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Double electron excitation and the Glauber theory
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The electron excitation cross sections for He (1s 'S~2p P), Mg (3s 'S—+3p P), and

Ca (4s 'S~4p P) have been calculated with the use of the Ochkur, Glauber, and a sim-

plified Glauber approximation. The results are compared with the Born-Oppenheimer ap-
proximation and, in the case of helium, with available experimental data. The Glauber and

simplified Glauber approximations are found to differ significantly from the Born-
Oppenheimer approximation, especially in the high-energy limit.

I. INTRODUCTION

The excitation of a single atomic electron by an
incident electron has been a prodigious producer of
experimental and theoretical physics publications
for a number of years, but the study of double elec-
tron excitation in atoms is relatively recent. Becker
and Dahler' were the first to our knowledge to in-

vestigate the double electron excitation problem
from a rigorous theoretical point of view. In their
pioneering work on helium and beryllium they cal-
culated differential and total cross sections through
the use of the Born-Oppenheimer, and, for some ex-
citations, the distorted-wave and two-state coupling
approximations. They were specifically interested
in doubly excited states which are stable against au-
toionization. They found that the differential cross
sections vanished in the forward and backward
scattering directions. Fano proved that if the
spin-orbit interaction is negligible, then the dif-
ferential cross sections for "parity unfavored" exci-
tations must vanish in the forward and backward
directions regardless of the approximation used in
the calculation. Kulander and Dahler extended
earlier calculations to study other doubly excited
parity unfavored states including He
(ls 'S~2p P), Mg (3s 'S~3p P), and Ca
(4s 'S~4p P). Roy and Sil' calculated the He
('S~ P) excitation cross section through the use of
an integral form of the close-coupling approxima-
tion. They were primarily interested in the very
low-energy regime and compared their theoretical
results with the experimental data of Burrow. In
1979 Westerveld et al. published the first extensive
experimental data for helium ('S~ P) and normal-
ized their data to the Born-Oppenheimer approxi-

mation at 120 eV.
In the case of some single-electron excitation it is

known that the Born-Oppenheimer approximation
gives spurious results. Hickerson et al. have inves-
tigated the excitation of Pg, and ' Dg states of
helium through the use of simple and configuration
interaction wave functions in conjunction with the
Born-Oppenheimer and Rudge approximations.
Basically, they conclude that the Rudge approxima-
tion is more reliable than the Born-Oppenheimer
because it is less sensitive to the choice of wave
functions. They find that the two approximations
appear to have different high-energy dependence
but do not give cross sections for more than about
twice threshold energy.

There are additional reasons to believe that the
Born-Oppenheimer total cross sections for parity
unfavored excitations decrease much too rapidly for
high impact energies. One may surmise that in
double electron processes, higher-order effects may
be important and in some manner they should be
included in the approximation. The Glauber ap-
proximation includes some higher-order effects by
way of an accumulated phase. In this paper we
consider the double excitation of He
(ls 'S—+2p P), Mg (3s 'S—+3p P), and Ca
(4s 'S~4p P) within the context of Glauber
theory.

II. SCATTERING AMPLITUDES

The Glauber approximation was first applied to
atomic collisions by Franco in 1968. Since the ini-
tial use by Franco, the theory has been utilized in a
wide variety of atomic scattering processes, and
several review articles have been written on the sub-
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In the above, the subscript P02 indicates that elec-
tron zero and two have been exchanged. In the
coordinate representation these become

Note that the spin functions for the incident and ex-
change electrons have been supressed.

Mohan and Vidhani' have given an analytic ex-
pression for the double excitation of helium by elec-
trons for the direct amplitude. Since we are con-
cerned with states which may only be excited via
the exchange amplitude, we now focus our attention
upon it.

