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The O(4) symmetry of the hydrogen-atom degeneracy is exploited to obtain an exact
separation of the quadratic Zeeman interaction on the Fock hypersphere in momentum

space, and hence a complete classification of levels in the weak-field limit. The separation

constant includes a double-minimum potential, and levels below the top of the barrier have

an approximate O(2) XO(2) symmetry and vibrational structure. Levels above the top of
the barrier have an approximate O(3) symmetry, and a structure similar to that of an ob-

late symmetric top. The crossover between the two types of levels becomes sharper at high

n, and is related to two different types of collective coupling of angular momentum and the
Runge-Lenz vector.

Although the Schrodinger equation for hydrogen
in a uniform magnetic field is nonseparable on ac-
count of the quadratic Zeeman interaction

Hg ——8a B (x +y ), recent empirical discoveries

of near crossings, ' degeneracies, and I-mixing sym-

metry at low fields offer compelling evidence for
some kind of approximate separation. We investi-

gate this idea in the present paper by analyzing the
structure of H~ in the weak-field limit B~O, where
there is an exact O(4) symmetry for constant energy

Eo———1/2n (a.u.). The key point is that H~ is an
algebraic quadratic invariant for a subgroup chain
O(4) DD„s DO(2) which breaks the hydrogen de-

generacy, and this is linked to an exact separation
on the four-dimensional Fock hypersphere in
momentum space. The approximate symmetries of
Refs. 2 and 3 are found as special limiting cases of
the general separability, in which perturbation for-
mulas for the energy suggest rotations and vibra-
tions on different regions of the O(4) sphere.

The hydrogen O(4) algebra is generated by
L=- r X p and the Runge-Lenz vector

A=[ —,(LX p —p XL)+r"]/po,

with po ——( —2EO)', with quadratic invariants

L +A =n —1 and L.A=O. The momentum-

space wave function is

e(p) =(po+p ) @(r' k4)

sion operation II(g~ —g), and two reflections
II,(g,~—g, ) and II4((4~ —g4, or popo/p). Any
one of the parities suffices to determine the other
two, because of the relationships II4——II( —1)"
and II, =II( —1) . Here m is the eigenvalue of L„
which commutes with H~. The usual spherical
basis for the subgroup chain O(4)DO(3)DO(2)
with L =l(I+1), for example, has

g4
——cosX, (0&X&sr)

g, =sinX cos8,

g„=sinX sin8 sing,

g =sinXsin8cosg,

and the separated wave function (unnormalized) is

=(sinX)'C„'+t t(cosX) Yt (8,$), (2)

where Ct', (t) is a Gegenbauer polynomial. The pari-
ties are II = ( —1), II,= ( —1), and

( 1)a —I —1

General considerations of quadratic invariants
show that altogether there are six separable bases on
the O(4) sphere, whereas there are only four in po-
sition space. Our investigation shows the Zeeman
wave function has a separable representation

@=A (a)8(p)exp(imttt)

in elliptic cylindrical coordinates (type I) defined as

where 4 is expressed in terms of the Fock coor-
dinates g =2pop/(po+p ) and g4

——(po —p )/
(po+p~) which satisfy g +ps+/, +$4——l for a
unit sphere in four dimensions. We classify the
wave function 4 with + symmetry labels for three
types of parity on the O(4) sphere: the usual inver-

g4 ——cna cnp,

g, =dna snP,

g„' =sna dnP sing,

g„=sna dnP cog,

(3)
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with arguments 0&a&2K for Jacobian elliptic
functions of modulus q (0 &q & 1), and

K—' &P &K' for complementary modulus
q'=(1 —q )' . The separated equations for A(a)
and 8(P) are

1 d dA
sna

sna da da

m
+q (n —1)sn a —b A =0, (4)

sn a

II,(P~ —P). Although we shall be concerned with

the general form of the solutions for all values of q
that could be related to approximate symmetries,
there is only one value which separates 0& on the

O(4) sphere. This is found from matrix elements of
the operator x +y ~e for constant n. Similar
0 (4) operator replacements for constant n are

3r~ —,nA,

r ~A/n,
and

1 d
d

dB
dnP dP dP

m+ +(n —1)dn P—b 8=0, (5)
dn2P

r —+ —n (5n +1—3L )

from which it may be seen that

e= , n (5b+—4 4L, ), — (6)

and
II4(a~2K —a)

