numbers needed to charac-
terize a molecular state. The radiation eigenstate
for mode A of the radiation field represents » pho-
tons of frequency Av and polarization vector &,
(linear polarization is assumed here). The field an-
gular momentum is not quantized here and does not
concern us. Since we will be summing over molecu-
lar angular momentum projection states, the choice
of the arbitrary quantization axis may be taken to
be along &, for convenience. In this case, the selec-
tion rule that M is conserved applies (see below and
Ref. 12).

The total molecule-field wave function at total
energy E, given by (2), can be expanded in the basis
(12) as follows:

Y/M(E)= |i)F,(E,R)/R

+3 | f)F;(E,R)/R , (13)
f

where R is the internuclear separation. The quan-
tum numbers g in the basis |g) contain all of the
quantum numbers needed to describe the internal
states and relative angular momentum of the
asymptotic fragments and therefore label the
scattering channels. A partial-wave expansion has
been assumed in which the initial state has total an-
gular momentum J and projection M. The state
|i) is thus characterized by the atoms A and R in
their initial nondegenerate states, the molecular
quantum numbers JMp, and n photons of polariza-
tion &y. The final state | f) is characterized by the
A' and R’ atoms in one of their degenerate states
distinguished by the appropriate channel quantum
number, the molecular quantum numbers JyM;py,
and n+1 photons of polarization &,. Radiative

]

Fyjr=—i

where k;=(2ue;/#%)"/? is the asymptotic wave vec-
tor in channel j. The S-matrix elements can be used
to predict the cross section for any scattering exper-
iment corresponding to (1), for example, the dif-
ferential cross section for producing the final-state
atoms in a particular one of their degenerate quan-
tum states. However, we are concerned here only
with the total probability of light-induced scattering
from the initial to the final set of states for a homo-
geneous ensemble of atoms. A future paper is
planned which treats the problem of state-to-state
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selection rules impose the restriction Jp=J, J+1,
M;=M, ps=—p (see below). The label J is applied
to the total wave function, since specification of the
initial J uniquely determines the possible final J’s
through the radiative selection rules. The quantum
numbers j on ¢ indicate an incoming wave in chan-
nel j, which could be either i or f.

The task of scattering theory is to determine the
amplitudes F(E,R) in (13) and extract the S-matrix
elements from them. Substitution of (13) into the
Schrédinger equation leads to the coupled equations
for the amplitudes:

# d? d
~———5+E—-Vi—ntv |F;=3ViFs, (l4a)
2u dR? i

2 2
%2‘;—2+E—Vf—(nil)hv Fyy

=S H{fFpr+ViFy, (14b)
ra

where p is the reduced mass of the colliding pair of
atoms. The potentials V;(R) represent the sum of
the electronic and rotational energies and are dis-
cussed in more detail in Sec. III. The difference of
one photon between initial and final states ensures
that the upper and lower effective potentials
Vj+njhv cross at the stationary phase points of the
semiclassical theory. The V™ matrix elements give
the radiative couplings, and the H“? matrix ele-
ments include all the couplings between the degen-
erate set of final states that lead to breakdown of
the Born-Oppenheimer approximation..

The S matrix is determined from the amplitudes
F by imposing the proper asymptotic boundary con-
ditions. Assuming that all off-diagonal elements of
H vanish asymptotically, we require!?

172

expli(k;R—57l)] | , (15)

k]r
k;

T
profiles. For the present, we require only

L s [spea| . ae

Ple,A)= >
W14~

Equation (16) gives the probability of a radiative
transition from the initial state to the final states
for photons with energy shift A and for a particular
initial-state kinetic energy € and angular momen-
tum J. The probability is averaged over the 2J +1
space-fixed projections M. The probability (16) is
the quantum-mechanical expression which corre-



26 NONADIABATIC THEORY OF COLLISION-BROADENED ATOMIC. .. 3303

sponds to the semiclassical expression used by Gal-
lagher and Holstein.??
The cross section for light-induced scattering is

ole,A)=-=3 27+ DP/(e,A) . (17)
i J=0

The rate coefficient of Eq. (5) for a Maxwell-

Boltzmann velocity distribution at temperature T
;39
is

K(A,T) —~—f0 hz (27 +1)P’(e,A)

xe Tqe . 8)
where

Qr=2mukgT /h*)>*"?

is the translational partition function and kjp is the
Boltzmann constant. Note that the frequency argu-
ment is now written in terms of A instead of v.

Although all that is needed to calculate the pro-
file function in (18) is a straightforward scattering
calculation, considerable insight is gained if we
make use of the intrinsic smallness of the radiative
coupling V™9, As long as the intensity of the radia-
tion field is less than some threshold value (typical-
ly 108W cm ™2, although this can vary by several or-
ders of magnitude in either direction depending on
the particular problem), the scattering probability
P’(e,A) is much less than unity, and the standard
distorted-wave approximation with respect to the
radiative coupling can be used for the S-matrix ele-
ments'?

SiMe, )= —2mi(*e dy | VE¥ | €] ), (19)

where |eJ) and |*e;J ) are the energy normalized
initial and final radiatively uncoupled solutions to
the equations (14) in which the ¥ matrix elements
have been set equal to zero. The radiative part of
the wave function has been eliminated by taking the
matrix element of V™ over the radiative coordi-
nates, assuming n >>1. For our geometry this is
found to be'?

1/2
2mhé | e (20)

V’:ad=<ni1lVradln> 2

where P is the projection of the molecular dipole
operator on the space-fixed z axis defined by &.
The molecular wave functions in (19) are solu-
tions of the coupled equations (14) for the molecule
Hamiltonian H4® in the absence of radiative cou-

pling

|eJ)=|JM,r;)Fi(€;,R)/R , (21a)

| €fJf> 2|JMpfrf) Gf,R)/R (21b)
The asterisk in (21b) implies an outgoing scattering
wave for the final state. Although the phase infor-
mation in the S-matrix is required if we want to
predict the state-to-state cross sections giving the
distribution of final states, calculating the scattering
probability in (16) requires only the squared magni-
tudes of the S-matrix elements. For this purpose we
can also choose to use in (19) real wave functions
with standing-wave boundary conditions.

