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Multiple-time-scale perturbation theory: Radiative decay of coupled atomic states
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The spontaneous radiative decay to the ground state of an atomic system initially in the
higher of two excited states, coupled in a radiationless fashion by an external field, is inves-

tigated by the method of multiple-time-scale perturbation theory. The coupled differential
equations of motion for the probability amplitudes are solved to second order, while the
usual secular behavior of conventional time-dependent perturbation theory is eliminated in

terms of two natural time scales: a fast time scale corresponding to the reciprocal of the
level transition frequency and a slower time scale associated with the inverse of the radia-
tion linewidth. Expressions are obtained to this order for the energy shifts and decay
characteristics of the excited states and the energy distribution of the final-state photons,
quantities previously determined by Fourier analysis and contour integration and by the
phenomenological approach of Weisskopf and Wigner. A detailed comparison of these
various methods of solution includes conditions under which the present results agree to
second order with the previous calculations.

I. INTRODUCTION

It often happens that the use of conventional
time-dependent perturbation theory in both classical
and quantum-mechanical calculations results in the
occurrence of terms that diverge at large times.
This secular behavior arises, for example, in plane-

tary orbit theory, ' and in the determination of tran-
sition rates in quantum mechanics. Multiple-
time-scale perturbation theory is an especially con-
venient method that can provide uniform expan-
sions in these difficult situations. This form of
time-dependent perturbation theory recognizes the
existence of different time or frequency scales relat-
ed by a small coupling parameter k. The physical
time t is extended into a set of independent time
variables (ro t, r ~

A.t, 7——z A, t, ——. .), w——hich.
represent the distinct time scales in the system. The
structure of the equations of motion of many per-
turbed systems permits the application of a relative-

ly simple version of this technique. In essence, the
unspecified functional dependence of these time
variables is completely at our disposal and is used to
formulate a solution to the equations of motion in
terms of an expansion in k free of secularity.

Certain processes involving the interaction of
electromagnetic radiation with atoms have provided
specific contexts for the application of the
multiple-time-scales expansion. This approach has

been employed by Brooks and Scarfone to obtain

the transition rate for induced emission by an n

level atom exposed to a classical radiation field; by

Lee, Lee, and Chang, and Lee and Lee, to analyze

spontaneous radiation processes in arrays of one,

two, and E two-level atoms; by Meyer, to investi-

gate the nonlinear scattering of a laser beam from a
relativistic two-level atom; and by Wong, Garrison,
and Einwohner, to study laser excitation of n

level atoms.
In the present paper, we continue the develop-

ment of multiple-time-scale perturbation theory in

atomic physics by treating the spontaneous radia-

tive decay to the ground state of an atom initially in

the higher of two excited states radiationlessly cou-

pled by a constant external field. Wangsness' has
considered this decay in terms of the phenomeno-

logical damping theory of Weisskopf and Wigner, "
including the effects due to spontaneous transition
probabilities and the Lamb shift, in order to explore
the connection between Stark mixing of levels and

the periodic intensity variations found in hydrogen
lines. ' Alternatively, Fontana and Lynch' consider

a Hamiltonian formulation of this problem and
solve the coupled equations for the probability am-

plitudes nonperturbatively by Fourier analysis and

contour integration. The perturbed energy levels of
the excited states are determined by the real parts of
the poles of the Fourier transforms in the complex
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energy plane, while the imaginary parts provide the
decay characteristics. This method of solution and
that based on multiple time scales automatically
lead to exponential decay laws for large times.
Weisskopf and Wigner showed that spontaneous
atomic radiation can be accounted for by modifying
the Schrodinger equation through introduction of
damping terms that lead to exponential decay
behavior at large times. The use of such damping
terms has been found to be in conformity with the
results of more sophisticated treatments. ' ' In the
multiple-time-scales analysis the energy shifts and
the amplitude changes occur when functional
dependences on various time scales are specified so
as to eliminate secular terms in each order. '

Section II describes the physical system of in-
terest and the corresponding equations of motion
for the probability amplitudes, to be solved here to
second order by multiple-time-scale perturbation
theory. Section III indicates the use of this method

in various other areas and carries out the solution

process to obtain the probability amplitudes of the
system states, the perturbed energies and decay
characteristics of the excited states, and the energy
distribution of the final-state photons. Finally, in

Sec. IV the results will be discussed.