Kulander and Dahler give atomic wave func-
tions which they generated using a pseudopotential
formalism. They found good agreement in their
helium calculations using the pseudopotential func-
tions and comparing with answers obtained using
Hartree-Fock wave functions. %e use their pseudo-
potential wave functions and notation for the func-
tions in this paper. The form of the wave functions
is given by

]t],(r], rz)=])I] (r]}])]] (rz)zt (12),

])I]f(r],rp)=])I]]~ (r],ro)= g C~,'~ M ])I]„&~,(r])P„& (ro)ri"' (10),
m&, mo

(3b)

where z)(ij)'s are the two electron spin functions, the C's are Clebsch-Gordan coefficients, and the ]I)'s are
single-particle wave functions, which will be given explicitly in the next section of this paper. Using these ex-
pressions for the atomic wave functions in the post exchange amplitude yields a sum of three terms (g]+,gz+,
and g3+) which come from V . The contribution from the nuclear term (g 1+) is zero for 'S~ P excitations in
all of the approximations we consider. This null result arises from the coupling of the angular momenta. The
surviving terms are

g+= g C '",~ q
' (10)q (12)z) '(2)z) '(0)[gz+(mo, m])+g3+(mo, m])],

mo, m)

where

gz (mp, m])=-+
I'&2

(4b)
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g3 (mo, m))=-+

and ri (i) is a single-particle spin-wave function. The semiclassical interpretation of g2 is that initially the
two bound electrons interact with one another directly via the r ~q term, while only interacting with the in-

cident particle through the accumulated phase (X+). The ejected electron (2) then interacts with one of the
bound electrons directly (r &z') and also accumulates a phase. The g3+ term represents a direct interaction be-

tween a bound electron and the incoming and outgoing electron via rzp, while the spectator electron (1) can
only be excited via the accumulated phase. The high-energy dependence of gz+ and g3+ should be different
providing the accumulated phase is nonzero.

III. BORN-OPPENHEIMER, OCHKUR,
GLAUBER, AND SIMPLIFIED

GLAUBER AMPLITUDES

The double electron excitation exchange amplitude given above is a nine-dimensional integral and its dimen-
sionality must be reduced if numerical results are desired. We will reduce the amplitude to a tractable form
for the Born-Oppenheimer (BO), Ochkur (OC), and Glauber (GA) approximations, as well as for a simplified
Glauber (SG) approximation. In these cases the integrals can be considerably reduced and numerical evalua-
tion is straightforward.

In each approximation we use the single-particle wave functions of Kulander and Dahler, but rewritten in
the following form:

P~(r ) =N„,e Yoo(Q ),

3—iN„p
4m.

1/2

np y =o~[exp( a„zr+iy —r)]- 0, m =0

(sa)

(r)=N„&re "
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3
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Sm Bp„Bg&
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or, in general,

$(r)=[D(py)exp( ar+iy r)]-—o. (5d)

This parametrization of the wave functions facili-
tates the analytic integrations because the operator
on p y may be pulled outside the integrals, the in-

tegrals evaluated in a general manner, and then the
generating operator [D(p, y)] applied, after which y
is set equal to zero. The numerical values of the u's
are given in Table I and the N's are determined
from the normalization requirement.

of the amplitude. Our numerical results are in ex-
cellent agreement with theirs and we give a brief
description of our BO amplitude.

The BO amplitude is retrieved from Eqs. (4) by
setting the accumulated phase Q+) equal to zero.
Since the r

&
wave functions are orthogonal the only

nonzero term is g2+(mo, m&). This is

TABLE I. Values of wave-function parameters and
threshold energies (eV).

A. Born-Oppenheimer amplitude

In order to compare the results of our calcula-
tions with those of Kulander and Dahler over a
full range of energies we have recalculated their BO
results. However, we used a different formulation

Element

He
Mg
Ca

1.69
0.425
0.350

0.836
0.625
0.500

Threshold
energy (eV)

59.67
7.21
4.76
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First we concentrate on the integration over the r2 coordinate,
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By introducing the Fourier transform of the wave function and doing the r'2 integral, we have
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——kf +p2. Through the use of the Feynman parametrization, ' the denominator of the integral may
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The BO amplitude may now be written as

(12b)
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The advantage of using this form of the BO amplitude is that after the generators have been applied, and the
Racah algebra done, only one term survives and it may be evaluated by doing a very simple and well-behaved
one-dimensional integral.

