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Saddle-point complex-rotation method for resonances
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A new procedure is suggested to improve the convergence of the complex-rotation
method. Calculations are carried out for the He 2s2s 'S and 2s2p 'P resonances. With a re-

latively small and simple wave function, one obtains a width which is stable to six digits
over a wide range of rotational angles and nonlinear parameters. The results are compared
with those of the most accurate theoretical calculations and experiments. The feasibility of
applying this method to more complicated systems as well as multichannel problems is also
discussed.

The method of complex rotation' has generated
considerable interest in the past several years. The
advantage of this method is that the resonance ener-

gy and width of a scattering resonant state can be
computed with square-integrable basis functions.
This is an extremely attractive feature which has
spurred many intensive efforts in applying this
method to atomic and molecular systems. Howev-

er, poor convergence has been the main obstacle for
wide range applications. For example, for a two-
electron system, Hylleraas basis functions ranging
from 125 to 1200 terms have been used to achieve
convergent results. Very limited accurate results
have been published beyond the two-electron sys-
tem. Another feature in the conventional complex-
rotation method is that the physical solution is min-

gled with a large number of unphysical solutions.
Unless one knows the resonance position before the
calculation, it is difficult to sort out the true reso-
nance from among the large number of solutions,
especially when the convergence is poor. This seri-
ously limits the ability of the method to "predict"
resonances. Junker and Huang and Rescigno
et al. have shown that since the resonant wave
function is an analytic function, much of the insta-
bility in the complex eigenvalue that results from
rotating the Hamiltonian can be eliminated by using
basis functions that are functions of re's Although.
much attention has been given to the convergence
of the complex eigenvalue with respect to different
forms for the "open-channel" component of the
wave function, and with various correlated target
functions, ' less attention has been given to the
"closed-channel" component. The degree to which
the complex eigenvalue can converge to the true
resonant energy depends on how complete the basis

functions are for describing the closed-channel com-
ponent. In this work we start our complex-rotation
calculation with a set of optimized basis functions
representing the closed channel that have been
predetermined by the saddle-point technique.

Recently, the saddle-point technique has been
developed to calculate the energy of a closed-
channel resonance. Extensive applications have
been carried out which show that it is highly accu-
rate and a fast convergent method. ' "The greatest
strength of the saddle-point technique is its ability
to predict Feshbach resonances. Since spurious
solutions are removed by directly building the prop-
er vacancies into the wave function, the energies ob-
tained below a corresponding threshold are all phys-
ical resonances. The maximum-minimum principle
upon which this method is based allows the non-
linear parameters in the basis functions to be optim-
ized, so that each resonance can be represented with
a relatively compact wave function. The one
shortcoming of this method is that it does not give
the width of a resonance directly without including
the open-channel segment explicitly, and this may
also introduce a small "shift" from the saddle-point
energy to the true resonance position. The inclusion
of this nonsquare-integrable component, however,
would increase the computational difficulties sub-
stantially. By combining the saddle-point technique
with the complex-rotation method this shortcoming
can be avoided.

Part of the convergence problem associated with
the conventional complex-rotation method has been
previously corrected for by understanding the ana-
lytic properties of the resonant wave function. 67

One can also understand this problem from the
viewpoint of optimized basis functions in a varia-
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H =H(RJve', QJv ), (2)

where Rze' implies that each radial coordinate rj
takes the form rJe', then this new Hamiltonian is

very different from Eq. (I), and the corresponding
eigenfunction is also changed substantially even

though the eigenvalue is supposed to remain the
same. The nonlinear parameters in pJ which are
most suitable for the solution of H (RJv, QN ) may
not be suitable for that of H(RNe', QJJ). Since the

pJ are far from a complete set, the corresponding
roots of the secular equation become unstable, re-

sulting in poor convergence.
It is easy to recover this convergence if one ro-

tates the basis functions pJ with H, i.e.,

In this case one finds that the eigenvalue E is in-

variant as H rotates. If E is real before the rotation,
it remains real when H rotates. No imaginary part
will appear as a result of this rotation, i.e., the

tional calculation.
Let us consider an N-particle Hamiltonian

H(&~, &q, . . . , rN ) =H(RJv, Q~),

where RN represents the set of radial coordinates
r&, rz, . . .,r~, and Q~ represents the angular coordi-
nates collectively. Assume that an eigenfunction of
this H can be efficiently expanded in terms of a
basis set pJ(R&, Q&), so that only a limited number
of terms need be used to give an accurate represen-

tation of the eigenfunction and eigenvalue. This
limited number of pJ, is, of course, far from being a
complete set. If we begin to rotate the Hamiltonian,
1.e.,

width does not come out.
It is well known that the width of a resonance is

the result of the coupling between the closed- and
open-channel components of the resonant wave
function. ' ' For narrow resonances, this coupling
is very weak. The resonant wave function can then
be approximated by the closed-channel component
and the resonance energy is largely determined by
this component. Based on these considerations, we
propose a saddle-point complex-rotation method as
follows.