II. THE RADIATIVE DECAY PROBLEM

This paper is concerned with the single-photon
radiative decay process that results when the higher
of two excited atomic states, radiationlessly coupled
by a constant external field V, decays to the ground
state. The Hamiltonian of this system consists of
three parts, Ho, H„,and V, where Ho is the Hamil-
tonian for the unperturbed atom and the free elec-
tromagnetic radiation field, while H„describes
their interaction. In the present case

2'
H.,= g L kk, 0

' 3/2

[a(k,o)et"'+a (k, o)e '"'']e (k).p,

where the sum is over final-state photon momenta
k and polarizations o. The operators a(k, o) and
a (k,o) are, respectively, the photon annihilation
and creation operators for the photon mode (k,o);
e~(k) is a unit polarization vector; and p is the
momentum of the electron relative to the center of
mass of the atom. We take A'=m =c=l, where m

is the mass of the electron.
The unperturbed atom has two excited states

I

a )
and

I
b) and a ground state

I
c) with energies

E, &Eh & „Er epse tcively. The system states of in-
terest are

I

0'), atom in state
I

a ) with no photons

present;
I j), atom in state

I
b) and no photons

present; and
I f ), atom in state

I

c ) and one pho-
ton present with momentum k and polarization cr.

Initially, i.e., at t =0, the atom is assumed to be in
an excited state. At time t later, the system state is
expressed in the Schrodinger picture as

I
t & =cp(t)

I
0&+cj(t)

Ij &+X~j(t) lf &

f
where the summation index f is an abbreviation for
the photon mode (k,o), and the energies Ep, Ej,
and Ef are given by E~, Eb, and E, +k, respective-
ly. The usual Schrodinger picture equations of
motion yield the following set of three coupled dif-
ferential equations for the state probability ampli-
tudes cp(t), cj(t), and c~(t):

d—+iEp cp(t)+ivpjcj(t)+iAQHpjcj(t)=D, (3)
dt f
—+iEj cj(t)+iVjpcp(t)+iAQHjfcf(t)=0, (4)
d

f

where A, is a smallness parameter explained below
and

Vpj ——(0
I (H,„+V)

I
j)

Hpf = (D
I
(Ha„+v) If )

=(DIH,
„ I f),

H,'j=(j
I
(H.,+ v) If)

=(jIH., f&.

(7)

The matrix elements Vj.o, Hfo, and Hfj are defined
similarly. Equations (3)—(5) are the equations to be
solved by the method of multiple time scales subject
to the general initial conditions

cp(0)+0, cj(0)+0, cj(0)=0 .

For problems like the one at hand, the smallness

dt
—+tEj cj(t)+t AHypcp(t)+t AHjjcj(t) Dp (5)—
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parameter A, is the strength of the atom-radiation
field interaction. In Eqs. (3)—(5) the matrix ele-

ments ~~„have been written as H~„~A,H~„,
where A, is set equal to unity at the end of the calcu-
lation. Its purpose is to keep track of the different
orders in the perturbation expansion. The natural
time scales for radiative processes in atomic systeins
are the inverse of the level transition frequency and
the inverse of the radiation linewidth. These times
are of order A, and A, , respectively; this assures us
that introducing time scales ordered by powers of A,

will correspond to the physical behavior of the sys-
tem. On the other hand, the a priori identification
and introduction of these two time scales is not ob-
ligatory. The mixing frequency between the states

~

0) and
~
j) is determined by the strength of the

external perturbation V rather than being scaled ac-
cording to the parameter A,. The time behavior cor-
responding to this frequency is incorporated in the
solution in a straightforward manner.

