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Proton-impact excitation of fine-structure transitions in 0+ P ions is studied in a
quasimolecular representation. The H and X+ states of the OH + molecule formed by
the approach of H+ and 0 + P are represented with self-consistent-field wave functions
which include the effects of polarization. Accurate, close-coupled solutions of the nuclear

scattering equations are obtained and used to assess the accuracy of some approximate
scattering descriptions. The elastic approximation is found to overestimate the cross sec-

tions at all energies. The Coulomb-Born approximation is accurate at both high and low

energies but greatly overestimates the cross sections at intermediate energies. A simple uni-

tarity correction to the Coulomb-Born approximation reduces the errors substantially. For
high partial waves, the Coulomb-Born approximation is satisfactory at all energies and

cross sections for fine-structure excitation by proton impact can be calculated accurately
and efficiently with the use of a combination of close-coupled and Coulomb-Born results.

Cross sections accurate to within 25% can be obtained with very lit'tie computational effort

by a combination of the elastic and Coulomb-Born approximations.

I. INTRODUCTION

Parameters characterizing the internal structure
of plasmas can be inferred from observations of
emission lines. Seaton' pointed out that forbidden

P3~2- P~~2 emission lines in the solar corona are
excited directly by proton and electron impacts and
indirectly by collisional excitation to higher levels
followed by cascading. Rate coefficients for the
processes are required to interpret the observed line
intensities and to derive the characteristics of the
physical environment. Essential features of a reli-
able theoretical description of the collision processes
include a proper representation of the interaction
and an accurate solution of the scattering equations.

Following Seaton's analysis, most studies of fine-
structure excitation by proton impact have utilized
semiclassical Coulomb excitation theory. Land-
man and Landman and Brown used it to calculate
cross sections for a number of cases of astrophysical
interest. Bahcall and Wolf used direct integration
of the semiclassical impact-parameter equations for
low-energy collisions. Bely and Faucher adopted a
simplified version to calculate reaction rates for the
0 + P)]2- P3/2 transition considered here and

Faucher extended the calculations to include tran-
sitions in Ca' +, Fe +, and Ni' +.

In all these studies, transitions were assumed to
be induced by the Coulomb interaction of the pro-
ton with the permanent quadrupole moment of the
target ion. This approximation is inadequate for
high-energy penetrating collisions where it leads to
cross sections that decrease with energy E as E
instead of the correct E '. Reid and Schwarz,
Masnou-Seeuws and McCarroll„Faucher and
Landman, ' and Doyle, Kingston, and Reid" cut
off the quadrupole interaction at small internuclear
separations to avoid its divergence at the origin.
The impact-parameter studies indicated that, be-
cause of the Coulomb repulsion, the cross sections
are insensitive to the cutoff procedure except at
high energies. At high energies coupling to higher
states is likely to be important also.

More approximate treatments of proton-induced
fine-structure transitions have been carried out by
Sahal-Brechot' using semiclassical perturbation
theory with a cutoff quadrupole interaction and by
Kastner' and Kastner and Bhatia' who developed
semiempirical formulas for cross sections as func-
tions of energy.
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Fine-structure excitation through proton impact
has also been treated quantum mechanically.
Faucher' compared quantal close-coupled results
with those of the Born approximation at high ener-

gies and semiclassical Coulomb excitation theory at
low energies. Faucher and Landman' found that
semiclassical impact-parameter arid quantal results
agreed for quadrupole-induced transitions. Mies'6

compared accurate quantal calculations with Born-
approximation results for proton impacts with neu-

tral fluorine at low energy and concluded that the
Born approximation was accurate only for high-
order partial waves and was inadequate for total ex-
citation cross sections. Mies' represented the col-
lisions using continuum molecular wave functions.
We use a similar formulation adapted for Coulomb
scattering.

Although transitions are coupled at long range by
the quadrupole interaction, the Coulomb repulsion
makes transition amplitudes vanishingly small at
low energies. At higher energies where the transi-
tion amplitudes are not negligible, the wavelength
A, =2ir(2pE) '~ is very small and a semiclassical
description of the scattering can be used. We find
that a quantal scattering description can also be em-

ployed efficiently despite the difficulties of evaluat-

ing matrix elements between rapidly oscillating
wave functions over extended interaction regions.

