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Nonrelativistic many-body calculations of the fine structure of nd states of sodiumlike

systems have been performed for Z=11—42, taking into account the core polarization to
first order in the spin-orbit coupling and to all orders in the Coulomb interaction. The
results agree well with the experimental data available, and, in particular, the transition

from inverted- to normal-level ordering appears at the right place, around Z =15. The
alternative approach of evaluating the fine structure by means of relativistic central-field

calculations —introduced by Luc-Koenig —is analyzed in detail, using the Pauli approxi-

mation and a graphical form of perturbation theory. Provided the self-consistent

Hartree-Fock potential is used for the core, it can be shown that the relativistic method is

(to order a ) equivalent to a nonrelativistic calculation, where the core polarization is in-

cluded to all orders of the Coulomb interaction. In the calculation of Luc-Koenig a local

core potential is used, in which case this equivalence is only partial. In order to be able

to make accurate comparisons with our many-body results, we have performed relativistic

calculations using the full Hartree-Fock potential of the core.

I. INTRODUCTION

It is well known that many alkali-metal states
exhibit an anomalous fine structure. The nd states
of sodium and the nf states of cesium, for in-

stance, have an inverted fine structure' —with the
higher j state lower in energy —in contrast to the
predictions of any nonrelativistic central-field
model (CFM).

In order to calculate the fine-structure splitting
beyond the nonrelativistic CFM essentially two ap-
proaches are available. In one approach, which
has been used by several groups, the "Pauli
operators" —i.e., the spin-orbit interaction and the
other operators emanating from the reduction of
the relativistic many-body equation to its Pauli
limit —are used as a perturbation in a nonrelativis-
tic perturbation expansion or configuration-
interaction calculation. In the other approach, in-

troduced by Luc-Koenig, ' the Dirac equation is
solved for the valence electron in the relativistic
potential of the core. The fine-structure separation
then appears directly as the eigenvalue difference
for the two states. It has been found that the two
approaches yield essentially the same numerical re-

sults, and it is the main purpose of the present
work to investigate their equivalence in detail.

There has been some concern lately that, in spite

of its successes in reproducing experimental results,
the relativistic Hartree-Fock (HF) approach may
lack a sound foundation. The many-electron Ham-

iltonian, which is used to obtain the HF equation,
has, in fact, no bound solutions. ' It has been

pointed out by Sucher that it is not clear to what
Hamiltonian the HF equation is an approximation
and the use of projection operators for positive en-

ergy states has been advocated. ' This leads to
rather complicated equations. However, in a re-

cent article Mittlemann' has shown that, provided
that the projection operator is expressed in terms
of eigenfunctions to the HF equation, the HF ap-
proximation of the projected Hamiltonian leads to
the same single-electron eigenvalues as the HF ap-
proximation of the unprojected Hamiltonian. We
will not here consider this problem any further.
Our main purpose is to compare two commonly
used methods for actual calculations.

The relation between the relativistic central-field
and the nonrelativistic many-body approaches was
first discussed by l.uc-Koenig, considering the
perturbations of the orbitals caused by the Pauli
operators. In that paper, however, Luc-Koenig
considers only the effect of the perturbation on the
valence orbital and interprets the anomalous fine
structure as due to the relativistic shift of that or-
bital. In the present paper we shall show that such
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a shift has only a minor effect on the fine struc-
ture and cannot cause any inversion. Instead, it is
found that the main reason for the anomalous fine
structure is the relativistic shifts of the core orbi-
tals, which cause the exchange potential for the
valence electron to be j dependent. This effect is
present also if the radial distribution of the valence
electron is the same for the two j states. This in-

terpretation agrees with that given by Luc-Koenig
in a later paper. This interpretation was given
also by Pyper and Marketos" in a recent paper, in
which they performed relativistic calculations of
the fine structure for a number of d and f states
and explicitly calculated the contribution from the
valence electrons and from the exchange interac-
tion with the core. They used relativistic Hartree-
Fock orbitals for the core but a hydrogenlike func-
tion for the valence electron in order to circumvent
numerical difficulties in obtaining the valence con-
tribution. However, as we shall see, the hydrogenic
orbitals, although giving a qualitatively correct
description, underestimates the influence of the
core-valence exchange interaction.

In the calculation of Luc-Koenig ' the core or-
bitals are generated in a local potential, which
means that the exchange interaction between the
core electrons is not taken into account in a self-
consistent way. Such a calculation is essentially
equivalent to a nonrelativistic calculation, where
the core polarization is included to first order in
the spin-orbit interaction as well as in the Coulomb
interaction. It will be shown in the present paper,
however, that when the self-consistent Hartree-
Fock potential of the core is used, the relativistic
procedure is—to order a (a being the fine-
structure constant) —equivalent to a nonrelativistic
many-body calculation, where the core polarization
is included to first order in the spin-orbit interac-
tion and to all orders in the Coulomb interaction.
Therefore, in order to be able to make accurate
comparisons with our many-body results, we have
performed calculations similar to those of Luc-
Koenig, using the full Hartree-Pock potential of
the core.

%e shall begin this paper with a short descrip-
tion of the nonrelativistic many-body and the rela-
tivistic Hartree-Fock procedures. In the descrip-
tion of the many-body approach we shall introduce
a graphical representation, which we shall use later
in comparing the two approaches. This compar-
ison will be based on the Pauli approximation,
where the relativistic equations are reduced to
equivalent equations (to order a ) for the large

components only. By means of a graphical expan-
sion of the large component in terms of nonrela-
tivistic perturbations, it will then be easy to
demonstrate the degree of equivalence of the two
approaches. Finally, we shall in this paper as illus-
trations present some numerical results using the
nonrelativistic many-body as well as the relativistic
Hartree-Fock procedures.

II. THE NONRELATIVISTIC MANY-
BODY APPROACH

The normal starting point for nonrelativistic
many-body calculations is the Schrodinger Hamil-
tonlan

N N

Hs= g hs(i)+
i=1 i&j=l ij

where

is the Schrodinger Hamiltonian for a single elec-
tron moving in the nuclear field. The second term
in (1) represents the electron-electron repulsion in
the nonrelativistic limit.

In the central-field approximation the Hamil-
tonian (1) is replaced by a central-field (CF) Ham-
iltonian

N
CF g hcF(.)

where

CF
hs (1)= 2V i

— +Us(ri)— —
r)

is the Hamiltonian for an electron moving in the
field of the nucleus and an average, central field
due to the other electrons. The difference between
the operators (1) and (3)

HNC yU ( )+y
i i&j ij

which is essentially the noncentral (NC) part of the
electron-electron interaction, is then treated as a
perturbation.