III. MULTIPLE- TIME-SCALES EXPANSION

Multiple-time-scale perturbation theory is an
adaptation of techniques developed by Krylov and
Bogoliubov, ' and Bogoliubov and Mitropolsky'
for the avoidance of secular behavior in the treat-
ment of quasiperiodic classical systems. The ver-
sion of this formalism to be used here was devised

by Frieman' and Sandri in the treatment of prob-
lems in the kinetic theory of gases and plasmas.
The similar two-variable method used by Meyer
was introduced by Cole and Kevorkian. '

Multiple-time-scale methods are generally well

known and extensively employed in engineering and

applied mathematics. Applications in the physics
literature are less common, but the range of topics
extends beyond the atomic and statistical physics
examples cited above. In quantum theory,
Montgomery and Ruijgrok analyzed transitions of
a spin- —, particle in crossed, time-dependent mag-

netic fields, and Balasubramanian extended the

treatment to the spin-1 particle case; Boldt and San-
dri obtained an exponential decay law in the
Weisskopf-Wigner model; Varga and Aks generat-
ed a first-order renormalized Hamiltonian in the
process of solving the weakly nonlinear P model of
quantum field theory; and Khoo and Wang use
multiple-time-scales analysis as a nondiagrammatic
procedure for obtaining the frequency shift and de-

cay constants for phonons in an anharmonic crys-
ta1. In the area of statistical mechanics, Cukier and
Deutsch extracted from the Liouville equation for
a Brownian system the Fokker-Planck equation for
the distribution function of the Brownian particle.

In these examples, the physical systems inherent-

ly contain a smallness parameter and a number of
natural time scales which can be distinguished or la-
beled in some way as a function of the parameter.
For applications in quantum and statistical physics,
it has been possible to order the times simply ac-
cording to powers of the small parameter, although
the general multiple-time-scales method does not re-
quire this. ' Analysis by conventional time-
dependent perturbation theory yields expansions
whose uniformity is guaranteed only if the time is
restricted to sufficiently small values. For greater
values of the time, higher-order terms can become
nonuniformly large by relative growth in proportion
to time or due to the effect of nearly resonant
denominators (quasisecular behavior). This expan-
sion breakdown is caused by the cumulative effect
of contributions by physical processes occurring at
the higher-order "slow" time scales. In the
multiple-time-scales approach, the different time
scales are identified and separately considered in the
process of assuring uniformity order by order.

Proceeding with the solution of the present case,
we begin by solving Eq. (4) for cp(t) and find

cp(t) = —+iEJ c~(t) QHJ'cy(t) —.l

V,, dt ' '
V,, f

(10)

Fquations (3) and (5) then become, after substitu-
tion of Eq. (10) and rearrangement,

+t(Ep+E,. ) +(
~

V
~

E—,E, ) (ct) i+A d-
dt f

Hj~f +tEp i Vj' pH pf Cf ( t )—=0
dt

and

—giE~ c~(t) +iA,
dt

r

IHfo d, p +fo—+iEJ +HIJ cj (t) i AQHJ'g C—s(t,) =0,j j J y Jg g
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=DO+A&i+A, D2+ (13)

respectively, where
~

V
~

= Vpj Vjp and the summa-

tion index g in Eq. (12) is over final states.
To introduce the multiple-time-scales formalism,

we let c„(t)+c„—(r) where r represents collectively
the set of time variables rp, ri, r2, . .., which can be
put into correspondence with the physical time t as
indicated previously. Associated with this exten-
sion to a multicomponent variable is the derivative
expansion

a a a
+A +A +

dt 87 Bw Bw

according to the initial conditions. In the course of
carrying out the solution, the ~o,r],,~2,. . . are to be
treated as independent variables, and, when other-
wise unspecified, the functional dependence on
these variables can be chosen arbitrarily for con-
venience or, more importantly, can be chosen so as
to forestall behavior leading to nonuniformity.
When results to the desired order are secured in
terms of rp ri r2 ~ '~ ., they are converted to the

physical time t by setting 7 0 = t, 'T ) =A t,
ri A, t, .——. ., which defines the so-called "physical
line. "