Since the molecular dipole operator u® is a
spherical tensor of rank 1 and since the molecular
wave functions in (19) are eigenstates of total
molecular angular momentum, the Wigner-Eckart
theorem®® can be used to give the dependence of the
matrix element in (19) on M. Thus, we define a re-
duced dipole matrix element by

<€fJf“Lp‘€J> <*€J|H |ef‘,f
=(J; 17 | MOM)(eT ||l |€7Ty) -
(22)

We could just as easily have used the factor
(J1J; | MOM). The definition in (22) was made for
convenience in carrying out the M average

1 J
J J
gt el ludle )|
=5 [(ed|plled 2. (23)

Using (19), (20), and (23) in (16) gives from (18)
the weak-field line profile function

K(A,T)  8x° —e/kpT

AT LR 24
s 3AQTfD(A) de , (24)

where

D (A= 2J+DT |(e||ullefdp) |* (25)
J=0 f

is the degeneracy-weighed sum over reduced dipole

matrix elements.

We see that introduction of the radiative
distorted-wave approximation into the close-
coupled scattering theory leads to expressions (24)
and (25) in terms of free-free dipole overlap matrix
elements similar to those of normal line profile
theory but generalized to nonadiabatic wave func-
tions. Thus, one approach to calculating the profile
is to explicitly evaluate the integrals in (25) using
numerical close-coupled wave functions. However,
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this is tedious and unnecessary. The scattering
theory permits a much simpler approach, that is,
calculate the S matrix required in (16) directly by
solving the coupled equations (14) with nonvanish-
ing V™ for an arbitrarily chosen small value of the
intensity ¢. Any of the standard close-coupling
computer codes can be used for this. A reduced
free-free dipole overlap matrix element equivalent
to that in (22) can be defined in terms of the S ma-
trix instead of in terms of an overlap integral

a7 sPMe,n)
2rh¢ | (JplJ|MOM)

i
(eJ|pllepTp)=5—

(26)

This will be independent of ¢ if ¢ is not too large.
The calculation need be done only for a single (arbi-
trary) value of M. In fact, we follow the suggestion
of DeVries and George!! of replacing (J ' 1J | MOM)
by its root-mean-square value, 1/V3, both in (26)
and in the V™ matrix elements used in (14). This
automatically leads to the proper M average of (23).

III. SCATTERING HAMILTONIAN

A. Electronic-rotational Hamiltonian and basis

The molecular Hamiltonian H4® in (11) is

#_ D p2d

HAR —

— B(J—L—S)*
2uR? OR ag TBY-L=S)

+H,(r,R)+H, , 27

where B(R)=#%/2uR?. The second term gives the
rotational kinetic energy BN?, where N=J—L —S
is written in terms of the total angular momentum
J, electronic angular momentum L, and spin angu-
lar momentum S. The third term H, is the elec-
tronic Hamiltonian, where r denotes the collection
of all electron coordinates. The last term H,
representing the relativistic corrections that give
rise to fine structure, will be neglected in this paper,
since it introduces nonessential complications and
the reaction (10) studied involves only singlet states
(S=0).

We must now find a suitable set of electronic-
rotational basis functions, |JMpr) in (12) in order
to calculate the matrix elements in the coupled
equations (14). For ‘this purpose, we will use the
conventional Hund’s case-(a) Born-Oppenheimer
basis,*! although this necessarily leads to a nondiag-
onal Hamiltonian at large R whenever the separated

atomic states are degenerate.’® These symmetric-
top wave functions are eigenstates of J2, the projec-
tion of J on a space-fixed axis, and the projection of
J on the rotating internuclear axis of the molecule,
having respective eigenvalues J(J +1), M, and A.
The case-(a) basis functions with definite parity are
explicitly®
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AL | o ye (28a)

JMOQ =
| P+> 4

for a A =0(2) state, and

,JM"AI’Pi-)
. 1/21
+
=" T/—‘Z_(DAJZA¢XiDXZ—A¢iA)

(28b)
for a A=~0 state. In the above D'*(a,B,0) is the
Wigner rotation matrix, where @ and B are the
Euler angles giving the orientation of the internu-
clear axis with respect to the space-fixed coordinate
system. The electronic wave functions ¥4 (z,R) are
the eigenstates of H,(z,R) for a fixed value of R:

H,(r,R)YK (r,R)=W, (r)¢&(£,R) . (29)

The eigenvalue W, (R) is just the ordinary Born-
Oppenheimer potential energy curve. The parity la-
bel p, refers to the e states with parity (—1)’,
whereas p _ labels the f states with parity —(—1)”.

The calculation of the Hund’s case-(a) matrix ele-
ments is straightforward.’® The rotational matrix
elements can be readily evaluated by using the ex-
pansion

(J—LP=J*+L>~J;—L;~J,L_—J_L,,
(30)

where the projections J, and L, are on the rotating
internuclear axis. In general, the matrix elements of
L? and L, cannot be evaluated analytically, but
must be calculated from the actual wave function
¥4. Since our model problem (10) involves only
weak van der Waals interactions, it is an excellent
approximation to use matrix elements for the pure
L states of the atoms, e.g., for L =2 in the case of
the molecular states from the O D asymptote.

The O 'S + Ar 'S asymptote gives rise to a single
IS + molecular state of ArO, for which the diagonal
electronic-rotational matrix element is

Vi(R)=Wy(R)+B(RW;(J; +1) , (31)

where Wy; (R) is the 'S+ Born-Oppenheimer po-
tential. The parity is p,. The O!D+ Ar!S
asymptote is fivefold degenerate and gives rise to
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!>+, I, and 'A molecular states. The 5X5
electronic-rotational Hamiltonian matrix blocks
into a 3X3 block of p_ parity containing contribu-
tions from the '=+, 'TI, and 'A states and a 2X2
block of p_ parity containing contributions from
only the 'IT and 'A states. The diagonal electronic-
rotational matrix elements for these final states are

+B(R)[J;(J;+1)+6—2A%, (32)

where 6=L(L +1) comes from assuming a pure
L =2 state independent of R. The 'S and I and
the 'l and 'A states are coupled by the
—B(J,L_+J_L ) Coriolis coupling term in the
Hamiltonian. The 1X 1, 2X2, and 3 X3 electronic-
rotational Hamiltonian blocks for the initial and fi-
nal states are shown in Table L.

When the atoms are close together (R in the vi-
cinity of the van der Waals well), the differences be-
tween the electronic potentials, W,,— Wos and
W,r— Wiy, are generally large compared to the
Coriolis couplings, which are approximately pro-
portional to BJ. In this case the 2X2 and 3 X3 sets
of coupled equations (14b) which describes the
states from 'D+1S in the absence of radiative cou-
pling (i.e, with ¥™¥=0) may be approximated as
uncoupled equations by ignoring the off-diagonal
terms. This, of course, is just the normal Born-
Oppenheimer approximation and is satisfactory for
describing the small-amplitude motion of the
vibration-rotational bound states in the van der
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Waals wells. The effect of the off-diagonal Coriolis
terms is to introduce perturbations among bound
states of different A and A doubling in the 'II state.