In the following we shall restrict ourselves to al-
kali-metal-like systems with a single valence elec-
tron outside a core of filled shells. As in our work
on the hyperfine structure of alkali-metal
atoms, ' ' the central potential used is the
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Hartree-Fock potential of the electron core, here
denoted by Us ". (The neglect of the valence elec-
tron in the potential is compensated for by certain
higher-order terms in the perturbation expansion. )

An arbitrary matrix element of this potential is

core

1iI UPI j1=+ ia ja)
8 (a) (b)

-( aj (6)
FIG. 1. Goldstone representation of the matrix ele-

ments (6) of the nonrelativistic Hartree-Fock potential.

where
~

i ) and
~ j) represent nonrelativistic

Hartree-Pock orbitals, i.e., eigenfunctions of the
single-electron Hamiltonian (4) with Us equal to
Uq ". It follows immediately that the correspond-
ing matrix elements of the perturbation (5) vanish,
when the Hartree-Fock potential is used. There-
fore, with this potential the eigenvalue of the Harn-
iltonian (4) is exactly equal to the single-electron

energy, i.e., the negative of the electron binding en-

ergy, which is Koopmans's theorem. '"
The Hartree-Fock potential, defined in (6), may

also be expressed in the following way:

core

Us "(1)=g a
1

(1—P12) a
r&2 . 2

where P~2 is the exchange operator, which ex-

changes the coordinates of electrons 1 and 2. The
potential is supposed to operate on a function of
the coordinates of electron 1, and there is an in-

tegration over the coordinates of electron 2. Using
this potential in the central-field operator (4), we

get the nonrelativistic Hartree Fock (NRH-F) opera-
tor

hs (1)=hs(1)+Us (1)

cores
1="s(1)+g a (1—P12) a

2

Using the Goldstone-type of diagrams, ' ' we
can represent the matrix elements of the Hartree-
Fock potential (6) as shown in Fig. 1. Here the
solid lines represent electron orbitals and the dotted
lines the Coulomb interaction between the elec-
trons. A summation over the internal lines is as-
sumed. Diagram (a) represents the direct part and
diagram (b) the exchange part of this interaction.
The corresponding graphical representation of the
Hartree-Pock operator (8) is shown in Fig. 2.

In order to calculate the fine-structure splitting,
it is necessary to take relativity into account. For
this purpose our starting point will be the Dirac-

Breit (DB) Hamiltonian'

N N

HDz ——g hD(i)+ g g(i,j),

where

hD(1) =ca1 p1+mc (p, —1)——
I" )

is the Dirac Hamiltonian for an electron moving in
the nuclear field —i.e., the relativistic analog to the
Schrodinger operator (2)—and g represents the
electron-electron interaction in the Breit approxi-
mation

g(1,2)= 1 1
1 ——cz i (72

2

(+1 r12)(+2 12)+ 2
~&2

(c)
FIG. 2. Graphical representation of the nonrelativis-

tic Hartree-Fock operator {8). The dot represents the
Schrodinger operator (2) and the remaining diagrams the
Hartree-Fock potential {7).

The first part of the electron-electron interaction
(11) is the instantaneous Coulomb interaction, ap-
pearing also in the Schrodinger Hamiltonian (1).
The second part —called the Breit interaction —can
be interpreted as magnetic interactions between the
electrons and as a retardation of the Coulomb in-

teraction.
The Breit interactions, which are of order u

(where a is the fine-structure constant) describe in-

correctly the negative energy states, ' but can be
included in a self-consistent procedure provided
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they are surrounded by projection operators for
positive energy states, although this leads to rather
complicated equations. Since we are only interest-
ed in effects to order a, it is sufficient to follow
the normal procedure of evaluating the Breit in-

teractions by first-order perturbation theory after a
self-consistent solution has been obtained for a
Hamiltonian where these interactions have been re-
moved.

In the relativistic formalism the single-electron
orbitals are represented by four-component Dirac
spinors

2

Hp ——Hm +Hg) +H~+H„+H„, (14)

w'here Hm is interpreted as a mass correction, Hz
is called the Darwin term (without nonrelativistic
analog), and H, H,o, and H„represent the orbit-
orbit, spin-orbit, and spin-spin interactions, respec-
tively.

In the nonrelativistic many-body approach we
treat the Pauli operators (14) as perturbations —in
addition to the noncentral Coulomb interaction (5).
This procedure is feasible for light elements, for
which aZ is considerably less than unity.

Only the spin-dependent interactions (spin-orbit
and spin-spin) can affect the fine structure in the
lowest order, i.e., in order a . The remaining in-
teractions can affect the fine structure only in-

directly, through modifications of the orbitals.
This is a second-order effect (of order a ) and will
therefore not be considered in the present analysis.
The spin-spin interaction is considerably weaker
than the spin-orbit interaction and is usually

where g~ and Pz are two-component Pauli spinors,
referred to as the "large" and the "small" com-
ponents, respectively. In order to be able to make
a comparison with the nonrelativistic treatment, it
is convenient to apply the Pauli approxima-
tion' in which the small component of the
wave function is eliminated. It can then be shown
that the many-body Dirac-Breit Hamiltonian (9)
for wave functions composed of four-component
Dirac spinors is—to order a —equivalent to a
"Dirac-Pauli" (DP) operator

Hop =Hs+H

operating on the large components only. Here Hs
is the nonrelativistic Hamiltonian (1}and Hz are
the so-called Pauli operators. The latter can be
decomposed in the following way'

neglected. In addition, it can be shown that it has
no effect on systems with a single valence electron.
Therefore, we shall consider only the spin-orbit in-
teraction in the following.

The spin-orbit interaction has the detailed
form'

tXH„=
2 l rl l J rlJ

(15)

This can be interpreted as the interaction between
the spin-magnetic moments and the magnetic fields
due to the orbital motions of the electrons in the
electric field of the nucleus and the other electrons.
It can be separated in a "spin-own-orbit" (swo} in-

teraction, involving the interaction between the
spin and orbital motions of the same electron,

CX

SWO 2
,J Xp

Sl
l J lJ

where V; represents the one-body operator

CX Z~V= —1 sl 3 l l2 r
(19)

and VJ the two-body operator

V,J ———a ij Pi
( 2~ )

' r"X
ij

(20)

Note that we sum here only over distinct electron
pairs in order to make the operator more analogous
to the Coulomb interaction. Owing to the asym-
metry of the two-body spin-orbit interaction, we
then have to include VJ as well as VJ;.

For numerical work it is convenient to
transform the spin-orbit operator to tensor form.
This was first done by Blume and Watson, ' and

and a "spin-other-orbit" (soo) interaction, involving
the interaction between the spin of one electron
and the orbital motions of the other electrons,

'&J r~j X p;
H, = —a'g, s, .

l J lJ

The spin-own-orbit interaction —as well as the
mass-correction and Darwin terms —originate from
the Dirac Hamiltonian (9), while the orbit-orbit,
spin-other-orbit, and spin-spin interactions have
their origin in the Breit interactions (11).

The spin-orbit interaction (15) can be written as

H,.=g v, +g (v„+v,, ),



26 ANALYSIS OF THE ATOMIC FINE STRUCTURE, USING A. . . 3253

(b) (c)

i4j4

+
JIK

FIG. 3. Graphical representation of the effective
spin-orbit interaction (23). Diagram (a) represents the
nuclear term (19) and diagrams (b) and (c) the direct and
exchange parts, respectively, of the two-body operator
(2o).

where h,', is defined in analogy with the Hartree-
Fock potential (6) by means of the matrix elements

&t
I h:."Ii& =&i

I

I'i li&
core

+X (&i~
I
I'i2+ I'» Ii~ &

a

(i~
I
vi2+ I 21 I

~j &) . (22)

This operator may also be expressed by means of
the exchange operator in analogy with (7) as

core

h:."(I)=I'i+ +«1(I'12+ I'21)(1 +12)1~)2 ~

(23)
It can be shown that the effective spin-orbit in-

teraction (23) is of the same tensor form as the or-

dinary spin-orbit interaction (19), and hence the
matrix element above can be expressed as

(i
I
h,',

I j)=g(i j)(i
I

1 . s
I j) . (24)

A complete expression for the parameter g(i,j) is
given in the Appendix.