II. THEORY

by
oo I NII'- —g ~ i gr; Pl. (cos8;),

L=1~ i=1
(4)

and G'+'(E} is the Coulomb Green's function. In
the close-coupled approximation, the state vectors
are expanded in a truncated set of eigenstates giving
rise to a coupled set of radial equations from which
the transition amplitudes may be obtained. A
close-coupled formulation for similar processes in-
volving neutral particle collisions has been given in
terms of laboratory-fixed coordinate by Reid and
Dalgarno. '

If the total angular momentum quantum number
is J with projection M along a space-fixed axis and
if L is the proton-ion orbital angular momentum,
the cross section for process (1) is given by

where the electron coordinates are r;, denoted col-
lectively by r and 8; is the angle between r; and the
proton-ion direction R. The leading nonzero term
in Eq. (4) is the proton-ionic quadrupole interaction.

For an initial quantum state a with total energy
E, the scattering states describing process (1) are
solutions of the Lippmann-Schwinger equation

4'+'(E,a)=%( )(E,a)
+G'+'(E)H'4'+'(E, a ), (5)

where ip' ' is a product of the target eigenfunction
and a free Coulomb-state eigenfunction, satisfying

H =Tg+ V, . 1 +H,1, (2)

where Tg ———(A /2p)Vii is the nuclear kinetic en-

ergy operator, V-, . 1
is the spin-orbit interaction

operator, and H, 1 is the electronic Hamiltonian. If
Zq is the nuclear charge of the 1V-electron ion A
with electrostatic Hamiltonian H&, transitions are
induced between states of the Hamiltonian

(Zq N)—
Hp ——Tg+

R
+ V .7+HgS '

by proton-electron interactions given asymptotically

Assuming I-s coupling is valid, we consider the
process described by

A (nlsj )+H+ +A (nlsj—')+H+,

where A is an ion or neutral atom initially in the
quantum state (nlsj), specified by its principal, orbi-
tal, spin, and total angular quantum numbers. If p
is the reduced mass of the nuclei, the full Hamil-
tonian in center-of-mass coordinates can be written

a(j'~j) =
(2j+ 1)k~

X g (2J+1)
~

S —5

where S ~ is the scattering matrix element between
initial state a = (Jnlsj L} and final state
a'= (Jnlsj'L'}, and—the threshold energy and wave
number for state a are E and
k~ =i' '[2p(E E~)]'~, respect—ively. In terms of
energy-normalized wave functions, the transition
amplitude is

The scattering matrix is given in terms of the tran-
sition matrix by

S ~ =S (a')(5~ ~ 2iri +'T~—~ ),

where S (a') is the Coulomb S matrix

I (L'+1+iy~ )S (a') =
I'(L'+1 iy~ }—
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and
(Zz E)—e p

7a'
ka

The Coulomb-Born approximation is the zero-order
approximation to Eq. (8) and may be written

qI'+'(r, R ) =g%; (r,R)Fg(R ) (13)

in terms of electronic eigenstates

adiabatic nuclear scattering equations result from
an expansion

TCB (ip (0) Himp (0)) (12) (14)

To characterize better the interaction potential,
given asymptotically in Eq. (4), we consider process
(1) in the adiabatic molecular representation as an
inelastic transition between electronic eigenstates,

AH+(nlAs)~AH+(nlA's),

where A is the absolute magnitude of the projection
mi of the electronic orbital angular momentum 1

along the internuclear axis. The angular momen-
tum 1 is well defined in the asymptotic limit, but
not elsewhere.

In this representation, the electronic Hamiltonian
is diagonal with transitions occurring through off-
diagonal matrix elements of Tii and V, . ) . The

where i:n—lAs is a composite adiabatic quantum
state index.

The adiabatic nuclear wave functions remain cou-
pled asymptotically and must be transformed into
the scattering state solutions of Eq. (5). We first
couple 1 and s according to

P«jn(r, R)= g (lmism,
~
Jmj)

mIm,

&&4«A~(r R}
I
sms ~

where j = 1+ s, mi is the projection of j and
0=

~
mj ~. Transforming from the body-fixed to

the laboratory-fixed coordinate system we obtain

~
JMnlsjL )=g( —1) '(2L +1)' 0 ~

JMnlsjmj ),
m J J

J

where (lmism,
~
jmj) is a Clebsch-Gordan coefficient and

L J J
0 m —mJ J

(a'
~

V-, .-,
~
a) =CLi(j+1)—1(l+1}—s(s+1}]5~,.