II,(a—+2K+ 2iX' —a),
or the symmetry of 8 under II4(@~2K'—P) and

I

where b is an eigenvalue of the operator

b =n —1+Lz —Az —(1—q )L

A complete classification of the spectrum is ob-

tained by solving for either A or 8, since the two

equations are related by the transformation
a~K+iK'+iP which takes sna~dnP/q Pari. ties

are determined from either the symmetry of A

under

with the parameter q = —,.
Reference 7 outlines a procedure for constructing

four distinct types of solutions which correspond in

our notation to pairs of parity symmetries

II4H, =++, —+, + —,and ——.Here we give a
similar method which leads to a more compact rep-
resentation of the exact solutions of A(a), based on
a series expansion

A(a)=dn'asn a g A„cn"a,
r)0

with m &0, and t=0 or 1 for states with parity
II, =( —1)', IIq ——( —1)" ' ', and II=( —1) +'.
The coefficients A, for even (II4——+1) or odd

(II4———1) values of r satisfy the recurrence relation

(1 q)(r+1)(r+—2)A, ++2[b q[n —1 (r+—t) +m ]——(1—q ){m+r)(m+r+1}]A„

+q [n (m+r—+t —1) ]A„2——0, (8)

with A 2 ——A i ——0. When 0&q &1 the series terminates if A„,+]——0. The eigenvalues b are roots of
the corresponding secular equation, which leads to the condition 6„],——0 in the recurrence relation

6„= [q [n 1 —{r+t) —+m ]+{1—q )(m+r){m+r+1) b]h„—
—q (1—q )r(r —1)[n —(m+r+t 1) ]b,„—

with 5 2=6 i =0 and kp=ki = 1. The roots for
each value of m may be labeled b;, where i is the
number of nodes in the wave function A(a). There
are n —m values with bp&bi « - b„] and
parities II4——( —1)', II =(—1)" ' ', and

( 1)n —1 —m —i

The Zeeman levels have two approximate-
symmetry classifications, related to the correlation
of eigenvalues of b between two exact symmetry
limits O(4) DO(3) DO(2) at q =0 and

I

O(4)DO(2)XO(2} at q =1. These correspond,
respectively, to the approximate-symmetry bases for
Zeeman levels investigated in Refs. 3 and 2. Here
the O(3) symmetry at q =0 is related to the diago-
nal operator b~A =A, (A.+1), with the angular
momentum vector A = (A„,A~, L, ) and
~m

~
&k&n —1. Rotations for the group O(3)q

leave g„+g„'+$4 invariant in Fock space, whereas
the usual spatial rotations for the group O(3)I leave

/+/~+A, invariant. The transformation between



26 SYMMETRY OF THE QUADRATIC ZEEMAN EFI'ECT FOR. . . 325

the two 0{3)bases is therefore related to exchange
of the two coordinates (, and g4. This is seen in el-

liptic cylindrical coordinates by taking the ap-
propriate limits

cna~cosa(0 &a &~)

and

fg =cosy,
gq ——siny cosa,
g„=siny sina sing,

g, =sinysina cosl|},
and the wave function {unnormalized)

=(sin y)"C„+i i(cosy)Yi (a,p),

(10)

snP~tanhP =—cosy(0 & y & u'),

which leads to

with 0 =(—1), II=(—1)" ' +, and
II,=(—1)" ' . The leading-order perturbation
expansion of b = A i+q2(L, +L» ) for q 2=0 is

[2n' —2A(k. +1)+1][A(A,+ I ) —1+m']
4A, {A.+1)—3

(12)

( 1 +q2)(n2 1 +m 2 k2) (13)

At q =1 the operator b~71 1+Lz Az is re-

lated to a reduction of the elliptic cylindrical coor-
dinates to ordinary cylindrical coordinates for the
O(2)XO(2) symmetry of the linear Stark effect,
which separates in parabolic coordinates in position
space. Diagonal operators for states of definite par-
ity are L, =m and A, =k2, with
k=n —

~

m
~

—1, n —[m
~

—3, . . . , 0 or 1. There
is a twofold degeneracy of states of opposite parity
for each value of m when k p 0, and one state with

II4——II,=+ 1, II =(—1)" ' when k =0. The
leading-order perturbation formula when q =1 is