Graphically we represent the effective spin-orbit
interaction (23) as shown in Fig. 3. Diagram (a)
represents the nuclear one-body term (Vi) and dia-

grams (b) and (c) represent the direct and exchange
parts, respectively, of the contracted two-body
term.

In first order the effect of the spin-orbit interac-
tion is given by the expectation value of the opera-
tor (15),(18) in the unperturbed state. For a system
with a single valence electron this is exactly equal

equivalent expressions have been given in later
works. ' ' The expression we use, which is taken
from the work of Martensson, is given in the Ap-
pendix.

The one-body part as well as most of the two-

body part of the spin-orbit interaction (18) can be
included in an effectiue one-body interaction

(21)

FIG. 4. Graphical representation of the first-order
energy contribution {25)due to the effective spin-orbit
interaction (23). Double arrows are used to indicate that
the orbital line represents the valence orbital.

to the expectation value of the effective operator
(23), (24) for the valence electron (m)

hE,',"=(m lh;, lm ) . (25)

Using the representation of H'„given in Fig. 3, we
obtain the graphical form of the first-order spin-
orbit interaction shown in Fig. 4.

It should be observed that the result above is
first order starting from the central-field (Hartree-
Fock) model. In order to obtain all contributions
of order a, we have to combine the spin-orbit per-
turbation with the Coulomb perturbation (5).

In second order the spin-orbit interaction is com-
bined with one interaction of the Coulomb pertur-
bation (5). This leads to the energy contribution

(0 lh I
r

so
a, r &a ~r

(- ra — ma
1

ar +c.c.
r12

(26)

Here a runs over all core orbitals and r over all ex-
cited (virtual) and valence orbitals, i.e., all orbitals
outside the core. The graphical representation of
the second-order energy contribution is shown in

Fig. 5. Diagrams (a) and (b) represent the terms
shown explicitly in (26), diagram (a) with the direct
and diagram (b) with the exchange Coulomb in-

teraction. Diagrams (c) and (d) represent the com-

plex conjugate terms, where all matrix elements are

(o) (b)
FIG. 5. Graphical representation of the second-order

energy contribution due to the combined spin-orbit and

Coulomb interactions (26). The interpretation of the
diagrams is given in the text.
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replaced by their complex conjugates. Since all
terms can be assumed to be real, the conjugate
terms have the same numerical values as the origi-
nal ones.

The second-order diagrams in Fig. 5 represent
the effect of first-order admixtures into the wave
function of states, where a single core orbital has
been excited by the Coulomb interaction with the
valence electron —or equivalently by the effective
spin-orbit interaction. This can be interpreted as a
distortion of the core orbitals and is therefore re-
ferred to as the core polarization.

Owing to the spin dependence of the effective
spin-orbit interaction (24), it follows that all dia-
grams, where this interaction appears on a closed
orbital loop, such as the diagrams (a) and (c) in
Fig. 5, will vanish. ' Since then only exchange di-
agrams contribute, this kind of polarization is also
known as the "exchange polarization. "

The exchange polarization considered here is
quite analogous to that appearing in the hyperfine
interaction, which in the case of the quadrupole in-
teraction is commonly known as the "Sternheimer
correction. " Using the same procedure as in the
hyperfine case, Sternheimer and co-workers have
calculated the effect of the first-order core polariz-
ation —i.e., the second-order energy contribution—

on the fine structure and shown that this effect is
large enough to explain the inversion observed in
some of the alkali-metal sequences. As shown in
hyperfine calculations by Garpman et aI. '~ and by
Lindgren et al. ', it is possible to calculate the ef-
fect of the core polarization to all orders of pertur-
bation theory —i.e., to all orders of the Coulomb
interaction —by solving a system of coupled dif-
ferential equations in an iterative way. This pro-
cedure has been applied also to the fine structure
by Holmgren et al. and by Martensson. In this
way all contributions due to single excitations of
the core are included. The graphical representation
of the fine structure in this approximation is exhi-
bited in Fig. 6. This expansion contains also dia-
grams with double excitations in intermediate
states, such as diagrams (d), (e), (h), and (i). These
diagrams appear with all possible orderings be-
tween the interactions. It can then be shown that
the energy denominators of these diagrams factor-
ize in such a way that the excitations can be treat-
ed independently and hence formally as single exci-
tations. ' The diagrams in Fig. 6 are similar to
those appearing in the random-phase approxima-
tion (RPA) with exchange, a procedure equivalent
to the time-dependent Hartree-Fock (TDHF) pro-
cedure.

+ 0 ~ ~

(b)

~ ~ ~

(g) (4)
FIG. 6. Graphical representation of the core polarization caused by the first-order spin-orbit interaction in combina-

tion with the Coulomb interaction to all orders.
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III. THE RELATIVISTIC CENTRAL-
FIELD APPROACH

As mentioned previously, the Breit interactions
(11},which incorrectly describe interactions involv-

ing negative energy states, can be included in a
self-consistent procedure of Hartree-Fock type only
if projection operators for positive energy states are
included, which leads to complicated equations.
Therefore, instead of using the Dirac-Breit Hamil-
tonian (9), it is customary to use the Dirac Hamil-
tonian

dP ~ 2+ P—+ —+a(e —U, ), Q=o
dr r

dQ Ir——Q+ a(UD —e), P =0

where

—(1+1) for j=l+ —,

(32)

Hg) ——g ho(i)+ g 1

l i(j ij
(27)

as the starting point for the relativistic self-
consistent-field procedure. ' In this operator the
Breit interactions are removed, and their effect is
then —after that self'-consistency has been
achieved —considered using first-order perturbation
theory. This procedure is correct to order a .

In the relativistic central-field approximation,
the Hamiltonian (27) is further replaced by a
central-field Harniltonian

H "=gh "(i),

core

UD "(1)=g aD
1

(1—Pie) aD

. 2

(33)

where aa represents a relativistic four-component
orbital (Dirac spinor) of the type (12). Inserting
this potential in (29), we obtain the Dirac Hartre-e
Eock (DHF) operator

hD "(I)=hD(1)+ UD "(I)

As before, we shall consider alkali-metal-like

systems, and we assume that the potential is the re-
lativistic Hartree-Fock potential from the electron
core, which we can express in analogy with the
nonrelativistic potential (7) as

where hD" is given by

hD "(1)=hD(1)+ UD(r & ) (29)

core
1

hD(I)+Q aD
I

(I —P12) I aD
a ~&2 . 2

(34)

in complete analogy with the nonrelativistic case
(3), (4). The remaining part of the Coulomb in-

teraction

aD'= QU, (r, )+—g
i pj fJ

(30)

1
P„tj(r)Xgtj~(&,—p, a),

Q~tj(r}X,IJ.
(—8 P ——o } .

r

(31)

Here X is a vector-coupled spin-angular function
and l=2j —l. This leads to the radial equations

which is treated as a perturbation, is identical to
the nonrelativistic perturbation (5), apart from any
difference in the central potential.