B. Ochkur amplitude

The OC approximation is a simplification of the
Bo approximation. Let us consider Eq. (7a) for
high energies, i e., kf -k; ~)e, where e is the
threshold excitation energy. It is argued that the
major contribution to the momentum phase space
of the bound electron (p2) comes from low values of

I p2 I
because electron two is a bound electron, i.e.,

for large values of
I p2 I

the exponential term of the
Fourier transform is rapidly oscillating and the
denominator terms in

I p2 I
cut off significant con-

tributions for large momenta. The
I kf+ p2 I

term
is expanded and as a function of kf and only the
leading term is retained. Thus,
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All of the integrations for the OC approximation
may be done analytically. The result is
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C. Glauber amplitude

In the GA, g2+(mp, ml) and g3+(mp, ml) both contribute. If the accumulated phase is explicitly included

they become
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where the notation ri+ ——1/k; is used to keep the phase terms separate from other terms which depend on the
incident momentum. Direct reduction of each of these two terms to four-dimensional integrals is possible.
However, they may be reduced to two-dimensional integrals by making an approximation similar to that es-
tablished by Franco and Halpern. ' We give the results here and refer to the references cited for complete de-
tails of the method. We wish to stress that if the standard Ochkur-type reduction of the amplitude is attempt-
ed, then an indeterminate phase factor is introduced into the amplitude. The Franco-Halpern technique yields
the following. For g2 (mp m1)

exP( —l f I 2) ig+ 4~ —i kf. r
& lg+
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Substituting these expressions into Eqs. (16) we have the following:
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q=k, —kf. The reduction of these rather formidable looking six-dimensional integrals to two-
dimensional integrals may be done by following the Gau-Macek procedure. ' This yields

8(2~)2 I (1 21'2I )—
0 m 1 ) — 2, ~ DG2(ill yl )DG2(i20yp) 2 2. I2r

22'&+ i 2 I 2lri+- O ~2l7$ +

8lr I (1 2irl+) —dr i k;. r ig+ dA,
g3 (mo, m1)= 2, ~ e ' (r —z) +DG3(P1y1)DG3(P2y2) 2, I3X .

~+ I —1'g+ r BP1 o g +

(19a)

(19b)
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tion of two-dimensional integrals. It is always
tempting to try to reduce an expression to analytic
form and we find this may be done for the GA,
providing one additional approximation is made.

Consider the integral (second term, integral over
electron zero)

P„p,(r2)P (r2)

exp( p2r2+1 y2 r2)
DG3(P2y2)

r2

i k ~ r g fp1 Zp1
I20 fdroe' '

"st1npsn, (ro)
rp —Zp

2lg +

(22)

(21d)

The differential operators generate a multitude of
terms but fortunately the angular momentum alge-
bra only requires that g2 (0, + 1) and g3 (+ 1,0) be
evaluated.

D. Simplified Glauber amplitude

By changing coordinates to rp1
——rp —r1, introduc-

ing the Fourier transforms, and splitting off the
2' +singular function (r01 —z01), the Franco-

Halpern approximation may be used. We then find
that
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In the GA, the amplitudes may be reduced to an
expression which necessitates the numerical evalua-
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The amplitudes g2(mo, m1) and g3(mo, m1) reduce to analytic form,
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The differential and total scattering cross section have also been evaluated through the use of this approxima-
tion.

IV. DIFFERENTIAL AND TOTAL
CROSS SECTIONS

The unpolarized differential and total cross sec-
tions are found in the usual manner,

( S—+ P)=3 ~g2(0, +1)—g3(+1,0)
~

dO ~ 3 kf 2

dQ k;

(29)

kf j
k; 2

I2g+ I',
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We have made use of the following symmetry:

lg2(0 +1) g3(+10)
I

where g+ is given by Eq. (4a). The factor of one
half is from the average over the incident electron's
spin, and the factor of two arises from the sym-
metrization of the amplitude. By choosing k; along
the z-axis and only considering 'S~ I' excitations,
all but two of the terms vanish when the Racah
algebra is done. The differential cross section be-

comes

g3(

The total cross section is found by integrating the
above,

o('S~'P)=3 „ fdQ ~g2(0, +1)—g3(+1,0) ~'.
l
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FIG. 1. Log~o of the total excitation cross section in
units of ao vs incident electron energy in eV for He
('S~ P). Legend: Born-Oppenheimer, Ochkur

Glauber ——,Simplified Glauber

FIG. 2. Log~o of the total excitation cross section in
units of ao vs incident electron energy in eV for Mg
('S~ P). Legend: Born-Oppenheimer, Ochkur