The zeroth-order equations are found to be

where a change of notation has been made for com-
pactness. Briefly, the method as applied to Eqs.
(11) and (12) involves replacing t, c„(t),and the time
derivative by r, c„(r),and the right-hand side of
Eq. (13), respectively. We then seek a solution of
the resulting equations to various orders by expand-

ing c„(r) in the form

c„(r)=c„"'(r)+ac„'"(r)

[Dp+i(P+a )][Dp+i(P —a )]cj '(r) =0,

(Dp+iEf )cf (r) =0,

where a and P are defined by

=—t I V
I'+[-, (E.—E )]']'"

1

P = —(Ep+.E).
(15)

(16)

(17)

+X'c„'"(r)+ ~ . ~, (14) The solutions in this case are

c (r)=A+. (rl r2 . . )exp[ —i(P+a)rp]+A (ri ri, . . . )exp[ i(P —a)rp]—,

cf (r)=cf (rp ——O, ri, r2, . . . )e =0(0) (0) -' f 0

(19)

(20)

In Eq. (20) we have chosen the zero solution because we are assuming the system to be in an excited atomic
state initially. The coefficients A+ in Eq. (19) are independent of the time scale rp but do possess as-yet-
unspecified dependence on the higher-order time scales.

With the above results, the first-order equation for cj is given by

I [Dp+E(P+a )][ Dp +i(P a )]'[cj (r )+ [2DpDi +i'(Ep+EJ )Di ]c& (r ) =0 . (21)

When Eq. (21) is integrated with respect to rp, the second term will cause the appearance of secular behavior

in cj"(r). To avoid this breakdown in the perturbation expansion, we take DiA+(ri, ri, . . .) =0 so that A+ is
not only independent of rp, but additionally independent of ri The ability .to specify functional dependence

in this way is the key feature of the multiple-time-scales solution procedure. Under these conditions, Eq. (21)
becomes

[Dp+ i(P+ a ) ][Dp+i (P a) ]c)~"(r)=0— (22)

Here we take the zero solution cj"(r) =0 because we elect to express the initial conditions in the zeroth-order

approximation.
Turning to the first-order equation for cf, we find, again using the above results, the expression

~ p

(Dp+iEf )cf (r )+i (Dp+iEJ )+Hf'J ci (r) =0
&

LIIfo

VJ.o
(23)

from which it follows that
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cf '(r ) =Bf+(72 ' . )e ' f exp[i [Ef—(p+a )]x Idx

+Bf (1 2 )e f exp{i [Ef (—p a—)]x ]dx

where the quantities Bf+ are defined by

H)p
Bf+(r2, . . ) .=i [E —(p+a)] Hf —A+(r2, . . . )

jp

(24)

(25)

(26)

and we have taken cf'"(rp ——O,r~, . . .) =0 in agreement with the initial conditions. For simplicity, we consider
the limit of large rp and make the following approximation2 in the expression for cf '.

'TQ 00

lim f exp[i[Ef —(p+a)]x jdx= f expIi[Ef (13+—a}]x]dx=If+,
p p

where

1
if+ =i im5((—p+a) Ef)—

(p+a ) Ef—
J

and 9' implies the Cauchy principal value at Ef=(p+a). Therefore, for large rp,

cf (r)=Bf+(r2, . . . )If+exp[ —i(p+a)rp]+Bf (r2, . . .)If exp[ i(p ——a)rp] .
(&)

(27)

(28}

In making this approximation, we average out behavior occurring at small values of rp. On the physical line,
however, 'Tp turns out to measure times on the order of the reciprocal of the energy difference between the ex-
cited states and the ground state. We can thus allow rp to be "large" without interfering with investigation of
decay processes, which occur on a much slower time scale.