The single-electron orbitals, which are eigenfunc-
tions of the Dirac Hamiltonian (29), are four-
component Dirac spinors (12). For a central po-
tential the large and small components can be
separated into radial and spin-angular parts as fol-
lows20, 2S,26

In the relativistic Hartree-Fock or Dirac-
Hartree-Fock procedure the radial equations (32)
are solved self-consistently with the potential (33).
Since the valence electron does not appear in the
potential we use here, it is sufficient to consider
the core electrons in the self-consistent procedure.
Then the equations for the valence electron can be
solved in the potential of the nucleus and the elec-
tron core.

The radial equations (32} depend on the j value
of the orbital, and when the Hartree-Fock potential
is used the fine-structure splitting for alkali-metal-
like systems appears in this procedure directly as
an eigenvalue difference for the two orbitals with
the same nl quantum numbers according to
Koopmans's theorem, mentioned above —apart
from the effect of the Breit interaction, which is
considered separately, as described previously. For
the alkali-metal d states, however, the fine struc-
ture is so small —of the order of 10 a.u. for the
sodium sequence —that it is difficult to determine
the eigenvalues with sufficient accuracy, when the
nonlocal exchange potential is included. For that
reason Pyper and Marketos" use hydrogenlike
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valence orbitals and Luc-Koenig solves the eigen-
value equations for the valence electron in a poten-
tial which does not contain the exchange with the
core and then treats the exchange interaction using
first-order perturbation theory. In a later paper,
Luc-Koenig includes also the exchange with the
core in the potential for the valence electron. We
shall analyze these calculations later, after having
established the correspondence between the rela-
tivistic central-field and the nonrelativistic many-

body approaches.

IV. COMPARISON BETW'EEN THE RELATIVISTIC
CENTRAL-FIELD AND THE NONRELATIVISTIC

MANY-BODY APPROACHES

In order to be able to compare the results of a
relativistic central-field calculation with those of
the nonrelativistic many-body approach, we shall

find a perturbation expansion of the relativistic re-

sults based on the Pauli approximation.
As mentioned previously, the Dirac-Breit Hamil-

tonian (9)—using four-component Dirac spinors to
represent the single-electron states —is equivalent to
order a to the Dirac-Pauli Hamiltonian (13), when

the states are represented by the large components
only. In the self-consistent procedure, however, we
start from the Dirac Hamiltonian (27), where the
Breit interactions are removed. Then it follows
that this operator is equivalent to a "reduced"
Dirac-Pauli operator

Using the form (1) of the Schrodinger operator

Hs=ghs(i)+g 1

l i&j ij
(39)

and omitting the mass correction and the Darwin
term which are j independent, we can express the
reduced Dirac-Pauli operator (35) as

Hg)
——g hp(i)+ g 1

i&j
(41)

when four-component Dirac spinors are used to
represent the single-electron states. Thus, in going
from the fully relativistic Dirac-Hartree-Pock pro-
cedure to the corresponding Pauli scheme based on
equations for the large components only, we shall
make the following substitutions:

h21(1)~hs(1)+ V1,

1 1 + ~~z+ ~zi
r&z riz

(42)

With these substitutions we obtain the following
Pauli analog of the DHF operator (34):

hp "(1)=hs(1)+ V1

Hop =g [h (1)+V~]+g + V~J'+ VJ, (40)
i&j

Within order a, this operator has the same eigen-
values, using two-component Pauli spinors, as does
the Dirac Hamiltonian

Hz)p ——Hg+Hp,

where

(35)
core

1+g ap
a r]z

+Vi2+V21 (1—P12) ap
j 2

(43)
Hp ——H +Hg) +H,„, (36)

where, according to (16), V& is given by

a re XP

re

represents the parts of the Pauli operators (14)
which originate from the Dirac equation, namely
the mass correction, the Darwin term, and the
spin-own-orbit interaction. (The remaining parts
originate from the Breit interactions. )

As mentioned before, only the spin-orbit interac-
tion affects the fine structure in order a . There-
fore, we need here consider only the spin-own-orbit
interaction, H,„,. In analogy with the complete
spin-orbit interaction (18), we write this as

H,„,=Q V~++ (V,";+V';),

core

Up (1)=g ap
1

(1—P12) ap (44)

and an effective spin-orbit interaction

core

(1)= Vl +g (ap
~

( V12+ V21)(1—P12)
I ap)2

(45)

in analogy with (23), we may express the PHF
operator (43) simply as

Ph"(1 =)hs1)(+UP"(1) h+, o(1) . (46)

The graphical representation of the PHF opera-

which we shall refer to as the Pauli-Hartree-Foek
(PHF) operator. Introducing the PHF potential in
analogy with (7) and (33)



26 ANALYSIS OF THE ATOMIC FINE STRUCTURE, USING A. . . 3257

(a) (b) (c) (d ) (e)

FIG. 7. Graphical representation of the Pauli-
Hartree-Fock operator (43),(46). Heavy lines are used to
represent the orbitals in the Pauli approximation.

(47)

This is identical to the nonrelativistic spin-orbit
operator (23), apart from the fact that only the
spin-own-orbit is considered.

We can now see that the difference between the
Pauli-Hartree-Fock operator (46) and the nonrela-
tivistic Hartree-Fock operator (8) has two sources.
Firstly, it is the appearance of the effective spin-
orbit operator, which gives rise to the first-order
nonrelativistic (Hartrec-Fock} fine-structure split-
tings. Secondly, it is the difference between the
Hartree-Fock potentials of the two operators. We
shall now demonstrate that the latter effect is com-
pletely equivalent to the nonrelativistic core polari-
zation.

Let us define a new operator v as the difference
between the PHF (44) and NRHF (7) potentials

tor (43}, (46) is given in Fig. 7, where we use heavy
lines to represent the orbitals in the Pauli approxi-
mation. Diagram (a} represents the nonrelativistic
Schrodinger operator (2) and diagrams (b) and (c)
the PHF potential (44}. Diagrams (d) —(f)
represent the effective spin-orbit interaction (45) in
analogy with the nonrelativistic representation in

Fig. 3.
The orbital eigenvalues obtained in the Dirac-

Hartree-Fock procedure are—within order a-
identical to the corresponding eigenvalues of the
PHF operator (43),(46). Therefore, we shall study
this operator further and, in particular, its relation
to the nonrelativistic Hartree-Fock operator (8).

The effective spin-orbit interaction (45) is of or-
der a, and hence, in this order, we can replace the
relativistic orbitals by nonrelativistic ones

core

hso' (i}=I'i++(a
I
(F2+I'21)(1 P12) la)2

FIG. 8. Graphical representation of the difference
{48)between the Pauli-Hartree-Pock and the nonrela-
tivistic Hartree-Fock potentials.

We can then express the PHF operator (46} as fol-
lows:

hP"(1)=hs "(1)+v i +h,", ( 1),
where

(49)

hs (1)=hs(1)+ Us (1) (50)

(52)

This relation is shown graphically in Fig. 9. In-
serting this expansion into the diagrams in Fig. 8,
we get the relation in Fig. 10. It should be noted
that the internal heavy lines in Fig. 8 do in fact
represent two orbital lines which are joined. Each

J jK = jik +

is the nonrelativistic Hartree-Fock operator (8).
The graphical representation of the potential
difference (48) is given in Fig. 8, using the nota-
tions introduced in Fig. 7.