However, a very different situation applies when
the atoms are far apart. At large R, the off-
diagonal parts of the electronic-rotational Hamil-
tonian become dominant compared to the diagonal
differences, since the former vanish as R ~2 whereas
the latter vanish as R ~%. Thus, at sufficiently large
R, the Born-Oppenheimer A states are strongly
mixed by the Coriolis couplings.”*?® This mixing
occurs for distances where

2BJZmaX( | WZf_W1f|’ t W]f‘Wofl ).
(33)

For ArO this applies for R > 8a for the dominant
partial waves contributing to the profile.

The physical meaning of this Coriolis coupling is
clear. When the atoms are far apart it is not proper
to characterize the molecular states by the projec-
tion of electronic angular momentum on the molec-
ular axis. The proper quantization of angular
momentum is in a space-fixed frame. These
Coriolis terms are the terms in the Hamiltonian
which effect the switching between rotating
molecule-fixed quantization of L at small R and
space-fixed quantization of large R. This switching
is a general phenomena which always occurs when
one or both of the asymptotic fragments are nonde-
generate. The (a)«>(e) switching is an uncoupling
phenomenon analogous to the well-known uncou-

TABLE 1. Electronic-rotational Hamiltonian matrix elements [X =J (J +1)].

State Matrix
IS +18; (—1) parity.
I+ (Woi+BX;)
ID4+1S; —(—1) parity.
00 Wi+B(X;+4) —2BVX,—2
1A —2BVX;—2  W,;+B(X;—2)
ID+1S; (—1) parity.
s+ Wor+B(X;+6)  —BV 12X, 0
m —-BV12X; Wy +B(X;+4) —2BVX,—2
‘A 0 —2BVX;—2  Wy+B(X;—2)
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pling cases of bound-state spectroscopy,*? for exam-
ple, case (a) to case (b) where spin S becomes un-
coupled from the rotating axis with increasing J, or
case (a) to (d) where L becomes uncoupled from the
rotating axis with increasing principal quantum
number of a Rydberg series.

In order to calculate the S matrix from the
asymptotic solutions of (14), these must be written
in a channel state representation in which H“2 is di-
agonal as R— oo. This clearly cannot be done us-
ing the Hund’s case-(a) representation of Table I.
(See Ref. 38.) The proper asymptotic states can be
constructed in either of two ways. One way is sim-
ply to diagonalize the 2X2 and 3X3 Hamiltonian
blocks in Table I and make a unitary transforma-
tion of basis. In the present case this is straightfor-
ward and can be done analytically. Alternatively,
we may make use of the properties of the angular
momentum eigenstates and Wigner rotation ma-
trices.*

The asymptotic colliding atoms are eigenstates of
electronic angular momentum L? and nuclear rota-
tion angular momentum (J—L)? characterized by
the respective quantum numbers L and [/ and
space-fixed projection quantum numbers M; and
m;. The |LM; ) states are related by the rotation
matrix to the |LA) states having projection of L
quantized on the rotating molecular axis*!

L
|LML)=A }‘,LD{;;A(a,B,O)sz : (34)

The eigenstates of |Im;) can also be written
172

2
2Ll pir,0.

imh)=YMﬁBﬂ)= 47

(35)

The |LMy),|Im;) states can be coupled to
make states of total J and M=m;+m;. Using
(34), (35), and the properties of the rotation ma-
trixes, we find*

L
|IMLIY=3 (—DETAJLI| —A,A,0)
A=—L
172

YAl | pisye (36

4

The states described by (36) correspond to a Hund’s
case-(e) coupling scheme.?%*

Equation (36) shows the relation between the
desired channel-state basis and the Hund’s case-(a)
basis. It is simple to rewrite (36) in terms of the
parity eigenstates (28). Table II shows the coeffi-
cients of the unitary transformation between the
Hund’s case-(a) Born-Oppenheimer basis (28) and
the Hund’s case-(e) channel-state basis with parity:

L
|IMLIp)= 3, CAi? |JML, |A |,p) .  (37)
A=0

The transformations (37) diagonalize the 2X2
and 3X3 electronic-rotational Hamiltonian blocks

TABLE II. C7% transformation from case (a) to case (e).

—(—1) parity
m A
172 172
I=J—1 _|Jd=1 _|J+2
2J +1 2J +1
Jan 12 I 12
+ —_
I=J+1 —
+ 2J +1 2J +1
(—1) parity
12+ IH IA
V) 172 72
I=J—2 3J(J—1) 2(J =1)(J +1) (J+1)J +2)
2027 —1X2J +1) (27 —1)(2J +1) 2(2J —1)(2J +1)
12 172 12
I=J _ JWJ+1) _ 3 3(J—=1)J+1)
(27 —1)(2J +3) (27 —1)(2J +3) (2J —1)(2J +3)
172 12 v 172
I=J 42 3+ +2) _ 2J(J +2) J(J—1)
2027 +1)(2J +3) (2J +1)(2J +3) 2(2J +1)(2J +3)
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in Table I for distances R large enough that (33) is

satisfied. The diagonal energies at large R in the
pure Hund’s case-(e) basis (37) are simply

Vf=Wf°°+Blf(lf+1) R (38)

where W§° is the asymptotic energy. The permis-
sible values of /s are [p=Js+1 for the 2X2 p_-
parity block and lp=Jg, Jy+2 for the 3X3 p -
parity block.

The close-coupled equations (14) can be solved
just as easily using the Hund’s case-(e) basis (37) as
using the Hund’s case-(a) basis (28), since these are
obtained from each other by a unitary transforma-
tion. Equations (14b) are uncoupled at large R in a
case-(e) basis, but become strongly coupled at small
R. The actual numerical solutions to the equations
(14) were calculated using the case-(a) matrix ele-
ments in Table I, but the amplitudes were
transformed to a case-(e) basis before extracting the
S matrix. Exactly the same S matrix would be ob-
tained if the whole calculation had been carried out
in case-(e) basis.

B. Radiative coupling matrix elements

The interaction between the colliding atoms and
the photons is contained in the ¥ matrix elements
|

2Jf+1
2, +1

(Jip 4 Ol u[[Jspr1)=

for the '3-TI transition. The electronic transition
dipole moments are

To(R)={"%; | o | 'Zf) ,
TR =% [pay | ') “42)
=—("Myy g ] 'Z) .