The second-order equation for cf is, after dropping terms known to be equal to zero,

t [Dp+i(P+a)][Dp+i(P a)]]—cj' (r)+Dz[2Dp+i(Ep+EJ. )]c& (r)

+i g[HJ'f(Dp+iEp) i VfpHp—f]cf' (r) =0 . (29)
f

The second and third terms in Eq. (29} will contribute secular behavior to cz ', so, once again exploiting the
freedom to dictate higher-order r dependence, we require

Dp[2Dp+2(Ep+Ef)]cj~ (r)+i g [Hjf(Dp+iEp) iVJpHpf]cf (—0 ) 0—
f

Using Eqs. (19) and (28) in Eq. (30}and equating coefficients of like exponentials, we have, for example,

(30)

D2A+(r2, . ) = g IHJ'f [Ep (p+a )]+VJ'pH—pf I

—1

2(x

Hfp
X [EJ (p+a)] Hfj—If +A(+1 —,2. . . ) .

jp
(31)

To simplify the calculation we assume that the upper and lower excited atomic states,
~

a ) and
~

b ), respec-
tively, have definite values of angular momentum. 9 Under these conditions, the cross terms in Eq. (31) van-
ish and the resulting equation has the solution

1 1A+(r2, . . . ) =A+(r2 ——O,r3, . . .)exp — [(P+a) Ep]G ++ [(P—+a) E]Gp+-2a J+ 2a J
I

=—A+(rz ——O, r3, . . . )e + ', (32)

where
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Go+: g IHof I If+
f

G;+ —X I &&f I
'If+

f
Similarly,

A (rq, . . . ) =A (r2 ——O, r3, . . . )exp
1 1

2a
[E —(P —a )]Go + [Eo—(P —a )]G r22' J—

(33)

(34)

:—A (r2 ——O, r3, . . . )e (35}

The exponential quantities X+ are complex num-

bers whose real parts are positive and correspond to
exponential decays and whose imaginary parts cor-
respond to energy shifts for the perturbed excited
states. After elimination of secular behavior, Eq.
(29) becomes

[Do+t(p+a)][Do+i(p —a)]c!"(r)=0.
(36)

As in the first-order case, we choose the zero solu-
tion cj '(r)=0.

Consider now the second-order equation for
cf(r). Making use of the results obtained above for
the r dependence of the lower-order terms, there
remains the equation (Do+iEf)cf '(r)=0, which
has the solution

cf (r) =cf (ro =0 ri ' )e
—iE~TO

(37)

(38}

From Eqs. (19), (32), (35), and (38), the amplitude

cj (r ) becomes

again subject to the initial conditions.

By carrying out the multiple-time-scale expansion
we have seen how the second-order solution may be
attained without encountering the usual secular
behavior in conventional time-dependent perturba-
tion theory. As far as the calculation is concerned
all rk's, for k )3, may be set equal to zero. Only
the time scales ~0 and ~2 are involved in the
description of the probability amplitudes. In the
higher orders, the calculation becomes very unwiel-

dy, and little additional information about the sys-

tem is revealed. Thus we terminate the expansion
process and present our second-order results.

For cj(r ), we have

cj(r) =cj '(r)+Ac& "(r)

+A, c' '(r)+J

=c' '(r)+0+0+

cj(r )=A+(r~ =0,r3, . . . )exp[ —X+1 2
—I(p+a )1 p] +A (rq ——O, r3, . . . )exp[ Xr2 i(p—a—)ro]—. (39)

Similarly,

cf(r)=kerf (r)=ABf+(r2 ——O, r3, )If+exp[ X+r2 i(p+—a—)rp](1)

+ABf (1 2 —0 1 3 )If exp[ —X r2 i (p a)rp—]— (40)

To express our results in terms of the fundamental time variable t, it is necessary to invoke the "physical line"
condition. In this way we recover the original amplitudes cj(t) and cf(t} Thus suppr. essing the higher-order r
dependence and letting A, go to unity, we arrive at

and

—Z+t —Z
cj(r)=A+e + +A e

—Z+f ' —Z t
cf(t )=Bf+If+e + +Bf If e

(41}

(42)
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where Z+ is defined by i(P+ct)+X+. To obtain an expression for cp(t), we substitute these forms for cj(t)
and cf(t) into Eq. (10), which becomes

cp(t)= ( —Z++iEJ+GJ+)A+e + + ( —Z +iEJ+6& )2 e (43)

Our expressions for cf so far have been intermediate ones used in computing the up-to-second-order results
for cj and cp. We now substitute Eqs. (41) and (42) into Eq. (5), which then readily yields