The nonrelativistic Hartree-Fock orbitals are
eigenfunctions of the NRHF operator (50), and the
corresponding relativistic orbitals in the Pauli
scheme are eigenfunctions of the PHF operator
(49). Thus, to order a we can obtain the differ-
ence between the orbital eigenvalues of the two
schemes using first-order perturbation theory

(51)

In order to find the effect of the potential differ-
ence u we have to consider the relativistic effect on
the core orbitals. Again, using first-order pertur-
bation theory, we can expand an arbitrary Pauli or-
bital as follows:

ui = Up (1)—Us (1)
(a) (b)

. 2

(1—Pi2) a
r&2 2.

core

ap (1—Pi2} aa
r&2

FIG. 9. Graphical representation of the expansion of
the relativistic Hartree-Pock orbital in the Pauli approx-
imation. Diagram {b) represents the contribution due to
the effective spin-orbit interaction (47) and (c) the con-
tribution due to the potential difference (48).
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FIG. 10. Graphical form of the potential difference
in Fig. 8, using the expansion of the relativistic orbitals
in Fig. 9.

+ ~ ~ ~

(c) (d)

+ ~ ~ ~

FIG. 11. Series expansion of the implicit equation
represented in Fig. 10.

of them has to be replaced by the expansion in Fig.
9, which gives rise to diagrams pointing upwards
as well as downwards, as shown in Fig. 10.

The potential difference u appears also on the
right-hand side of the equation in Fig. 10, which
implies that this equation has to be solved self-
consistently. As mentioned previously, all dia-

grams vanish, if the effective spin-orbit interaction
is connected to a closed orbital loop. The relation
in Fig. 10 will therefore give rise to the expansion
in Fig. 11, which contains exchange diagrams only.

It should be noted that the "folded" diagrams of
the type (d),(e) and (h),(i), come out directly in fac-
torized form, i.e., with the energy denominator
equal to the product of the single excitation ener-

gies involved. Therefore, in the Goldstone repre-
sentation' ' this corresponds to all possible time
orderings between the interactions, exactly as in the
polarization (or RPA) diagrams in Fig. 6.

Finally, we can now obtain the complete graphi-
cal representation of the eigenvalue difference (51)
by means of the expansion in Fig. 11 and the rep-
resentation of the effective spin-orbit interaction
given in Fig. 3. Then we find that this is identical
to the nonrelativistic core-polarized result —to all
orders in the Coulomb interaction —exhibited in
Fig. 6, provided, of course, that only the spin-own
interaction is considered.

One important observation should be made here.
We have assumed above that the core orbitals are
generated in the relativistic Hartree-Fock potential

of the core, which in the Pauli approximation gives
rise to the expansion in Fig. 9. The self-consistent
treatment of the core orbitals is reflected by the
fact that the potential difference u appears also on
the right-hand side of the graphical equation in
Fig. 10, which gives rise to the higher-order polari-
zation diagrams in Fig. 11. In the calculations of
Luc-Koenig, ' the core orbitals are generated in a
local potential, which means that the core ex-
change is not treated self-consistently. Then, her
procedure cannot give rise to effects corresponding
to the second- and higher-order core-polarization
diagrams, i.e., diagrams (c)—(e) and (g) —(i) in Fig.
11.

V. NUMERICAL RESULTS FOR THE nd
STATES OF SODIUMLIKE SYSTEMS

In order to illustrate the equivalence established
above of the nonrelativistic many-body and the
relativistic central-field approaches in evaluating
the fine-structure separation, we shall consider the
nd states of sodiumlike systems, which have been
extensively studied experimentally as well as
theoretically. ' In recent years experimental data
have been accumulated also for highly ionized sys-
tems of ttus sequence. (See, for example, the
analysis by Edlen. ) Luc-Koenig has very recent-
ly performed relativistic calculations for the 3d
and 4d states of the sodium sequence up to Z =50,
and we have made a similar extension of our
many-body calculations. The results are summa-
rized in Table I.

The first two columns of the table give the non-
relativistic first-order Hartree-Fock results, with
and without the spin-other-orbit interaction,
respectively, and the next two columns give the
corresponding values when the core polarization is
included to all orders. It is interesting to note that
for the nd states of sodium the effect of the spin-
other-orbit interaction is almost completely elim-
inated, when the core polarization is taken into ac-
count. This cancellation is accidental, of course,
and does not occur for the heavier elements. The
relativistic results of Luc-Koenig are given in the
two following columns in Table I, with and
without the exchange with the core in the potential
for the valence electron. The significance of this
difference will be discussed below.

The overall agreement between the theoretical
and experimental results is quite good. This is il-
lustrated in Fig. 12. In particular, it is observed
that the transition from inverted to normal fine
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TABLE I. Fine-structure separations (in cm ) for some nd states in the sodium isoelectronic sequence obtained in
nonrelativistic many-body and relativistic central-field calculations.

soo soo

Hartree-Pock
With Without

soosoo

Core polarization
With Without

Luc-Koenig
With Without

exchange exchange

Expt.

A12+

Si+

p4+

S'+
Cl +
K8+
Ti11+
Ni' +

Mo +

3d
4d
5d
6d
3d
4d
5d
6d
3d
4d
3d
4d
3d
4d
3d
3d
3d
3d
3d
3d

0.0335
0.0137
0.0069
0.0040
0.580
0.247
0.127
0.074
3.458
1.552
12.35
5.67
32.43
14.89
70.54
131.2
353.6
1076.8
5083
46010

0.0391
0.0170
0.0088
0.0052
0.784
0.365
0.195
0.115
4.746
2.265
16.48
7.84
41.86
19.59
88.46
160.4
416.6
1223.7
5554
48450

—0.0449
—0.0316
—0.0192
—0.0121
—0.933
—0.572
—0.329
—0.201
—2.961
—1.629
—3.322
—1.420
+ 3.092
+ 2,736
+ 22.53
+ 61.90
+ 231.6
+ 849.7
+ 4543
+ 44100

—0.0450
—0.0316
—0.0191
—0.0121
—0.825
—0.505
—0.290
—0.177
—2.036
—1.097
+ .004
+ 0.387
+ 11.15

+ 6.866
+ 38.17

+ 88.42
+ 291.2
+ 992.9
+ 5011
+ 46540

—0.05316
—0.03620

—0.9931
—0.6028

—3.445
—0.7094
—4.463
—1.931
+ 1.090
+ 1.885

+ 19.23
+ 56.99
+ 222.8

+ 44110

—0.04025
—0.02845

—0.6505
—0.4088

—1.760
—1.026
—0.4283
—0.1937
+ 8.273
+ 4.514
+ 30.06
+ 71.79
+ 246.3

+ 44320

—0.0508
—0.0343
—0.0207
—0.0129
—0.87
—0.52

—2.29
—1.19
—1.19
—0.12

+ 7.05
+ 5.13

+ 32

+ 73
+ 255

+ 44900

Fin e-structure Na 3d sequence

~Hartree-Fock ~
0.5—

-0.5—

Ng

FIG. 12. Comparison between theoretical and experi-
mental results for the fine structure of the Na 3d se-

quence.

structure occurs at the right place, namely, around
Si.