The transition dipole operators are defined by

Ho=e272n ,
" _ 43)
FXn—Wn

‘/'2’ 2

where the summation runs over all electrons.

As long as we are only interested in the low in-
tensity profile where the radiative S-matrix ele-
ments are linear in ¢ !/2, the M average required in
(16) can be carried out in the same way as for (23).
As a practical matter, the Clebsch-Gordan coeffi-
cient (Jy1J; | MOM) in (40) is replaced by its root-

Bir1=e,
n

172 1
] (1 [ 1,—1,001E

in (14). These are calculated by taking the matrix
element of (20) over the electronic-rotational basis
functions. In order to use the Hund’s case-(a) basis,
the uf space-fixed projection of the dipole operator
must be written in terms of the molecule-fixed pro-
jections:

1
p¥= > Dorx - (39)
k=-—1

The integration over rotational coordinates can be
carried out analytically, and we obtain

172
yid_ -21’}?"1 (J1J; | MOM)

The electronic-rotational reduced matrix element is

(Jip 1+ Of || [T p£0)

172

20 +1
! (J;1J;| 000)ry  (41a)

2,41

for the !=-'3 transition, and

Jp—Ji+1

(=1)

“—‘“‘/_3—7'1 (41b)

|
mean-square value 1/V/3 times its phase f y==1
Thus we use

172
27h
yi— W‘ﬁ f+UipiOl || gprAg) -

(44)

The expressions (41) lead to selection rules as to
which possible J;p; blocks of the final-state Hamil-
tonian can couple to the initial J;p state. The
lower 2X2 p_-parity block couples only if J;=J;.
The lower 3X3 p_ -parity block only couples if
Jp=Jit1. The transitions with J;—J,=—1, 0,
and +1, respectively, are designated P, Q, and R

transitions.
The reduced electronic-rotational matrix elements

(41) are shown in Table III. These radiative cou-
pling matrix elements can also be written in a
Hund’s case-(e) basis by using the transformation
(37) with the coefficients in Table II. These case-(e)
matrix elements are also shown in Table III. These
were constructed using the asymptotic relation
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TABLE III. Case-(a) and -(e) radiative coupling matrix elements (for the initial state /;=/=J;=J).

case (a) case (e)
Transition (|| ) Transition |5
oUy=J) T 12
+
Is_1 lr=14+1 EYPE TS
>-'11 T1 f + 320+ 1) To
J 1 172
Is. 1 lo=1—1 |
2 A 0 f 1 3(2J+1) T0
ol P(J;=J +1)
et a1 13 | 25U+ DI +2)J +3)
22 ' Wil | O r=t 6+ +3)20+5) | T
J+2 |7 J [a42 |7
151 t2 Lr=1+1
=1 sl | ™ r=it Wl |274+5| ™
J 1 J 172
5.1 I=1—1 _J=y S
2-A 0 / W+l e+ | ™
R(WJ;=J—1)
7 |7 Je2 [ 741 |7
Is_1 lr=1+1 571 | Zar
22 | r=rt Wil le—1| ™
J 1 172 J_.|._1 J 1 172
3.1 = lr=I1—1 - —
=1 1| 4 Wl |2—3| ™
172
257 (J —1)(J —2)
Ig_1 lr=1-3
>4 0 ! ‘6(2J+1)(2J——1)(2J—3) T"

T1=10/V 3 discussed in Sec. IIID.

There are eight possible dipole-allowed transi-
tions. The 'S-!A transition is forbidden in Hund’s
case (a). However, this transition can borrow inten-
sity from the !S-IT transition when the 'II state
mixes with the 'A state through the electronic-
rotational Born-Oppenheimer breakdown terms. At
large internuclear separation where the case-(a)
states are strongly mixed to give case-(e) states, all
eight transitions have nonvanishing matrix ele-
ments. Note that the dipole selection rule in case
(e) is Al=+1,+3. The Al=+3 transitions can oc-
cur because the electronic angular momentum L
changes by two units (\S—!D).

C. Born-Oppenheimer approximation

In order to compare the close-coupled profile cal-
culated from the full Hamiltonian with the profile
in the Born-Oppenheimer approximation, we will
set up a simplified approximate Hamiltonian. The
radiative coupling will still be included in the
close-coupled scattering equations (14), but the final
states will be completely decoupled.

We begin by assuming that we can ignore the
off-diagonal Coriolis coupling terms in Table L
The motion in the lower state is assumed to occur
only on a single Born-Oppenheimer potential curve
Wys+BXy. We further assume that we can ignore
any changes in rotational angular momentum J be-
tween initial and final states, i.e., Jy=J;. Thus, the
squared S-matrix element for each rotational
branch scales as the case-(a) rotational factors in
Table III, and the sum over branches can be found
by using the root-mean-square of the matrix ele-
ments in Table III. Thus, we use (J||u||)=7, for
the 3-3 transition and V27, for the =-II transi-
tion.

These assumptions are the ones normally used in
line profile theory, and were used previously to cal-
culate the profile for collision-induced O 'S—O'D
emission in argon. The X-3 and 2-II transitions
occur independently of each other in this approxi-
mation, and are described by separate 2 X2 scatter-
ing equations. (A single 3 X 3 set of equations could
also be used, but the lower 'S and 'II states would
remain uncoupled.) The Born-Oppenheimer Hamil-
tonian with the AJ=0 approximation is shown in
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Table IV. The only coupling is radiative coupling.

D. Potentials and transition moments

The specification of the scattering Hamiltonian
in (14) will be complete once we show the molecular
potentials W, (R) and transition moments 7, (R)
which were actually used. These have been
described previously.?*! The potentials were
constructed by adding the dispersion potential
through —C,o/R ' to the exchange-overlap repul-
sion energy calculated with multiconfiguration
self-consistent-field (MCSCF) wave functions. The
potentials are parametrized by the function

W(R)=Ae "R+ W4, (R)+ W=, 45)

where 4 and a are obtained by fitting the MCSCF
data. The dispersion energy is
C C C
Wi R)=— 6=~ =~ - (46)

The zero of energy (including the radiation field en-
ergy) is chosen to be the asymptotic atoms in their
initial electronic states, W;° =0. Thus, W =A for
the final states, with A given by Eq. (3). The poten-
tial parameters are shown in Table V and the poten-
tials are illustrated in Fig. 1.

The quadrupole-induced dipole transition mo-
ments have the long-range form

T
o= gs
(47)
1 Ty
NTViR

TABLE IV. Born-Oppenheimer Hamiltonian with
AJ=0[X=J(J +1)].