—id+
cf(t)= .

iEf —Z ~

—iA+.
lEf —Z

~ t

( —Z~~E pe~)~Hf'J (e + e —f )+ J J+

~ t

y
— J J-( —Z +E + GJ )+Hfj (e. —e ) .

j0
(44)

Finally, we evaluate the constants A+ in terms of the initial conditions. If we take the atom at t =0 to be in
the upper excited state

~

a ), then the initial conditions are cp(0) = 1, cj (0)=cf(0)=0. Hence we have
—Z —Z~t

(t) J J + J 1+( —Z +iE ~6 )e —( —Z++iE +6 +)e +

Z~ —Z ~Gj —Gj~
—Z~t . —Z t

i~joe + —i VJoe
cj(t)=J Z+ —Z +Gj —GJ+

cf(t) =
Vjp ( —Z~ ~iEJ ~GJ.~)~Hf'J (e + —e f

)
jo

(iEf Z~ )(Z~——Z y GJ —Gi ~ )

( —&jp) ( —Z yiEJ pe ) ~Hf'J (e —e f )
jo
(iEf Z)(Z~ ——Z ~GJ —

Gi ~ )
(47)

In the above formulas for the c amplitudes, we note energy shifts given by

ImZ~ —(P+a) =—+[(P+a) EJ]g ~

Hp—f ~

2Q f +0 Ef—
+[(p+ct) E,]g ~H,'f ~'—H

+Ct —f
(48)

and exponential decay behavior characterized by the constants

ReZ~= +[(@+a)—E ]g iHpf i
~6((P+ ) oEf) +[(P+ct)—Ep]g—iH'f

i
~5((@+a) Ef)—

CX f

(49)

It is evident that the final-state amplitude cf(t) peaks at Ef =ImZ+. This feature is expected for a system of
two coupled decaying states. The exponential decay shown in Eqs. (45)—(47) is a natural consequence of the
foregoing multiple-time-scales procedure of systematically removing secular terms in each order of the expan-
sion. By contrast, the damping-term approach of Weisskopf and Wigner introduces this mathematical form
of decay into the original coupled differential equation of motion.
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IV. DISCUSSION

3275

We have presented a calculation of the decay of two coupled atomic levels, using multiple-time-scale pertur-
bation theory. The differential equations of motion for the probability amplitudes have been solved up to
second order, while eliminating the secular terms characteristic of conventional time-dependent perturbation
theory. The physical consequences of the mixing of levels produced by the coupling field are contained in the
state probabilities, obtained by multiplying Eqs. (45)—(47) by their respective complex conjugates W. e have

fcp«) I
=

IM+ —M 2 f I N+ I

'e ' +
I
N-

I

'e

—2
I
N+N

I exp[ —(ReZ++ReZ )t]cos[(ImZ+ —ImZ )t+p]I, (5())

I cj(t) I

= exp[ —(ReZ++ReZ )t][cosh(ReZ+ —ReZ )t —cos(ImZ+ —ImZ )t],
IM+ —M

(51)

fcf(t) I
=

I IR+
I

[1+e + 2e — + cos(Ef —ImZ )t]

+ I
R

I
[1+e 2e —cos(Ef ImZ —)t]}

2 fz, z*
I+ 2 I cos8+ exp[ —(ReZ+ +ReZ )t ]cos[(ImZ —ImZ+ )t+ 8 ]

—Rez+ t —Rez t+e + cos[(Ef—ImZ+)t+8] —e cos[(Ef ImZ )t—8]I, —

(52)

where

M+ =Z+ —GJ+, D =M+ —M

N+ =iEJ —M+, N~N' —=
I
A+N'

I
e'&,

iHf'pN++Hfj Vjp
+

(iEf Z+)—
+~' —= I~+

The probabilities of the excited states
I

0 ~
I j& each exhibit two exponentially decaying terms,
with decay constants 2ReZ+ and 2ReZ, and a
sinusoidally modulated exponential with decay con-
stant ReZ+ +ReZ . The expressions are formally
the same as the Fourier-transform results of Fonta-
na and Lynch, and the results of the Weisskopf-
Wigner procedure as applied by Wangsness. Com-
parison in detail will be provided below. Here we
reemphasize the fact that the exponential decays are
a natural outcome of the multiple-time-scale pertur-
bation theory solution to this problem.