Glauber ——,Simplified Glauber
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A.. Specific amplitudes

If the generators are applied to the various amplitudes, we then find the following:

3(2" )(N, N )
gBQ(0, + 1)= . .. a,a~k;1(X)»» =gaosi«

(ap+k; )
(32a)

i dX(1 X)&~2 (pi+60)(pi+A) +pi(1 X) k—fI(X)=
o (a,'+Xkf')'~' [(p, +Q)'+(1 —X)'kf]' (32b)

3(2' ~ )(X,N~) a~(2a, +a~) k;

(az+k; ) [(2a, +a&) +kf] kf
{33)

The full GA results must be obtained by numerically performing the integrals in Eqs. (19). For energies above
two times threshold we find that g2 may be neglected compared with g3. Ellis describes our numerical pro-
cedures and GA results.

From the SG approximation we find

g2(0, +1)—g3(+1,0)

'2
N„pN' '
4-kf

kf
Z( —22),a„,k;)X(221,2a„,+a„,kf)+ I {1+i' )

Xexp 2)+ —+i ln2/k; X( —22)+,a~+a„~,q)Z(2)+, a„&+a„„0) . {34a)+

In the above,

X(b,p, a) = —a„n.2 +' (1+ib)I (1+ib)

ib {p—ia. )
'""

( 2+~~2)2+ib

(P ii2, )'——p(2+ ib)
(p2+g 2)3+lb

(34b)

b (p ia,)——(1—ib)
(p2+~a2)1+ib

( ia )
—I+ib

Z(bp, a) =m 2 +' I (1+ib) +b (1+ib)(p+ia, )
(p2+ ~a2)2+ib

(p —ia, )'"—2pa, (1+ib )(2+ib)
2(p2 +~a2 )

3+Ib

(34c)

The differential and total cross sections were numerically evaluated through the use of these amplitudes in
Eqs. (32), (33), {19),and (34). This evaluation is very straightforward and efficient for the BO, OC, and SG
approximations. These programs were written in Speakeasy and run on an IBM 4341 at The University of
Toledo Computing Center.
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TABLE II. Total cross sections for He (1s 'Sg~2p Pg) in units of ao.

Energy (eV) Born-Oppenheimer Ochkur Glauber S. Glauber Expt. '

65
80

100
120
150
200
300
500

1000
2000

3.67(—4)
4.59(—4)
1.76(—4)
6.03(—5)
1.32(—5)
1.47(—6)
4.80{—8)
4.30(—10)
4.53(—13)
3.73(—16)

9.16(—3)
1.21(—3)
1.85(—4)
4.01(—5)
5.93(—6)
4.61(—7)
1.03(—8)
6.12(—11)
3.60(—14)
1.44( —17)

6.36(—5)
4.50(—5)
2.54( —5)
1.04( —5)
2.62( —6)
4.00(—7)
2.60(—8)
1.65(—9)

1.32(—5)
3.41(—5)
5.05( —5)
4.41(—5)
2.93(—5)
1.40( —5)
3.93(—6)
6.45( —7)
4.63(—8)
3.01(—9)

2.9(—4)
1.36(—4)
6.4( —5)
4.8( —5)

'Interpolated from the figures given in Westerveld et al. (Ref. 7).

B. Results and discussion

We have calculated the differential and total
cross sections for the following excitations: He
(Is 'S~2p P), Mg (3s 'S~3p P), and Ca
(4s 'S~4p P). The incident electron energies,
which we have chosen for each excitation, range
from about twice threshold energy to ten times
threshold energy.

As may be seen from Eqs. (32) and (33), the BO
and OC differential cross sections have a sin 9
behavior as expected. The GA and SG approxima-
tions do not have this functional dependence on the
scattering angle, but shift the peak of the differen-
tial cross section towards smaller angles at higher
energies. This is not unexpected, because the accu-
mulated phase in the Glauber theory essentially in-

cludes higher-order perturbation terms, which are
not present in the first-order BO and OC approxi-
mations and, at high energies, there should be more
forward scattering.