The constant C is chosen so that the difference in the target energies E~ = (a
~

V-, .-,
~

a ) and

E~ = (a'
~
V, . i ~

a') equals the measured fine-structure splitting. The spin-orbit matrix element varies with

R by a factor of 2 for the case of 0 + from the 0.048-eV splitting of 0 + to the 0.092-eV splitting of F + to
which the system reduces in the united atom limit. However, because the cross sections for process (1) are
negligible until collision energies of at least 10 eV are attained, a constant splitting may be assumed for proton
03+ collisions.

In the
~
Jnlsj L ) representation transitions are driven by off-diagonal matrix elements of H, i,

VL J'LJ(R)=( —1) + + " '[(2L'+1)(2L+1)(2j'+1)(2j+I)]'
L' j' J L j J l s j I s j

X 0 e«p, (R) .
J J — J J I S J l S J0 I —Pl 0 ~ ~ —Pl Itive Pl —Ol Pl i NE —FB.

For the proton-impact excitation of the fine-structure levels of 0 +, e«q, (R) are the X and II interaction po-
tentials ex(R) and en(R) of OH4+.

The coupling matrix element occurring in the Coulomb-Born approximation is

(18)

is a 3-j symbol.
The operators Tz and V-, .

&
are diagonal in this representation. We ignore some additional angular cou-

pling terms of Tx which Mies' has argued are small. We approximate the spin-orbit operator as Cs I,
where C is a constant. Then the spin-orbit matrix elements are given by
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VL'3y2L iy2(R)=( —1) + [1—( —1) + + ](2L'+1) (2L +1)

J2

X 0 2 2

1L
[ez(R) —en(R)]

2 2

If the relative nuclear velocity is less than the
electron orbital velocities, the elastic approxima-
tion' may be useful. According to it, the transition
is regarded as occurring as the ions scatter elastical-
ly along adiabatic electronic potential-energy sur-
faces. Transitions are a direct result of recoupling
of the scattered molecular states to produce a dif-
ferent final superposition of ionic fine-structure
states. The approximation has been applied in stud-
ies of fine-structure transitions in neutral systems

by Bottcher et al. and Harel et al., ' although Reid
and Rankin have argued that it is not a reliable
procedure.

By neglecting spin-orbit splittings and Tq cou-
plings, we obtain a set of elastic adiabatic nuclear
scattering equations. Upon recoupling to the ap-
propriate asymptotic representation, inelastic cross
sections can be expressed in terms of the adiabatic
elastic phase shifts. For I'~/2~ I'3/2 transitions,
the formula is

o( —~—)= g(2L+1)sin [5L,(II)—51.(X)],
9k

(20)
where 5L, (II) and 5L (X) are the partial wave phase
shifts for elastic scattering along the H and X
molecular surfaces, respectively.

III. APPLICATION TO 0 + ( P)/2 ~ P3/2)

3 q &n
e (R)-—+ —— + ~ ~

2Z4
(22)

TABLE I. Potential energies of the lowest X and H
states of OH4+ in a.u.

E. (a ) 2g II

are accurate representations of the molecular poten-
tial curves to within a few tenths of a percent into
R as small as 3.0ao. For the scattering calculations,
we used the calculated molecular potential curves
inside 5ao and the asymptotic forms at longer dis-
tances. The calculations include the effects of po-
larization and of penetration of the 03+ electron
distribution.

The Coulomb-Born approximation is accurate in
the high-energy limit and in the small-interaction
limit. For collisions between positive ions, the in-
teraction is small at low energies and for large an-
gular momenta. At low energies the Coulomb
repulsion and for large angular momenta the centri-
fugal barrier restrict the nuclei to the weak-
interaction region. Coulomb-Born results for indi-
vidual partial cross sections are illustrated in Figs. 1

and 2 for proton-impact energies of 3 and 30 eV,
respectively. Solutions of the close-coupled radial
scattering equations were calculated using the log-
derivative method of Johnson ' and the cross sec-

We calculated potential-energy curves for the H

and X+ states of OH + using single-configuration
self-consistent-field wave functions. For the basis
set we used the 0 + Hartree-Fock wave function of
Clementi and Roetti augmented with oxygen
3s, 3d, 4s, 4d polarization functions as well as oxy-
gen 3p, 4p and hydrogen 1s,2s, 2p, 3s, 3p functions.
Table I is a list of the calculated potential energies.
The corresponding 0 + quadrupole moment
q= —,(r) =0.4044ao. The dipole polarizabilities
of 6 + may be determined from the OH + wave
functions. " We obtained e~ ——1.31ao and
a~ ——1.44ao for the X and II states, respectively.
The corresponding asymptotic limits

ez(R)
3

R g3
and

0.050
0.075
0.100
0.125
0.150
0.175
0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.25
1.5
2
3
4
5