Also the agreement between our many-body re-
sults and the central-field results of Luc-Koenig is
satisfactory. As mentioned, however, the two cal-
culations are not completely equivalent —not even
to order cz —due to the fact that the values of
Luc-Koenig are obtained with a local potential for
the core, while our many-body results correspond
to relativistic results with the Hartree-Fock core
potential. Therefore, in order to be able to make
more accurate comparisons between the two ap-
proaches, we have performed calculations similar
to those of Luc-Koenig, by means of our relativis-
tic Hartree-Fock program. The equation for the
valence electron is then solved in the Hartree-Fock
potential —with exchange —from the core. In prin-
cipal, the fine structure mill then appear directly as
the eigenvalue difference. As mentioned previous-

ly, however, it is difficult to determine the eigen-
values with sufficient accuracy, and, therefore, fol-
lowing Luc-Koenig, we treat the exchange interac-
tion as a perturbation.

The relativistic exchange interaction between an
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TABLE II. Relativistic Hartree-Fock exchange in-

tegrals for the 3d states in sodium (in hartrees).

6 '(2p l/2, 3d3/2) =0.000 14007
6 (2p )/2$3d5/2) =0.000077 11
6 '(2p 3/p, 3d3/p )—0.000 141 56
6 (2p3/2, 3d3/2) =0.000077 89
6 '(2p3/2, 3d5/2 )=0.000 141 66
6 (2p3/2& 3d5/g) =0.000077 95

electron in the state (njl) and a filled subshell
(n'lj'') is

(53)

old 3/2.'

1 1——,6 (2p~/2nd3/2) ——„(p3/2 3/2)

—» 6 (2p3/2pnd3/2),

)id 5/2 ~

1 2——,G (2p&/2 "d5/2) 5 6 (2p3/2 nd5/2)

„6(2p—3/2 nd5/2) . (54)

6' k
(2j '+—l)g & ~ G "(n', lj'', njl),

0 ——,)
where 6" is a radial exchange integral of Slater
type. For sodiumlike systems only the 2p shell has
to be considered, which leads to the following ex-

pressions for the two nd states:

1 I I+~~a+ ~2i
core

X~ &~ —pie
g ~I2

(55)

which we can represent graphically as in Fig. 13,
where, as before, the heavy lines represent two-
component Pauli spinors (large component). Dia-
gram (a) represents the Coulomb part and diagram
(b) the spin-(own-) orbit part. Expanding the orbi-
tals in the same manner as in Figs. 9—11, we ob-
tain the expansion given in Fig. 14.

Diagram (a) in Fig. 14 represents the nonrela-
tivistic exchange integral which is j independent
and hence cancels when we form the difference be-

The exchange integrals for 3d state in Na are given
in Table II, and in the first column (A) of Table
III we give the difference in exchange for the two j
states for systems with Z =11—15.

We know from the analysis made in the preced-
ing section that the relativistic exchange gives rise
to the core polarization, when we transform it into
the nonrelativistic framework. The difference be-
tween the exchange expressions above, however,
does not exactly correspond to the nonrelativistic
core polarization given in Table I, as the following
analysis will show.

In the Pauli approximation the exchange interac-
tion is given by the exchange part of the PHF
operator (43)

TABLE III. The exchange polarization effect obtained in relativistic central-field and
nonrelativistic many-body calculations (in cm ). The results in column 8 are corrected for
the relativistic effect on the valence orbital, as described in the text.

Relativistic
Hartree-Fock

8
Nonrelativistic

many-body

Luc-
Koenig

pyper and
Marketos

Mg+

Al'+

Si'+

p4+

3d
4d
5d
6d
3d
4d
5d
6d
3d
4d
3d
4d
3d
4d

—0.0950
—0.0546
—0.0308
—0.0178
—1.855
—1.000
—0.542
—0.304
—7.56
—3.69

—17.3
—7.5

—30.0
—11.8

—0.0820
—0.0473
—0.0272
—0.0167
—1.531
—0.824
—0.458
—0.276
—6.28
—3.08

—14.8
—6.58

—26.9
—10.8

—0.0841
—0.0486
—0.0280
—0.0172
—1.610
—0.870
—0.485
—0.292
—6.78
—3.36

—16.48
—7.46

—30.72
—12.72

—0.0750 —0.0685
—0.0389
—0.0222
—0.0135
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i

i~ (&

FIG. 13. Graphical representation of the relativistic
exchange interaction (55).

tween the two j states. Diagram (b) represents the
exchange part of the effective spin-own-orbit in-
teraction (45) and diagrams (d),(f),.. . represent the
core polarization. All these effects are included in
the nonrelativistic many-body calculation. The
remaining diagrams (c),(e), however, represent the
effect on the exchange due to a relativistic correc-
tion to the ualence orbital, which does not appear
in the nonrelativistic core polarization. This effect
is exactly canceled by the corresponding correc-
tions to the direct Coulomb interaction and to the
Schrodinger operator hz due to the fact that the
Hartree-Fock potential is used. Therefore, in order
to make a correct, relativistic estimate —to order
e —of the core polarization to be compared with
the nonrelativistic results, we have to eliminate the
effect due to the relativistic modification of the
valence orbital from the exchange differences (54).
Replacing the relativistic valence orbitals by the
nonrelativistic nd orbital, this difference becomes

3 [G'(2p&/2, nd) —G'(2p3/2 nd)]

——,[G (2pl/z~«) —G (2p3/z~«)~ (56)

For the values of the integrals given in Table II,
we see that each square bracket above represents
the difference between two numbers of approxi-
mately equal size. For that reason it is important
that the same d orbital is used in each bracket.

However, by replacing the nonrelativistic orbital in
the first bracket by nd3/p and in the second by
nd5~2, very small errors are introduced. In this
way we can estimate the expression (54) directly
using the values in Table II, and the result is given
in the second column (8) of Table III. In the third
column of the same table we give the correspond-
ing nonrelativistic core polarization, taken from
Table I (without spin-other-orbit interaction).
From the numerical comparison in Table III we
see clearly the equivalence between the nonrela-
tivistic core polarization and the relativistic ex-
change difference after corrections have been made
for the relativistic contribution to the valence orbi-
tal, as described above. It is observed that the
correction of the exchange integrals for the rela-
tivistic effect on the valence orbital —which is of
order cz —is quite important and improves the
agreement significantly for the lighter elements.
For the heavier elements the agreement is less
good, which is most likely due to increased impor-
tance of a contributions.

The fourth and fifth columns of Table III give
the core-polarization contribution deduced by Luc-
Koenig and by Pyper and Marketos" from their
relativistic calculations. For the 3d state of Na,
I.uc-Koenig has obtained the value —0.750 cm
for the core polarization, which is about 10%
smaller than our results. This discrepancy is most
likely due to the fact that Luc-Koenig uses a local
potential, which implies that her results do not in-

clude higher-order perturbations, as demonstrated
above. The core-polarization values obtained by
Pyper and Marketos for the Na d states are about
20% smaller than our results. Although higher-
order core-polarization contributions are included
due to the use of HF core orbitals, the use of a hy-
drogenlike valence orbital underestimates the core-
valence exchange interaction, since it fails to give a
good description of the valence electron inside the
core.

i&

+ ~+
~as~~ m

)I 4

(~) (b) (c) (d)
FIG. 14. Expansion of the relativistic diagrams in Fig. 13.
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From our relativistic Hartree-Fock results of the
core polarization given in Table III (column B) we
can obtain corresponding values of the fine-
structure splitting by adding the nonrelativistic
Hartree-Fock results (without spin-other-orbit in-

teraction), given in Table I. In order to include the
effect of the spin-other-orbit interaction, we add
the contribution obtained in our nonrelativistic
core-polarization calculation. The result is shown
for the first few elements of the sequence in the
first column of Table IV, where we for conveni-
ence repeat our many-body results as well as the
results of Luc-Koenig and the experimental values
given in Table I. We give also the results of Pyper
and Marketos.