The total cross sections are shown in Figs. 1 —3.
Tables II—IV display numerical values (GA results
are from Ellis et al. ). Although we have calculat-
ed the excitation cross sections at low energies
(about twice threshold), not much credence should
be placed in these values. All of the approximations
are intermediate to high-energy approximations,
and the results are intended only for comparison
purposes. At intermediate energies (about five
times threshold), the GA and SG approximations
are larger than the BO and OC approximations.
This is because g3+(0, +1) becomes the dominant
term and, as we mentioned earlier, it is identically
zero in the BO and OC approximations. In this en-

ergy range the numerical agreement between GA
and SG is much better for Mg and Ca than it is for
He. This is primarily due to the fact that the prin-
cipal quantum number changes for the He excita-
tion but not for Mg or Ca. At high energies (about
ten times threshold), the GA and SG approxima-
tions are several orders of magnitude larger than the
BO and OC approximations.

The asymptotic energy dependence of the total
cross sections may be determined by analytical and
numerical methods. They are

I I I

ZO VO 4O

ENEagv (eV)

TABLE III. Total cross sections for Mg
(3s 'Sg~3p 'Pg) in units of ao.

Energy Born- Ochkur Glauber S. Glauber
(eV) Oppenheimer

FIG. 3. Log~o of the total excitation cross section in
units of ao vs incident electron energy in eV for Ca
('S~ P). Legend: Born-Oppenheimer, Ochkur

Glauber ——,Simplified Glauber

15
20
30
40
50

9.20(—1)
1.46(—1)
6.97(—3)
6.26(—4)
8.59(—5)

6.96(—1)
7.89(—2)
2.75{—3)
2.08{—4)
2.52(—5)

1.75(—1)
1.13(—1)
4.43(—2)
1.95(—2)
9.70(—3)

3.46( —2)
3.99(—2)
2.75{—2)
1.61{—2)
9.43(—3)
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TABLE IV. Total cross sections for Ca
(4s 'S ~4p P ) in units of ao.

Energy Born-
(eV) Oppenheimer

Ochkur Glauber S. Glauber

10
20
25
35
50

1.87
1.37{—2)
2.14(—3)
1.07(—4)
3.65(—6)

1.39
5.33(—3)
7.24( —4)
2.99{—5)
8.33(—7)

3.14(—1)
1.05(—1)
5.60(—2)
2.29{—2)
7.30(—3}

3.04( —2)
4.35{—2)
3.36(—2)
1.81(—2)
7.43(—3)

ohio( S P)-E.

op('S +P)-E—

oo('S~3P)-E 4,

os('S~ P)-E

(3Sb)

(35c)

(35d)

Thus, a crucial test of the validity of the approxi-
mations is to compare them with experimental data
at high energies. Unfortunately, there is a limited
amount of experimental data available. In Table II
we show the He data of Westerveld et al. , which
they normalized to the BO at 120 eV. The only
data point above 120 eV is at 150 eV and no defini-
tive conclusions about the asymptotic energy depen-
dence of the experimental cross section may be
drawn.

V. CONCLUSIONS

Double electron excitation cross sections have
been calculated for He (ls 'S~2p P), Mg
(3s 'S~3p 'P), and Ca (4s 'S~4p 'P) with the

use of several different approximations. At high
energies we find that the BO and OC approxima-
tions fall rapidly as a function of the incident ener-

gy. The GA and SG approximations do not have
this strong energy dependence, but vary as E
Our SG approximation includes both of the contri-
buting terms in the amplitude, while the GA only
includes the dominant high-energy term. The
agreement between the latter two approximations
for Mg and Ca demonstrate that the SG approxima-
tion serves a useful purpose because it is easier to
evaluate than the BO approximation and gives the
same asymptotic energy dependence as the GA.
However, none of the calculations agree with the
experimental helium data of Westerveld. Addition-
al experimental data for these elements is necessary
before any definite conclusions about the validity of
the theories can be made. It is hoped that these
would be absolute cross sections and include several
high-energy measurements.

In our GA and SG calculations we have chosen
k; as the z axis and have not set q, =0. We are
currently investigating the wide angle Glauber ap-
proximation (k; not along z, but q, =O), the in-
clusion of g2+(0, +1) in the GA, and a Born-
Eikonal series type of approximation. It would also
be interesting to examine the feasibility of doing a
higher-order BO approximation.
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