!3-13 transition

'3, s,
7z
'3, Woi+BX —27—;%@ o
12
s, %ﬁ 7o Wor+BX
IS-'M transition
's, m,
72
3 Woi+BX A;%Q V2,
12
m, %T%‘i Vo, Wi+ BX

3309
TABLE V. Potential parameters for ArO.
MCSCF energy

Asymptote State Aplem™h) aplagh)
Is+ls I3+ 4.280x 107 2.042
IS+p '3+ 5.102x 107 2.211
IS+'p 'n 3.116x 107 2.018
IS+'D A 4.456 107 1.966

Dispersion energy
IS+1S I3+ C4=6.672x10% cm~'ad
Cg=1.221x10® cm~'a}
Ci0=2.308 X 10° cm~!a{’
'S+'D 1St W, =0.9310W4,('S +1S)
'S+'D M Wi, =0.9555W 4y ('S +1S)
'S+'D A Wi =1.0290W 4, ('S +'S)

where T,=37.8ea;.”> The '3-'S transition mo-
ment 7 departs from the long-range form (47) for
R <7.5a, so that it is necessary to use the ab initio
calculated transition moment for small R. Thus,
the long-range form for 7, was used at all R,
whereas for 7, a tensioned cubic spline fit of the
moment calculated by Dunning and Hay** was
smoothly joined to the long-range form (47) at
R =7.5a,. The transition moments are shown in
Fig. 2.

The previous calculation®”3! assumed the same
dispersion energy for the initial and final states
since the O'S and O 'D polarizabilities are nearly
identical.** In order to avoid unrealistic asymptotic
behavior of the potentials, an estimate has been
made of the difference in dispersion energy between
initial and final states and of the A dependence of

400

W(R) (cm_l)

»
-
o
o
-~
@
©
S

R(a)

FIG. 1. Born-Oppenheimer potential energy curves
W(R) for ArO corresponding to the parameters in
Table V for A=0. Dashed curve shows the initial 'S +
state which correlates with O!S, whereas the solid
curves correlate with O 'D.
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FIG. 2. Dipole electronic transition moments for the
ArO !3-'3 and 'S-'1I transitions.

C¢ for the states from the O'D asymptote. We
construct the following approximate model for the
dispersion differences based on the small differences
between the calculated oxygen static dipole polari-
zabilities a(L,A):

Ce('D)=0.98C('S) (48)

since @(!D) is 2% less than a(1S)* (the bar means
spherical average);

Cs('D, A=2)—Cy('D, A=0)=0.1C4('D) ,
49)

chosen as an approximate model of the difference
because of the 13% difference in static polarizabili-
ties*; and

Ce('D, A=1)—C4('D, A=0)

[Ce(!D,A =2)—C4('D,A=0)],

1
L
(50)

derived by applying the Wigner-Eckart theorem to
the definition of C4. It we assume that the same re-
lations apply to the total dispersion energy we ar-
rive at the magnitudes in Table V. Using these
slightly modified long-range potentials does not
change any of the results of Julienne,’! as discussed
below.

IV. RESULTS OF CALCULATION
A. Numerical methods

The close-coupling code used in these calcula-
tions is based on Gordon’s algorithm*® and has been
described previously.”’ Care was taken in comput-
ing the numerical propagation step size to insure
that accuracy is maintained in the calculated S ma-
trix. The coupled equations (14) were solved nu-
merically using the Hamiltonian matrix elements
described in Sec. III. A separate calculation was
made for each initial kinetic energy e, initial total
molecular angular momentum J, and detuning
A=e—¢€s. The strength of the radiation field was
arbitrarily chosen to be 10* Wcem? The reduced
free-free matrix elements (eJ||u||esJy) were found
from the numerically calculated radiative S-matrix
elements using (26). Summing these over all contri-
buting initial J values gives the dipole strength
function D.(A) (25), which is numerically accurate
to about 0.1%. The profile function K(A,T)/¢ is
found by thermally averaging the strength function
in accordance with (24). The profile function re-
ported here is that for spontaneous emission,
ke(A,T), defined by Eq. (9). All energies are ex-
pressed in cm ™!, and the profile k,, is given in cm?
(equivalent to cm®sec™'Hz ™!, or a rate coefficient
per unit frequency interval).

Two distinct types of calculations were carried
out, in order to provide a basis of comparison.

(1) The profile was calculated using the Born-
Oppenheimer approximation for the final states.
Two separate 2 X2 scattering calculations were car-
ried out using the Hamiltonians in Table IV. This
defines two separate dipole strength functions,
DZ(A) and D(A), for the respective -3, and 3-I1
transitions. The total Born-Oppenheimer dipole
strength is

DE%A)=DZ(A)+DM(A) . (51)

The corresponding thermally averaged profiles, k=,
k™, and kB0, are similarily defined.

(2) The profile was calculated using the final-
state close-coupled Hamiltonian of Table 1. Since
final states of different J; are not coupled except
through negligible second-order radiative couplings,
the radiative selection rules permit the calculation
to be broken into three separate scattering calcula-
tions in accordance with Table III. One is a set of
three coupled equations comprised of the initial
state and the 'IT and 'A final states of p_ parity
with Jy=J; the other two are sets of four coupled
equations comprised of the initial state and the 'Z,
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FIG. 3. Difference potentials Ay between the initial
IS + state and final A states.

'TI, and 'A final states of p_ parity with Jp=J+1.
These Q, P, and R calculations define three dipole
strength functions, D2, D*, and DR, and the total
close-coupled dipole strength function is

DEY(A)=D2A)+DF(A)+DX(A) . (52)

The case-(a) Hamiltonian matrix elements of Tables
I and III were used in the numerical matrices. The
radiative S-matrix elements were evaluated by pro-
jecting the asymptotic solutions onto the case-(e)
basis, as discussed previously. Identical results
would be obtained if the case-(e) basis were used
throughout.

B. Born-Oppenheimer profile

A frequently used approximation in line profile
theory is the classical Franck-Condon principle, ac-
cording to which a photon transition of frequency v
occurs at an internuclear separation R where the
difference between initial and final potential equals
the photon energy Av. In our notation, this occurs
at the R where A=Wy — W)y, that is, where the
initial and final molecule-field potentials cross. The
difference potential Aoy = Wo; — Wy for ArO, with
the parameters in Table V, are shown in Fig. 3.
The 2-= and 2-II difference potentials are positive,
except they become slightly negative (—2 <A, <0
cm™!) at long range since the lower potentials are
asymptotically less attractive than the upper. Thus,
the Born-Oppenheimer, classical Franck-Condon
picture leads us to expect a peak in the profile near
A=0, a long quasistatic wing for blue detuning
where A=A, (R) is satisfied, and a rapidly decay-
ing antistatic wing for red detuning where

A=Ay, (R) cannot be satisfied.