140.378 04
88.19676
62.711 88
47.843 72
38.218 21
31.531 65
26.638 04
15.656 65
10.41720
7.435 12
5.598 20
3.606 82
2.663 70
2.077 34
1.759 17
1.391 19
0.974 88
0.740 84
0.595 64

140.395 77
88.325 52
62.778 13
47.942 31
38.3S2 28
31.70241
26.844 11
15.943 42
10.708 18
7.71649
5.869 62
3.861 00
2.89493
2.269 56
1.907 96
1.46946
0.997 67
0.75024
0.60045
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FIG. 1, Partial-wave contributions 0 =(m /2k )
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Close-coupled and Coulomb-Born, (b) elastic approxima-
tion.

tions are included in Figs. 1 and 2. The Coulomb-
Born and close-coupled partial cross sections are in-

distinguishable for E =3 eV, but significant differ-
ences occur at low angular momenta for E =30 eV.
The Coulomb-Born approximation violates unitari-

ty and overestimates the partial cross section in the
strong-interaction region. Unitarity can be imposed
in several ways. We chose to set

~

S (a,a')
~

=0.5

whenever the Coulomb-Born estimate exceeded 0.5.
The results are shown in Fig. 2. Despite the arbi-
trary nature of our simple procedure, there is a
marked and systematic improvement.

Partial cross sections calculated using the elastic
approximation are presented in Figs. 1 and 2. The
approximation overestimates the cross sections for
all except the low-J partial waves, the discrepancies
becoming more severe as the angular momentum in-
creases. The elastic approximation assumes that the
recoupling of the atomic states to form the X and
2II molecular states takes place in the limit of large
internuclear distances whereas in practice it will oc-
cur at some intermediate distance where the electro-
static interaction is comparable to the spin-orbit in-
teraction. A detailed analysis of the elastic approxi-
mation in neutral particle fine-structure excitation
has been carried out by Reid and Rankin who ar-
gue that it is generally unreliable. Their results
demonstrate that the approximation is inadequate at
intermediate values of J but gives good agreement
with the close-coupled partial cross sections at low
and high J values.

In the low-energy limit the cross section for pro-
cess (1) is zero because of the Coulomb repulsion.
At a collision energy of 3 eV, corresponding to a
classical turning point R, =30ao, the cross section

No
D

b
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Al o0 50

b
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(p 'ill
0
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PARTIAL WAVE J

FIG. 2. Partial-wave contributions 0. at a total ener-

gy of 27 eV. (a) Close-coupled, (b) elastic, (c) Coulomb-
Born, and (d) unitarized Coulomb-Born approximation.

100 200 4005 10 20 50
F (ev)

3 1FIG. 3. Total cross section 0.( —~—,) versus energy.

(a) Close-coupled, (b) hybrid elastic Coulomb-Born, (c)
unitarized Coulomb-Born, and (d) elastic approximations.
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is 10 ap. It rises to a maximum of 30ap for a col-
lision energy of 30 eV for which R =3ap. The
Coulomb-Born and close-coupled results agree
closely at energies up to 7 eV. At energies above 7
eV, the particles enter the strong-interaction region
and the Coulomb-Born approximation loses accura-
cy. At E =30 eV, the Coulomb-Born cross section
is 54a p. The simple unitarity correction reduces the
cross section to 37ap. The elastic approximation
overestimates the cross section at all energies. A
hybrid approach, in which the elastic approxima-
tion is used for low-order partial waves, where
~S

~

&0.5 and the Coulomb-Born approxima-
tion elsewhere is computationally very rapid and
produces much improved results.

Figure 3 illustrates the cross sections obtained by
the full solution of the coupled equations and by the

unitarized Coulomb-Born, elastic, and hybrid ap-
proximation. Their accuracy is a reflection of the
computational burden of the calculations. Given
reliable interaction potentials, the use of close-
coupling solutions at low J giving way at high J to
the Coulomb-Born approximation as it becomes ac-
curate provides a rapid procedure without loss of
pfeel s1on.
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