Again we find that the agreement between our
relativistic Hartree-Fock and nonrelativistic many-
body results is quite good for the lighter elements,
where the a" contributions should be quite small.
Generally, our relativistic values agree better with
the experimental results than do our many-body
values. This is, of course, not surprising, consider-
ing the fact that the former contain certain contri-
butions beyond a —in addition to the a contribu-
tions, which are the same in the two approaches.

Some comments should be made about the two
sets of values given by Luc-Koenig, with and
without exchange from the core in the potential of
the valence electron. As far as we can see, the
only difference between the two calculations is that
the exchange interaction between the valence elec-
tron and the core is included in a self-consistent
way in the first case and to first order only in the

second case. Since this exchange interaction is so
weak, however, we find the difference surprisingly
large. It should be noted that the core orbitals are
generated in a local potential in both cases. There-
fore, the arguments given above that the higher-
order core-polarization effects are not included,
hold for both sets of values. In our relativistic cal-
culations the full Hartree-Fock potential is used
within the core as well as between the core and the
valence electron. Therefore, our relativistic results
should be more equivalent to the values of Luc-
Koenig with exchange, but again, due to the differ-
ence in the core potential, any closer comparison is
not meaningful.

In comparing the final results of Pyper and
Marketos it should be borne in mind that, whereas
they have included the core-valence contribution
from the spin-other-orbit interaction, they have
neglected the correction to the core-valence ex-
change interaction due to the effect of the spin-
other-orbit operator on the core orbitals. As we
have seen in Table I, the effect of the spin-other-
orbit operator on the core polarization essentially
cancels the effect on the valence electrons for the
Na d states.

As far as a comparison with experiment is con-
cerned, however, it is found that all sets of values
given in Table IV give essentially the same kind of
agreement, indicating that the discrepancies can
well be explained by the approximations discussed
here. In particular, it seems that the effect of elec-
tron correlation —i.e., due to multiple excita-
tions —is relatively small for the sodium sequence.

TABLE IV. Comparison between theoretical and experimental values for the fine-
structure separation (in cm ').

Present work Luc-Koenig
Relativ. Nonrel. With Without

HF many-body exchange exchange
Pyper and
Marketos Expt.

p4, +

Na 3d
4d

Mg+ 3d
4d

Al + 3d
4d
3d
4d
3d
4d

—0.0428
—0.0303
—0.855
—0.526
—2.45
—1.35
—1.64
—0.54
+ 6.9
+ 4.7

—0.0449
—0.0316
—0.933
—0.572
—2.96
—1.63
—3.32
—1.42
+ 3.09
+ 2.74

—0.0532
—0.0362
—0.993
—0.603
—3.44
—0.71
—4.46
—1.93
+ 1.09
+ 1.88

—0.0402
—0.0284
—0.650
—0.409
—1.76
—1.03
—0.43
—0.19
+ 8.27
+ 4.51

—0.0359
—0.0258

—0.0508
—0.0343
—0.87
—0.52
—2.29
—1.19
—1.19
—0.12
+ 7.05
+ 5.13
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This might be somewhat surprising in view of the
fact that such effects have been found to be highly
important for the hyperfine interaction in many
cases. ' In applying the technique demonstrated
here to the fine structure of heavier alkali-metal
elements, however, we find that nonrelativistic core
polarization is not sufficient in order to obtain
agreement with experiments. This is illustrated by
means of the results for the 4d state in Rb, given
in Table V. Here it is found that the residual
discrepancy between theory and experiment is com-
parable to the effect of core polarization. Whether
this is primarily due to correlation effects or to ef-
fects beyond e, cannot be said at present.

VI. SUMMARY AND CONCLUSIONS

Using the Pauli approximation and the graphical
representation of Goldstone type, we have shown
in detail that for alkali-metal-like systems the rela-

tivistic Hartree-Fock (Dirac-Fock) procedure—
based on a many-body Dirac Hamiltonian without
Breit interactions —is to order u equivalent to a
nonrelativistic many-body calculation, where the
core polarization due to combined spin-orbit
(without spin-other-orbit) and Coulomb interac-
tions are taken into account to first order in the
spin-orbit interaction and to all orders in the
Coulomb interaction.

The difference between the relativistic and non-
relativistic Hartree-Fock procedures has mainly
two sources; firstly, the effective spin-orbit interac-
tion, which originates from the elimination of the
small component of the relativistic wave function,
and, secondly, the difference between the relativis-
tic and the nonrelativistic Harteee-Fock potentials.

The effective spin-orbit interaction yields essential-

ly the nonrelativistic, first-order (Hartree-Fock)
contribution to the fine-structure splitting, which is
always positive. The difference between the
Hartree-Fock potentials, on the other hand, corre-
sponds to a nonrelativistic core polarization, which
yields a negative contribution, in some cases large
enough to cause a fine-structure inversion. The
Hartree-Pock potential used in the present analysis
depends only on the core orbitals, and therefore it
follows that the potential difference is due solely to
relativistic effects on the core. The corresponding
effect on the valence orbital does not affect the
fine structure in order a . This agrees with the in-

terpretation recently given by Luc-Koenig, but it
disagrees with the interpretation given earlier.

The equivalence on the relativistic and nonrela-
tivistic approaches is demonstrated numerically by
comparing our many-body results with relativistic
Hartree-Pock calculations. The results of Luc-
Koenig, being based on a local core potential, are
only partially equivalent to our many-body results.

From the comparison between the relativistic
and nonrelativistic results, we can draw the con-
clusion that a and higher-order contributions are
comparatively small at the beginning of the se-

quence but become significant for the heavier ele-

ments. From the comparison between the theoreti-
cal and experimental results, furthermore, we can
draw the conclusion that the correlational
effects—due to multiple excitations —are compara-
tively small. Therefore, in order to achieve higher
accuracy of the fine-structure separations of this
sequence, it would be of interest to evaluate the po-
larization effects in a relativistic way, which would
correspond to including important a contribu-

TABLE V. Theoretical and experimental fine-
structure separations (in cm ') for the 4d state in Rb
(from Ref. 5).

Present work
With soo Without soo Lee et aI. '

Nonrelativistic
Hartree-Fock
With polarization
Experimental

'Reference 2.

12.91

—11.80
—0.44

13.67

—11.41

13.23

—10.22

FIG. 15. Angular-momentum graph representing 61.
In the graphs, each vertex represents a 3-j symbol and
the sign at the vertex tells if the angular momenta are
taken in positive or negative direction. An arrow on an
Im line carries a phase factor ( —1)' and charges the
sign of m. Summation over m values of internal lines is
implied.
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tions. Such calculations would be feasible with the
programs that are now available or are being
developed. For other systems —like the Rb atom
discussed above —it seems that correlational effects
could be of great importance. Such effects can be
calculated with a technique similar to that used for
the hyperfine structure. ' ' '

G2 ——

FIG. 16. Angular part of the matrix element of the
two-body operator.