We first solve the resonance problem in the real

space with the saddle-point technique. This allows
us to obtain a highly accurate and relatively com-
pact basis set pJ. with optimized nonlinear parame-
ters. We then add to this function the open-channel
segment. The total wave function is then given by

f(RN ) =QCJ/J(RJv )+Agd+Q;(Rz &)u&( r~ ) .
i, k

(4)

Here CJ and d~ are the linear parameters, p; are the
open-channel target states, and A is the antisym-
metrization operator. The angular coupling in the
second term of Eq. (4) is suppressed. It is under-

stood that if in the LS coupling scheme 4 takes a
set of good quantum number L, M, S, and S„then
the target state and the uk will couple in such a way
that the correct angular and spin quantum numbers
will be obtained.

The u~ in Eq. (4) form a one-dimensional com-

plete set. The nonlinear parameters in this set can
be chosen when a particular calculation is carried
out.

When H rotates through an angle 8, we adjust
Eq. (4) as follows:

+(R/& QJv)=yCJ/J(RJv& Q/)+&ydi/jq/(R/ g, Q/ ])&g( /r)
i,k

With this 4', the width and shift are calculated
from the secular equation that results from

(q ~H ~e)
(6)

(q ie)
Note that the unconjugated e' is used in the com-
plex conjugated wave function.

To test our procedure, we carried out calculations
for the He2s2s 'S and 2s2p 'P resonances. The pJ.
are the same configuration basis functions as those
of Ref. 10. The 1s vacancy orbital is also of the
same form. The optimized nonlinear parameter q

I

in the vacancy orbital is q =1.994 for the 2s2p 'P.
For the closed-channel component of this reso-
nance, we used a five-partial-wave —47-term-wave
function, the saddle-point energy calculated from
this basis set is —0.6926204 a.u. f; is the ground
state of He+. If we choose

uJ, (r) =r"e
the open-channel component becomes

copen A 1pl, (r&) g dzrze 'Y~p(pp) . (g)
k=1
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TABLE I. Convergence of the width I of He2s 2p 'P as a function of rotation angle 0 (in

rad) and nonlinear parameter P using the saddle-point complex-rotation method; here y is
given in the body of the table, where I"=(0.00138697+y)(10 ') a.u. , e.g., if y=2,
I =0.001 38699 a.u. K is the number of terms used in the open-channel wave function.

1.0
1.5
1.75
2.00
2.25
2.5
3.0
3.5

0.2

—987
—476
—183
+506
—492
+574
+50

—1320

0.3

—56
—19
—8

+20
—19
+14
+85
—4

0.4

—8
—1

—1

0
—2
—1

+19
+21

0.5

—16
0
0
0

—1

—1

+3
+30

0.6

—46
—1

0
0
0

—6
+6

+61

0.7

—135
—2

0
0

+8
—15
—20
+75

0.8

—76
+24
+6

—23
+64
—29
—79
+36

K =19 1.5
1.75
2.0
2.25
2.5
3.0
3.5
4.0

—96
—42
+29
+27
+27

—287
—169

73

+53
—5

+2
+3
—2

—10
—28

48

—9
—1

0
0
0

—1

0
+17

—6
0
0
0
0

—1

+1
+16

0
1

0
0
0

—1

—7
+15

—1

—1

0
+1
—2
+4

—34
—10

41
0

—5

+19
—45
+55

—104
—79

If Eq. (8) is substituted into Eqs. (5) and (6), with

the rotated H, one obtains the complex energy
eigenvalue. This energy is very stable over a wide

range of rotation angles 8 and nonlinear parameters

P. For example, if we use 14 uk's (E = 14), the real

part of the energy is stable to about seven or eight
digits. The imaginary part which gives the width of
the resonance is also stable. Table I demonstrates
the convergence of the width for the 14- and 19-
term calculations. Both calculations give a con-

TABLE II. Convergence of the width I of He2s2s 'S as a function of rotation angle 0
(in rad) and nonlinear parameter P using the saddle-point complex-rotation method; here y is
given in the body of the table, where I =(0.0046051+y&10 ) a.u. , e.g., if y =2,
I =0.004605 3 a.u. K+1 is the number of terms used in the open-channel wave function.

K =14 1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5

0.2

220
167
104

—1076
—102
—270

—3
775

0.3

25
2
4

—2
—5

—16
24
28

8
0.4

5

1

1

0

1

23

0.5

0
1

0
0
0

—2
17

131

0.6

—18
1

0
0
0

—6
—50
293

0.7

—47
2
0
0

—3
18

—346
406

K =19 1.5
1.75
2.0
2.25
2.5
2.75
3.0
3.5

44
—78
—36
—1

53
—12

74
126

63
—5
—5

2
18

—1

2
—2

4
1

0
0
0

—1

0
5

2
0
0
0
0
0
0

—3

4
0
0
0
0
2
2

—32

17
0
0
1

—4
—2
21

—40
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TABLE III. Comparison of energies and width of 2s 2s 'S and 2s 2p 'P resonances of heli-

um (in eV).