This expectation is verified by our earlier
quantum-mechanical profile calculation, for which
the free-free integrals, {eJ | u(R) | €xJ ), were expli-
citly evaluated with Born-Oppenheimer wave func-
tions and assuming an R ~* variation of the elec-
tronic transition moments for all R.>> The quasi-
static expression for the profile.

kQS(A)— 25610 R(Z)Té R%T%
¥ 3 | | dAg dAy,
dR R, dR |R,

(53)

was shown to agree well with the quantum-
mechanical profile in the blue wing.3! Gallagher
and Holstein have shown that their Fourier-
transform technique, which relies on the Born-
Oppenheimer approximation but not the classical
Franck-Condon approximation, reproduces our cal-
culated antistatic red wing.”> Both the red and blue
wings show significant discrepancies with the mea-
sured profile.® To obtain quantitative agreement of
the calculated blue-wing profile with the measured
profile required using the proper short-range form
of the transition moments from ab initio calcula-
tions. The quasistatic formula (53) with the transi-
tion moments discussed in this paper (see Sec. III D)
predicted a quasistatic blue wing which agrees with
the measured profile within 20% for 50 < A < 600
cm~!3! The red-wing calculations were not repeat-
ed with the new transition moments in this previous
work.

The present paper only studies the free-free con-
tribution to the profile. This is by far the dominant
part in the central region of the profile. Our previ-
ous quantum-mechanical calculations showed that
free-bound emission was important for large blue
detuning, accounting for about half of the total pro-
file for A>200 cm~!. However, free-bound emis-
sion was found to be negligible ( <3%) for A <50
cm~!. Bound-bound emission contributes only
about 6% of the total decay coefficient (i.e., area
under the profile function). The quasistatic expres-
sion accounts for emission from all parts of phase
space, including bound, quasibound, and free emis-
sion.

The scattering technique proposed in this paper
for calculating the profile was first checked by cal-
culating the reduced matrix elements (eJ||u||€xd)
for the same potentials and transition moments as
in our original calculation. Perfect agreement was
found with the previously calculated overlap in-
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FIG. 4. Calculated thermally averaged Born-
Oppenheimer profile function k2°(A,T) for ArO at 300
K. Solid line shows the quantum-mechanical profile
(BO) and the dashed lines show the total quasistatic pro-
file (QS) as well as the free-free (FF) contribution to the
quasistatic profile (QS-FF). Points ({) show the experi-
mental profile function.

tegrals (eJ |75 |€aJ). Approximately the same
amount of computer time was required for the
scattering and direct-integration methods.

The calculation of the Born-Oppenheimer profile
was repeated with the use of the potentials and tran-
sitions moments in Table V. The resulting thermal-
ly averaged profile at 300 K is compared to the
measured profile in Fig. 4. None of our previous
conclusions are changed by this calculation. The
20% agreement between the measured and quasi-
static profile is maintained for the far-blue wing
(A>50 cm~!). The strong disagreement in the
shape of the peak and red-wing falloff is not re-
moved; Calculation and measurement differ by a
factor of 2 at the peak and by a factor of 6 by
A=—50 cm~!. The figure also shows the total and
free-free quasistatic profiles. The quantum free-free
profile makes typical oscillations about the quasi-
static envelop. :

The experimental emission profile was mea-
sured by recording on film the emission from an
electron beam excited Ar-O, mixture containing
several Torr of O, and several atmospheres of Ar.
Under these conditions, the collision-induced
molecular dipole emission completely dominates the
weak atomic 'S—!D quadrupole emission.?! The
linearized film response determined the shape of the
emission profile with a 0.2-nm ~ 6-cm™! resolution.
The profile was placed on an absolute scale by nor-

36,37

malizing the area under this shape function to the
measured total decay coefficient

K= [ keev)dv (54)

taken to be 4.5X 10718 cm3sec™!. The calculated
value of K, at 300 K is 4.2X 107! cm3sec—!,3!
which is in excellent agreement with the range of
measured values 3.9%x107® to 5.1x10"'8
em®sec™ 3273 An estimated uncertainty of +20%
is not unreasonable for the experimental profile
function. The temperature of the mixture following
e-beam deposition was not measured, but is prob-
ably between 300 and 400 K. In any case, no realis-
tic assumption about the temperature can remove
the discrepancy between calculated and measured
profiles.

C. Close-coupled profile

The calculated quantum-mechanical close-
coupled dipole strength function DES(A) is shown
in Fig. 5 for a collision kinetic energy € =300 cm ™!,
This is compared with the quantum-mechanical and
quasistatic Born-Oppenheimer strength functions
for the same collision energy. The two quantum-
mechanical functions give essentially the same blue
wing for A>30 cm™!, and both are oscillating
about the quasistatic function. There is a dramatic
difference between the close-coupled and Born-
Oppenheimer quantum-mechanical profiles. The
closed-coupled (CC) profile has decreased in peak

FIG. 5. Calculated line strength function D,(A) of
Eq. (25) for an initial-state center-of-mass kinetic energy
€=300 cm~!. (For comparison the thermal energy
kT =209 cm~' at 300 K.) This function is expressed in
units of 107%¢%a§ energy~? with energy in cm~' and
eag=1 corresponding to atomic units. Close-coupled,
Born-Oppenheimer, and quasistatic profiles are shown.
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magnitude and increased red-wing intensity relative
to the BO profile.

The CC and BO thermally averaged profiles are
compared to the measured profile in Figs. 6 and 7.
The former is a linear plot emphasizing the central
region, whereas the latter is a logarithmic plot em-
phasizing the wing behavior. The CC profile is in
remarkably good agreement with the measured pro-
file. The difference between the CC and BO calcu-
lations is especially evident in the red-wing dropoff
in Fig. 7. It is evident that the normal assumptions
of line profile theory fail for this problem and that
a closed-coupled description of the final states
is both necessary and adequate to remove the
discrepancies.