The energy distribution of the final-state photons
is described by the expression

, ( l~+ I'+ l~- I'
fg) f2

+2
I
R+R*

I
cos8) .

(54)

Recalling

I
~+

I

'-
I iEf —Z+

I

=
I

i (Ef ImZ+) —ReZ+ I—

we see that, in formal agreement with Ref. 13, the
final-state energy has two peaks, one at Ef——ImZ+
and the other at Ef——ImZ, with widths 2ReZ+
and 2ReZ, respectively. The quantities Irnz+
and ImZ are the perturbed energies [incorporating
the energy shifts given in Eq. (48)] of the upper and
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lower excited atomic levels, and 2 ReZ+ and
2ReZ are decay constants associated with those
levels.

We see further effects of the mixing of levels in
that

~
co(t)

~

and
~
cj(t)

~

both contain exponential
behavior involving ReZ+ and ReZ and that these
quantities each have contributions from the
uncoupled-case transition matrix elements Hof and

Hjf In particular, ReZ + has terms proportional to
ReGO+ and ReGj+, while the corresponding terms
in ReZ are proportional to ReGO and ReGj
where

ReGp+ = g ~ HQf
~

rr~(P+& Ef)
f

Reg +:—g ~

H'f
~

tr5 (P+a Ef ) . —
f

(56)

1 1

ReGo+ —,yo, ReGj+ —,y (58)

we find that our results for the amplitudes and

probabilities agree to second order with those of
Fontana and Lynch, and with the excited-state am-

plitudes and probabilities of Wangsness. In the
Weisskopf-Wigner method employed by the latter
author the final states are eliminated by the in-

clusion of damping terms at the outset. The quanti-

ties Go+ and Gj+ do not appear because, in contrast
with the multiple-time-scale approach, two ex-

ponential decay constants yo and yj are specified at
the beginning in the damping terms. Fontana and

Lynch introduce the two constants yo and yj in the

process of fixing the values of a function y„~(E),
where E is an energy parameter, appearing in the
denominator of the arguments of the inverse

transform integrals. They choose to specify two
values of E whose pole contributions provide ex-

ponential behavior involving yo and yj.

The quantities ReGo+ and ReGj+ each represent

the splitting into two distinct contributions of the
1 1

uncoupled-level decay constants —,yo and —,yj,
respectively, where

—,y„=g ~H„'f
~

n5(E„Ef), n =—O,j . (57)
f

Under the conditions that

It should be pointed out that the conditions given
in Eq. (58) for the up-to-second-order agreement
described above are plausible in transitions among
atomic states where the excited states are closely
spaced in energy compared with energy difference
between the excited states and the final state, such
as in the case for the 2S&~2, 2P&~2, and 1S&&2 levels
of hydrogen. Then, given modest values of the per-
turbation V, the value of

—,y„(E)=—g ~H„'f) 6(E—E ), n=o,jf
(59)

is relatively insensitive to E, so that Eq. (58) is ac-
ceptable. Qn the other hand, in the case of transi-
tions among high Rydberg states, the distinctions
among the four quantities Go+ and Gj+ generated
by multiple-time-scale perturbation theory may
have to be taken into account.

Finally, in taking the limit
~ Voj

~

~0 of Eqs.
(50)—(52) we find that states '~0& and j& in-
dependently decay exponentially to the ground state
with decay constants yo and yj, respectively. The
quantities yo and yj appear as a natural conse-
quence of the limiting process, and not through the
application of Eq. (58). The limiting results agree
with multiple-time-scale perturbation theory calcu-
lations of the decay of uncoupled atomic levels by
Brooks and Scarfone, who treated stimulated emis-
sion, and by I.ee, Lee, and Chang, who subsequently
considered spontaneous decay. For the excited
states, these results are in turn the same as those
generated by the damping terms of Weisskopf and
Wigner.
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