The authors acknowledge the discussions with
Professor Bengt Edlen concerning the experimental
aspects and with Sten Salomonson concerning the
theoretical aspects of this work.

APPENDIX

The matrix elements in (22) of the effective one-

body spin-orbit interaction will here be expressed

as

where

and

is the angular part, which can be represented by the angular-momentum graph in Fig. 15.
The contribution to p(i,j) from the one-body operator Vi in (19) is simply given by

(A 1)

The two-body operator (20) is more complicated. It can be written in a more convenient tensor form

„k—2

Vij —— g ~ k 3e(r; —rj)(2k+1)(2k+3) ~ [(C );+ Cjk]' —
k i e(rj r;)(2k+—1)(2k —1) ~

~3 I;+

X[(C 1)ki 'Cjk]'—
k —2 k

, e(rj —r;)(k+1)— k 3 E(r; —rj).k (2k+1)'~~[(C 1),"CJ]'k+1 J
T)

k —1

+ rj k+q [k(k+-1)(2k+1)]' (C;Cjk)' .(s;+2sj), (A2)

where e(X) is the step function which is I for X & 0 and 0 for X~0.
All the operators in V12 can be written in the general form

U=f(ri, r2)[U (1)U"(2)]'[s"(1)s"(2)]' .

A general matrix element of an operator of this type can be written as

&ij I
U

I
ki &

= 2 ( —1)'&kk'mm'
I
kk'iq & &«'msms

I

«'1 —q &

qmm'm m'

X &ij I f(ri, r2)U (1)U (2) s" (1)s" (2)
I
kl &

& iii ii njij If (r 1 r2 )
I
ak ik alii & & ii

I IU I I
ik & & ij I

IU I I
il &

x &s; II s "I Isk & &sjI I

s"'I Isi &( —g2), (A3)

where 62 has the analytical expression
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G ( 1 )
i i j j i si j sjq+ 1;—m;+I —m +s —m;+s —m

I; k lk ( l k' i ) s; a ski
—m; m mk —mJ m' ml —m„m, m, I,

si ~' sI )(k k' 1) a a' l1
xl

Pnsj ms Nisi ) (in in ~ ) its in&I (1 )
and is represented by the angular-momentum graph in Fig. 16.

Only the direct and exchange matrix elements are needed in (20). The direct matrix element of U is

OCC

g &ib
I Ul jb&=3( —1&' '+" "g &i;IIU'Ili, &&4IIU' II4&&s II s "llsj &&sr II

s"
llss &

b nb lb

x &n;i;, crisis lf(r~, r~)
I n, ij,&bib)( Gd&,

where Gd is shown in Fig. 17. The summations over ms and m,s have been performed by joining in G2 the
two ls and ss lines, respectively. Using the rules for angular momentum graphs, G~ can be reduced giving

Gd = —,+2(2ls+ 1)5(K &0)5(K&1)5(k'&0)5(k&1)G)

= ——,V'2(2' + 1)5(ir',0)5(a, 1)5(k',0)5(k, 1)
&i II 1 II~J &&s II s llsj &

Only the first term in Vi2 satisfies the restrictions on the k values and the spin-other-orbit part, which

has ~ =1, vanishes. The second term in V21 gives no contribution since

& ill(c'1 &'I Ii) =0.
The relations

'k 1 k'
&i' ll(c" 1)"'lit&=v'2k'+1( —1&'-"

i i, i &i'llc"lli&&ill 1 lli&

and

011
I l 1 v'3(2l + 1)

give the direct matrix elements

OCC 2

ib —,(r„x(&&( (s, +&s&) j(&)
b 2 ~'12

2 0 1 1

Q V'2(2ls+1)N (i,b jb)v3( —1) i i i &l;IIC lllj)&lsllC llls) s&lllsll) i&l 1 s
I J)

nb lb J l J

(ij&&i
I

s Ij&

Gg =
i(J

Ic k' 1b

I)

St 'Qb

FIG. 17. Angular part of the direct matrix element.

i(t sb

Ge = + f.
' + s+
j ) I

FIG. 18. Angular part of the exchange matrix ele-

ment.
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where

2

gq(i j)=— g 2(2lb+1)N (i,b,j,b)
nb lb

and

Co

N (i j,k, l)= driP;(r;)Pk(rI) k 3 «2PJ(rz)PI(r2)rz .0
1

[Note that N"(i j,k, l)QN (j,i, l, k) if jQk or i+1].
Applying the general expression (A3) on the exchange matrix element gives

&ib
I Ul bj&=3( —1)" '+" "&ib lf(ri r» lbj&&l. llU"lllb &

x&isIIU'lllj) &s II s "llsk &&sbll s" lls;&( —G. )

where 6, is shown in Fig. 18 and can be reduced to

l; lj 1 s; sj 1

(
1)k+k'+k'+)1'G

( 1) 1+IJ+
k k lb K K sb 1 ~

The second 6j symbol always has the value 1/v 6 since either ik'=O, i'd= 1 or a'= i,a.=O.
Using (AS) to evaluate the exchange matrix element of the first term in (A2) gives

2 occ k k

(b g s
'

s(s]sss)(2k+1)(2k+3) [(C 1 )f+ Cs] '(s)+2ss) b1)
b k

3~2 occ ( 1 )k k 1k+1
N (i,b, b,j)(2k + 1)(2k +3)( —1) '

l
ibblb k b i b

x & lb II! Ills & &l llc'I lib & &lb llc"lllj &
' 3&s II s lls & &s I I ills &

X' k k+1 1 1 (i I
1 s lg) i +i+i

( —1)'

(A4)

(AS)

3(X k 1 k+1 k k+1 1 „, «blllllis&g (2k+1)(2k+3) l l X(l lb lb lj)N (i bb j) (i
I

1 s
I J ).

k b ~2 b li g k (l; I I
1 Ill )

The other terms in (A2) can be treated in the same way, giving
2

g, (i j)= 5(l;,lj)g gX (l;,lb, lb, lj)
nb lb k

k+1 k 1
X (2k+1)(2k+3)

i i b
s

k+1 k 1 (l, llllll, ), . k+1 k 1
X l l l. N (i'b'b'j )+ l. 1 l N (b ijb)

(l; II 1 Ill; )

k —1 k 1—(2k+1)(2k —1) '
l; l; lb

X
k —1 k 1 (l, Ill lll, ) „k—1 k 1

N" (b,i,J', b) '

l l l
N" (i,b, b,j)

b
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k k 1
+(2k+1)

l; l; I
[(k+1)N" (b,ij,b) kN—"(i,b, bj )]

~ ib I I
1

I I
Ib ~

(I;
f f

1 III')

k k
'[(k +1)N" (i,b, bj ) kN—"(b,ij,b)]

i i b

1 k k 1

+ [k(k+1)(2k+1)]' I I &

'[V '(b, ij,b) V—'(i, b, bj)]
i i b

(A6)

All the matrix elements are now in the desired form (24) and the parameter p(i,j ) is obtained by combining
Eqs. (Al), (A4), and (A6) using

p(i j ) =p&(ij ) +-pq(i j ) +p, (ij ) .
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