I

crease of avoided crossings along the critical line
b' =q (n —1). Levels with b & b' tend to have the
structure of the 0(3) symmetry classification at
q =0, while the level structure for b &b' includes
twofold accidental degeneracies more typical of the
0(2)XO(2} symmetry at q =1. This division of
levels into two different types of symmetry struc-
ture becomes even more evident at higher n, as
shown in Fig. 3. In the case of the Zeeman effect
the calculations suggest b corresponds approxi-
mately to the quantum numbers v'=A, '=

4 n.
We interpret the critical value b'=q (ni 1) as-

the value of b at the top of the potential barrier

q (n —1)sn 0, in the wave equation (4) for A(a).
The Stark quantization of b is very similar to that
of two independent two-dimensional oscillators, if
we interpret v =n —1 —k as a quantum number for
vibrations. The complete hiearchy of quantum
numbers in this classification is n-1

++ n-1 -+

(b)

u=0, 1,2, . . . , n —1, II=(—1)"

=0, 1,2, . . . , n —2, II=(—1)"

~m
~

=u, u —2, . . . , 1 or0. (14)

fl-2

rl-3
++

ri-2

n-4 ~— —~ ll-4

Figure 1 depicts the correlation of A, and v for arbi-

trary m.
The degree of 0(3) or 0 (2) &(0 (2) symmetry in

actual wave functions depends on the value of q .
On account of the relatively small value q = —, for
the Zeeman effect, the 0(3}i symmetry is strong
for most levels. We find this "rotational" symme-

try breaks down for the lower levels {low m and A,)
in each shell at high n ( & 10), however, on account
of an approximate vibrational symmetry that is
more closely related to the degeneracy in the
O(2)XO(2) classification. This is illustrated in

Fig. 2 for n =20, m =0. Note, in particular, the

m+3 m+3

m+2

m+1

FIG. 1. Correlation of 0 (4) quantum numbers
A,(q =0) and v(q =1), with m &0 and (a)
n —m —1=even; (b) n —m —1=odd. Parity labels are
II,n, .
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Estimates of the low-lyin eig g

=p
)A =0, with

ob =bp+ob] +o bp2 7

1 d m+ ~+p

( 1
P

) p
d

~+2p
p dp

dd
3 3 d

(15)

and 0&p(o The operator b is
d"1 H' 'lt'n' f

with eigenfunctions
ian or a two-dimens'nsional oscillator,

1,=Cp exp( ——,p')L, (p')

when o =0. Herere C is a normali o sta t
r= —, v —m). Leadin-

7

~ g-

e expansion ob=
~

. - are
found to be

o'b =bp+o'b& + . - are

and

bp ——2(v+1)

1

b l
——,(q +1)[(0+1)'+1-—m ].

g igher-order terms inNeglectin hi
d h fll

the quadratic Zeem
wing expression or eigenvalues of
man operator e:

e(nvm ) —n 2coco(v+1)—3(v+1) +1-m], (16)—
with co = [5( —1 )]' The levee structure in the
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lower region of each shell then, is essentially that of
a harmonic oscillator with "anharmonic" correc-
tions.

Estimates of Zeeman levels in the 0{3)symmetry

regime follow from perturbation theory with {6)ex-
I

pressed in the form

2( 2+3+4' 2 31 2 g2)

Nonzero matrix elements, which have the selection
rule EA, =O, +2, are

2 (n —A. )[n2 —(iL —1) ](m —A, )[m —(A, —1) ]num ~e~nA, —2m = n—
4(2A. —3)(2A.+ 1)(2A,—1)2

(n +9w+5)(w+m —1)+4w(1 4m—~)
num e num =n

4w —3

(17)

with w =A,(i,+1). The off-diagonal coupling weak-

ens with increasing A, and when A, &&m the levels

are described approximately by the expression

e(num)= „n [n—+9+9k(X+I)—16m ] .

This is qualitatively similar to the level structure of
an oblate symmetric top. Breakdown of the classifi-
cation at low k is evident in crossings of diagonal

I

matrix elements in (17). Examples are the crossings
of A, =O and 2 for m =0 near n =12, and of k=2
and 4 for m =2 near n = 15. This can be lead to in-
versions of A, assignments made from overlaps of
wave functions instead of correlations of levels as a
function of q .