It is now highly desirable to try to find some
understanding of the reasons for the differences be-
tween the CC and BO profiles. In short, the major
reason is that a large part of the peak and red-wing
region originates from moderately large internuclear
separations where the electronic angular momentum
is decoupled from the rotating molecular axis, i.e.,
the case-(a) BO states of fixed A are strongly mixed
by the Coriolis interaction. Considerable insight
into this effect can be gained by introducing for the
final states from O!D the adiabatic-electronic-
rotational (AER) states defined by Mies.”® These
states are the ones which continuously diagonalize
the electronic-rotational Hamiltonian (Table I) as a
function of R

Vg =U(R)VE(R)U(R) , (55)

where V,gr is diagonal. The AER electronic-
rotational basis functions are

300K
E
g
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(=}
SHpe
=
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e
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L
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A (em™)
FIG. 6. Calculated close-coupled and Born-

Oppenheimer thermally averaged ArO profile functions
at 300 K (solid lines) compared to the experimental pro-

file (Q).

3313
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FIG. 7. Red- and blue-wing ArO profiles. Points
give the experimental profile. Solid and dashed lines
give the calculated profiles for 300 and 400 K, respec-
tively. CC and BO profiles are shown for the red wing,
whereas only the total quasistatic profile is shown for
the far-blue wing.

Ytk =UP(RWHE | (56)

where Ygo represents the vector of BO electronic-
rotational basis functions (28). The AER functions
approach pure case-(a@) functions at small R and
pure case-(¢) functions at large R. They switch
smoothly from one to the other over some inter-
mediate range of distances near where (33) is an
equality.

Figure 8 shows the projection of the middle AER
function of the 33 p parity block on the case-(a)
Mp, basis function. The projection approaches

104

08+

06

JLp
Al

0.4

02+
case (e)

0.0

R (an)

FIG. 8. Projection of the middle AER root of the
3X3 p, electronic-rotational Hamiltonian on the pure
case-(a) 'TIp, basis function, shown for several values
of total lower state angular momentum J £



3314 PAUL S. JULIENNE 26

FIG. 9. Upper state classical turning point R,(€,J)
and impact parameter b(e,J) as a function of J for
€=300cm~".

the case-(a) limit of unity at small R and the case-(e)
limit ~—V/3/2J at large R (see Table I). Similar
switching between case-(a@) and case-(e) limits as a
function of R would be illustrated by any of the
other eight possible (e)—(a) projections in the p |
block or by the four projections of the p_ block.
The figure shows that the departure of the mixing
coefficient from its case-(a) value is 10% or less
when R <6.8a; for J=20 and R <6.2a, for
J =60. The switching to the case-(e) asymptotic
limit is nearly complete for R >8a,. The region
6.5 <R <8a, is a switching zone where intermedi-
ate coupling applies.

Figure 9 shows the classical turning point R,(€,J)
of the initial '= % centrifugal potential as a function
of J for a center-of-mass collision kinetic energy of
€=300 cm~!. The figure also shows the impact
parameter associated with each J, b(€,J)
=#J +%)/ V2ue, which is the classical turning
point of the centrifugal potential for noninteracting
particles colliding with energy € and angular
momentum J. We see from Figs. 8 and 9 that case
(a) applies to the lower states at the position of the
initial-state turning point when J <50 and case (e)
applies when J > 60 for € =300 cm~!. The upper
turning point lies in the lower state switching region
when 50 <J <60.

Figure 10 shows the contribution

2 +1DDIA) =27 + 1T [(e]]|u|lef ) |2
7

(57)

to the profile [see Eq. (25)] as a function of J for
€=300 cm™! for red, peak, and blue detunings.
Most of the profile for blue detuning comes from
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FIG. 10. Contribution (2J +1)DJ(A) to the profile
function (25) as a function of J for €=300 cm™! and
detunings A= —50, 1, and 60 cm~!. Units are the same
as in Fig. 5.

impact parameters (angular momenta) for which
the distance Rcpc at which the classical Franck-
Condon (CFC) principle is satisfied is accessible
during the collision. For the case A=60 cm il
lustrated in the figure, Rcpc=06.26a, for the =-2
transition, which lies in the classically inaccessible
region of the potential for J>51 when €=300
em~!. There is a rapid drop-off in DJ(A=60
cm™!) when J>51. Since this profile originates
from regions of internuclear separation which are
dominantly Hund’s case (a), it is not surprising that
the BO profile agrees well with the CC profile for
blue detuning (see Fig. 5). The agreement improves
with further blue detuning.

The situation is quite different for the peak and
red detuning regions of the profile. Figure 10
shows that a substantial part of the profile, respec-
tively, 33% and 67% for A=1 and —50 cm™ 1L
comes from large impact parameters J > 50 where
the lower states are dominantly case (e) or switch-
ing towards case (e) at classically accessible dis-
tances for motion on the initial potential. There-
fore, we should not expect the Born-Oppenheimer
approximation to give a correct description of the
profile peak or red wing.

The closed-coupled wave function can be expand-
ed in the AER basis as well as a case-(a) or case-(e)
basis. Mies has shown that the close-coupled am-
plitudes F [see Eq. (13)] take on the following form
in an AER expansion®®:

FARRR)=[fUR)+g%R)r(R)IN(R),  (58)
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where £© and g‘? are diagonal matrices whose ele-
ments are the respective regular and irregular solu-
tions of the uncoupled Schrodinger equations for
the diagonalized potentials of (55). N is an R-
dependent normalization matrix, and the R-
dependent matrix 7 describes the inelastic scattering
among the AER states. The AER theory gives cou-
pled first-order nonlinear differential equations for
rand N.

The AER theory gives a series of approximations
for 7.4 The simplest possible approximation is to
ignore inelastic couplings among the AER states re-
flected in the gr term and approximate FAER by the
uncoupled regular solutions f 0 of the diagonal AER
potentials and a constant diagonal normalization
matrix. When the final-state close-coupled wave
functions are decoupled in this way, the unitary
transformation U applied to the case-(a) transition
moments in Table III yields eight distinct transition
moments corresponding to the eight possible transi-
tions in Table III. These AER transition dipoles
correlate at small R with the case-(a) expressions in
the table and at large R with the case-(e) expres-
sions. Since the final states are decoupled, the pro-
file can be found by eight separate 2 X2 scattering
calculations in which the initial state is coupled ra-
diatively to each of the possible final decoupled
AER states. This gives the AER approximation to
the profile

8
DAER(A)= 3 DIAER(A) . (59)
f=1

Since inelastic coupling in the (a)<«>(e) switching
region is ignored in this zeroth-order AER approxi-
mation, this approximation is inappropriate if we
wanted to predict, for example, the detailed m; dis-
tribution of the final !D, products. A sudden rath-
er than “adiabatic” correlation with the final-state
distribution is probably more realistic.?#3° Howev-
er, the decoupling approximation may not be so bad
for the total profile where we sum over all possible
final states. Figure 11 shows a comparison of the
close-coupled and the AER approximation for
D,(A) for e =300 cm~!. We see that the AER pro-
file reproduces the qualitative features of the peak
and red-wing regions of the profile. In the blue
wing the CC, AER, and BO profiles all coincide.
The figure also shows the breakdown of the total
profile into its separate contributions for P-, Q-, and
R-type transitions. The AER theory also repro-
duces the qualitative differences among these transi-
tions with different AJ. This separation of P, Q,
and R contributions to the profile is responsible for
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FIG. 11. Total CC (solid curves) and AER (dashed
curves) profiles D.(A) for € =300 cm~!. Units are the
same as in Fig. 5. Individual contributions from the P,
0, and R types of transitions are shown. These partial
profiles have been summed over all possible final states
within each AJ class.

the small shoulder on the CC profile in Figs. 5, 6,
and 11.