2s2@ 'P Theory

Expt.

Energy

60.1456

60.1450

60.1463

60.1486

60.13+0.015

Width

0.0371

0.0363

0.0388

0.03736

0.038+0.0004

Authors

Ho' 161-term Hylleraas
function, complex-rotation
method
Bhatia and Temkin 84-
term Hylleraas function
plus static exchange
Burke and Taylor' close-

coupling plus correlation
This work, configuration-
interaction function,
saddle-point complex-
rotation method
Madden and Codling,
optical-absorption experi-
ment

2s2s 'S Theory 57.848
57.8435
57.8473
57.8483
57.82+0.04

57.78+0.03

0.1235
0.125
0.124
0.124 68
0.138+0.015

0.138+0.015

Ho'
Bhatia and Temkin"
Burke and Taylor'
This work
Hicks and Comer' scatter-
ing experiment
Gelebart et al.
scattering experiment

'Reference 3.
Reference 14.

'Reference 15.
Reference 18.

'Reference 16.
Reference 17.
Both experiments are calibrated with 2s 2p 'P He at 60.13 eV.

verged width of 0.00138697 a.u. and a converged
resonant energy of —0.6928777 a.u. Compared
with the saddle-point energy, it is shifted by
—0.0002573 a.u., or —0.00700 eV. This shift
agrees with the shift of —0.007 13 eV calculated by
Bhatia and Temkin. ' A test calculation is also car-
ried out for the 2s2s 'S of helium. In this case

q =1.92. A four-partial-wave —45-term closed-
channel wave function gives a saddle-point energy
of —0.777851 a.u. If we couple this with a 15-
term open-channel component we obtain a reso-
nance energy of —0.777839 a.u. and a width of
0.0046051 a.u. If the open-channel component is
extended to 20 terms, the same result is again ob-
tained. The convergence behavior for the width is
shown in Table II, again, the result is stable over a
wide range of 8 and P.

It should be pointed out here that the converged
width in Tables I and II is with respect to the par-

ticular closed-channel wave function used. There-
fore, if the saddle-point solution is further im-

proved, the corresponding result for the width may
also change slightly. For example, if we extend the
saddle-point solution for 2s2p 'P to 73 terms, the
saddle-point energy becomes E =0.692773 a.u. and
we find E„,= —0.693024 a.u. and I =0.0013731
a.u. The width is reduced by about 1/o. If we ex-

tend the 2s2s 'S closed-channel wave function to
78 terms, E = —0.777 882 a.u. , we find

E, = —0.777858 a.u. and I =0.0045707 a.u. The
width is reduced by about 0.5%%uo. These results

agree quite well with the accurate theoretical calcu-
lations in the literature. ' ' A comparison of the
accurate theoretical and experimental results for
these two resonances calculated here is given in

Table III. It appears that the widths of the 2s 2s 'S
calculations agree extremely well despite the fact
that very different theoretical methods and wave
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functions are used. But these results lie on the low
side of the quoted experimental width which is also
very consistent among the different scattering ex-

periments. It is not clear whether this discrepancy
between theory and experiment is due to the way
experimental widths are determined. ' '

By contrast, the calculated widths for the 'I" res-
onance agree very well with the optical-absorption
experiment of Madden and Codling' in which a de-
tailed line-profile analysis has been made. How-
ever, the calculated energy positions are higher than
the quoted experimental position by 0.015 to 0.019
eV. The experimental uncertainty is given to be
0.015 eV. Since this experimental result has been
used for calibrating many scattering experi-
ments, ' ' it would be highly desirable if the experi-
mental uncertainty could be reduced and the
disagreement between theory and experiment be
resolved.

The method used here bears some similarity with
that used by Junker and Huang except that we pro-
pose the use of an optimized closed-channel basis
set with the proper vacancies built in and a different

type of basis function is used for the outgoing parti-
cle wave function. By taking these procedures, this
method can predict resonances rather accurately.

The calculations we carried out in this work are
for helium. It is used because accurate theoretical
and experimental results are available to access the
effectiveness of the method. However, the advan-
tage of this method is mainly for more complicated
N-particle systems where a conventional complex-
rotation calculation becomes impractical. Instead
of using an N-dimensional complete set, the method
suggested here advocates the use of a one-
dimensional complete set for one particle, namely,
the outgoing particle. All other nonlinear param-
eters are predetermined before the complex rotation
is made. This should greatly enhance the applica-
bility of the complex-rotation method.
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