A complete classification of the levels for n =15
is shown in Fig. 4. These are labeled with II and A,

(from wave-function overlap) and with v at lower
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FIG. 4. O(4) classification of quadratic Zeeman eigenvalues for the shell n =15. The inverted order for A, in some

lower levels is the classification obtained by computing overlaps of wave functions with 0 (3)~ states, instead of correlat-

ing eigenvalues as a function of q . The position of the barrier maximum b* corresponds to e = —n (n +3+m '), and is

seen here in the region U=4, A,=5.
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energies. The crossover from a vibrationlike struc-

ture to a rotationlike structure occurs at U'=4.
Low-lying levels for n =16 would look very similar,

except that the parity II is reversed. In general, the

lowest level for each m has II4——+1, and hence

II( —1}" ', with alternating signs for successively

higher levels. The highest level for each m always

has II, =+1, and hence II =(—1) . With increas-

ing n the lower levels tend to scale as n [cf. Eq.
(16)] and the higher levels as n [cf.Eq. (18)].

Rotational and vibrational level structure is gen-

erally found in many-particle systems when there

are collective excitations associated with interparti-

cle coupling. There is a similar interpretation of the

hydrogen Zeeman levels in terms of two quasiparti-

cles represented by the two commuting angular

momentum vectors F=
z (L+A) and 6= i (L—A)

which satisfy F =6 =a(a+1), with a =+(n —1).
The quasiparticle representation of the elliptic

cylindrical constant of motion is

b = 2(1+q )p(&+1)

+4F,G, —2(1—q )F 6, (19)

with the independent-particle limit corresponding to
diagonalization of F, and 6, in the Stark basis

when q =1. The basis for O(3)~ is associated with

the coupling scheme L=F+G for diagonalization
of b when q ~ 00. The basis for O(3)~ is associat-
ed with the nonstandard coupling

x Gxs y Gys z+Gs)

for diagonalization of b when q =0. It is very in-

teresting to note that the same type of coupling has

been discovered in the problem of electron correla-

tion in simple atoms and molecules "where there

are also collective excitation spectra. The transfor-

mation between the two O(3) bases is found by
working through the Stark basis, with the result

~num) = g ~nim)C„'i
1

C„x = g (aa, aP~ im)(aa, aP~ Am )( —1)'

(20)

in terms of the usual Clebsch-Gordan coupling
coefficients. A similar transformation was found in

Ref. 3. In position space the definition of O(3}~
states in (20) is consistent with a radial basis R„~(r)
in which functions with the same n have the same
phase at large r. It is not known at present whether
there is another set of coordinates which could be
used to represent the states more efficiently in posi-
tion space.

There is another connection between the two

O(3) bases which suggests the transformation could
be carried out by application of an electric field.
This is related to the fact that the interconversion

corresponds to an exchange of g, and g4 in Fock
space. Except for a phase factor, this can be ac-
complished by rotating the wave function by 90' in

the Q4 plane. In ordinary three-dimensional coor-
dinates the rotation is effected with the unitary

operator R =exp(ivA, ) when v=+n/2 If P. „i~ is

an eigenfunction of the O(3)~ operator L, then

Rf„i —
=P&x is an eigenfunction of the 0(3)i

operator A with A. =1. The inverse transformation
is g„i ——R '1(„'x with I=A, . The key Point of in-

terest is that R represents a special case of the
time-evolution operator for the linear Stark effect if
we neglect n-changing transitions. For constant n

the time-dependent Stark field V= F(t)z—is

represented by V~ ——,nF(t)A„which leads to the

evolution operator'

t
U(t) =exp(icoA, ), co = —,nF(t)dt . (21)
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In particular, U (t) =R when co =nl2(mo. dn )

Selective radiative excitation of a high-k, Zeeman

level followed by an appropriate electric field pulse
would lead to a high-1 state, with / =A, , for example.

Finally, we should like to point out that during

preparation of this manuscript we have learned of
another investigation of Zeeman levels for constant

energy by Goebel and co-workers at Wisconsin. Us-

ing classical mechanics, they have found a constant
of motion A„+Ay+ —,(L~+Ly) that is essentially

the same as our operator b at q = —,.
Note added in proof. We have recently learned of

a second semiclassical investigation of the approxi-
mate symmetry at high n [E.A. Soloviev, Zh. Eksp.
Teor. Fiz. Lett. 34, 278 (1981)] from an English
translation of the original work provided by Dr. C.
W. Clark. Our present work is more general in the
sense of providing in (6) the exact quantum repre-
sentation of the Zeeman operator for all values of n,
and an unambiguous classification of levels via the
Sturrn sequence associated with (9).
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