There are two significant aspects of the AER
profile which account for its main qualitative
differences with the BO profile. These provide a
qualtitative rationalization as to why the CC and
BO profiles are so different.

(1) For the range of internuclear separation where
switching from cases (a) to (e) occurs, the 'A state
mixes with the 'II and 'S states through Coriolis
coupling, so that the !3-!A forbidden transition bor-
rows intensity from the allowed !'2-'S and '=-'M
transitions. Since the !'=-!A difference potential
satisfies the classical Franck-Condon principle for
red detuning (see Fig. 3), this mixing shifts intensity
from blue to red. The existence of this mixing for
the larger J’s contributing to the peak and red-wing
part of the profile is evident from Figs. 8 —10.

(2) In the case-(e) limit the nuclear angular
momentum [ necessarily changes by at least one
unit. (See Table III. This is not true, in general,
but is true for S—'D transitions induced by an 'S
atom.) Therefore, if a transition occurs in the case-
(e) region, the change in the centrifugal potential
BI(l4+1) contributes to the difference potential.
The effect is not negligible, due to the large values
of I. The strongest case-(¢) P transitions have
I —Ilf=—1 and —3, and the strongest R transitions
have ] —Iy=1 and 3. The Q transitions are of com-
parable intensity with [ —Iy=+1. The approximate
change in centrifugal potential energy for a change
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Alin lis 2B Al. If we assume an impact parameter
b =6.6a, corresponding to €=300 cm~!, 1=50,
then 2B Alis +12 cm~! for Al=+1 and +36 cm™!
for Al=+3. Thus, we expect the P-block profile to
shift several cm™! to the red and the R-block pro-
file to shift several cm™! to the blue. This is what
is observed to occur in both the CC and AER pro-
files in Fig. 11.

D. Summary

We have shown that the closed-coupled theory of
atomic scattering in a radiation field gives a tech-
nique for calculating atomic line profiles. The
method applies to that part of the profile which can
be described by single binary collisions, i.e., to the
whole profile for asymptotically forbidden laser-
switched collisions and to the profile wings of
asymptotically allowed transitions. The validity of
the distorted-wave approximation for weak radia-
tive coupling permits us to express the profile in
terms of generalized close-coupled reduced free-free
dipole matrix elements defined in terms of the radi-
ative S-matrix elements calculated for scattering in
a radiation field. The method gives a powerful tool
for studying intrinsic nonadiabatic effects due to
the failure of the Born-Oppenheimer approxima-
tion. .
The Hund’s case-(e)<«>(a) switching which we
have studied here in detail is a general phenomenon
which will always be present whenever one of the
asymptotic atomic states is nondegenerate.?8~°
During the course of a collision, the electronic an-
gular momentum is initially quantized in a space-
fixed coordinate frame, but becomes coupled to the
rotating molecular axis as the atoms approach each
other, and again becomes decoupled as the atoms
separate. When the spin does not vanish, the transi-
tion can be (e)«<>(c) or even (e)—(c)—(a)—(b),*
where the letters designate the standard Hund’s
cases. The Born-Oppenheimer approximation
normally made in line profile theory assumes that
the absorption or emission of a photon can be
described in terms of motion on isolated initial and
final Born-Oppenheimer potential curves.”” The
question for line profile theory which is raised by
the work reported here is whether use of the Born-
Oppenheimer approximation is always justified.

Our specific calculations on the oxygen-argon
system shows a clear example where the Born-
Oppenheimer approximation fails asymptotically
and the (e)<«>(a) switching plays a dominant role in

26
determining the profile. In order to answer the
question as to the importance of this effect for oth-
er collision partners, it is necessary to examine the
splittings of the Born-Oppenheimer molecular po-
tentials originating from any degenerate asymptotes
relative to the Coriolis coupling terms which always
dominate asymptotically. If case-(e) or intermediate
coupling is implied for the dominant large impact
parameters, then use of the Born-Oppenheimer ap-
proximation may be expected to lead to errors in the
profile.
Our calculations in progress on

Sr+Ar+nhv—Sr lemj+Ar+(n —1hv

show that a proper treatment of the (a)«>(e)
switching is required in order to understand the
data on polarized emission versus detuning.! The
potential parameters used for a Born-Oppenheimer
semiclassicl calculation of the profile for the laser-
switched collision'’

Sr'P4+CalS+nhv—Sr'S+Cadp?'S+(n —1)hv

predict that the Coriolis coupling energy and the es-
timated splitting of the ! and 'II potentials from
the !P+!S asymptote are both on the order of 3
cm~! at the Weisskopf radius, R =25a,. Since the
full width at half maximum of the calculated asym-
metric profile!”?? was found to be about a factor of
2 smaller than observed,® the additional broadening
which we expect due to (e)«>(a) switching may help
to resolve some of the discrepancy. However, the
magnitude of any nonadiabatic effects can only be
determined by an actual close-coupling calculation.
Approximations in the potential model probably
also contribute to this discrepancy. However, we
are led to suggest that nonadiabatic effects due to
(e)<>(a) switching cannot be safely neglected, in
general, for laser-switched collisions if a quantita-
tive treatment of the profile is desired.

The zeroth-order AER approximation which
decouples the final states helps give insight into the
origin of the differences between the close-coupled
and Born-Oppenheimer profile. The AER profile
for our model problem agrees reasonably well with
the close-coupled profile, in spite of neglecting
strong inelastic couplings among AER states. Al-
though this AER treatment retains the simplicitly
of radiatively coupling only two states at a time,
there is a considerable increase in complexity over
the Born-Oppenheimer treatment, since each rota-
tional transition must be calculated separately.
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