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Shell corrections to electronic stopping powers are obtained from a theory which utilizes

different orbital mean excitation energies for the atomic shell and which determines the

shell correction from knowledge of the atomic velocity distribution. When summed over all

shells, and taking into account the "effective" occupation of the shells, the orbital mean ex-

citation energies yield the total mean excitation energy I. Orbital mean excitation energies

are much larger than I for E shells and less than I for the outer valence shells. The
atomic velocity distributions are obtained from numerical Hartree-Fock calculations. We

report shell corrections for Al and Ar. We find very good agreement between other

theoretical and experimental shell corrections and the present calculation. We find that the

L shell gives the dominant contribution to the shell corrections for low projectile velocities

while E-shell corrections dominate for larger velocities. The total shell correction is rela-

tively insensitive to the choice of the total mean excitation energy. We have also investigat-

ed the validity of expanding the shell correction in powers of v

I. INTRODUCTION

The stopping of swift charged particles imping-

ing on foils is, for large projectile velocities, deter-
mined by the mean excitation energy I of the target
material through the logarithmic term in the Bethe
formula. ' However, for the lower velocities at
which most experiments are carried out, the elec-
tronic shell corrections to the Bethe formula are im-

portant. Thus, in order to obtain the quantity of
main interest in stopping theory, the mean excita-
tion energy from measurements, one must have esti-
mates of the velocity-dependent electronic shell

corrections which are generally taken either from
Walske ' or from Bonderup. Walske applies the
formalism of Livingston and Bethe to the calcula-
tion of shell corrections from K and L electrons, us-

ing screened hydrogenic orbitals.
Bonderup's calculation is based on the statistical

treatment of the target electrons proposed by Lind-
hard and Scharff and by Lindhard and Winther.
The logarithm of the total mean excitation energy
is, in this formalism, determined by

I 1n[p(r)'~ ]p(r)r dr,
where p(r) is the total electronic density obtained

from Thomas-Fermi-like models. The expressions

given by Bonderup were also used by Rousseau
et al. to compute shell corrections for a beam of
0.8- and 2.0-MeV a particles using Herman-

Skillman atomic electronic densities for the target
material. Rather similar results are obtained in the
three calculations by Walske, ' Bonderup, and
Rousseau et al. However, the Walske shell correc-
tions are smaller than those obtained with the
Bonderup formalism. This difference is mainly due
to the fact that the screened hydrogenic approxima-
tion only works well for K shells, thus yielding L
shell andM-shell' corrections that are too small.

Sigmund" has recently derived a relation between
the stopping cross section S(u) of moving target
electrons and the cross section S' '(u) for scatterers
at rest. If the simple Bethe formula is inserted for
S' '(u), it means that one common mean excitation
energy is used for all shells. We will show that this
proposal leads to unrealistically large shell correc-
tions for small projectile velocities, much larger
than those obtained both by Walske ' and by
Bonderup. However, we will also demonstrate that
we obtain shell corrections which agree in magni-
tudes with both earlier theoretical and experimental
shell corrections using the Sigmund formalism pro-
vided we apply this formalism she/ltuise and use dif-
ferent orbital mean excitation energies in S' '(u) for
the various shells. The orbital mean excitation en-

ergies are obtained from the Hartree-Slater calcula-
tions of oscillator strength moments by Dehmer
et al. ' and by Inokuti et al. ' '

In the next section we discuss how to obtain orbi-
tal mean excitation energies from the oscillator
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strength moments. We also briefly review the for-
malism which we use to calculate the electronic
shell corrections. Calculations are performed for Al
and Ar and these calculations are discussed in Sec.
III, while Sec. IV contains some concluding re-
marks.

II. THEORY

The electronic' stopping of swift charged parti-
cles traversing matter is proportional to the stop-
ping cross section S(v). Disregarding relativistic
and "density-effect" corrections, S(u) can be ob-
tained from the approximate" ' expression for
velocities )Zvo, vo being the atomic unit of veloci-

ty e le. One generally expresses S(v) as

which for a neutral atom fulfill

awk ——Z, .
k

We will utilize two different expressions for wk

which both fulfill Eq. (5) and we thus obtain from
Eq. (4) two sets of Ik's for a given value of I Th. e
actual definition of wk is given in Eqs. (27) —(34).
Introducing Eq. (4) in Eq. (2) and disregarding the
Barkas and the Bloch corrections, we have the fol-
lowing relation between the orbital shell correction
Ck(v) and the orbital stopping numbers Lk(u):

Ck(u) =wkln (2mv /Ik )8(2mv —Ik)

—Z2Lk(u),

provided we define Lk(u) such that
4~e ZiZ2

S(v) =
2

L (u),
PlU

L(v)=g Lk( u) . (7)

where u is the beam velocity and L (u) is the stop-
ping number defined as

L (v) =ln(2mv lI)8(2mu I)—2 C(u)
Z2

+ Z&L, (v)+ Z',L,(u),

If one combines Eqs. (2) and (4)—(7), it becomes
apparent that the decomposition of the shell correc-
tion into orbital components must be

C(u) =g Ck(u)+ ln
Wk 2pygU

k Z2 Ik

where 8(t) is the Heaviside step function.
The constants have their usual meaning and Z&

and Z2 refer to the beam and target particles,
respectively. L

&
and L2 are correction terms often

called the Barkas and the Bloch corrections, respec-
tively. I is the mean excitation energy which quan-
tum mechanically is given as

lnE dE
(3)

where df IdE is the density of optical dipole oscilla-
tor strength per unit energy of excitation E above

the ground state. JL' indicates summation over

discrete and integration over continuum states. The
quantity C(u)/Z2 in Eq. (2) is the so-called shell

correction, the calculation of which we shall be con-
cerned with in the present work. In an
independent-particle picture, for instance Hartree-
Fock, we may split lnI up into shellwise contribu-
tions. We will define the orbital mean excitation
energies through the relation

lnI = g wklnIk,
1

(4)
k

where the summation extends over all occupied
shells and where wk are "orbital weight factors"

X(8(2mu —I)—8(2mv —Ik)) . (8)

All calculations reported here are performed at ve-
locities for which 2mu )Ik for all k. Thus, the
second term in Eq. (8) vanishes and is omitted in
the following discussion.

Sigmund" has recently derived an expression
which determines S(u) in terms of the electronic
velocity distribution p(v2) of the scatterer (i.e., the
target electrons) and the stopping cross section
S' '(u) for a system in which the scatterers are at
rest. The main assumptions which enter into
Sigmund's derivation are the following: (1) that the
stopping of the charged particles is accomplished by
collisions with nonrelativistic electrons, (2) that
these collisions are elastic and single binary col-
lisions, and (3) that the collision cross section has
azimuthal symmetry. By simply using energy and
momentum conservation in various coordinate sys-
tems, it is thus possible to relate S(u) to S' '(u).
Expressed in terms of L (v) and L' '(v) Sigmund"
finds

L(u)=m J f(v2)u2du2

v+v2 V2
2

X J L' '(ui) 1+———dui,
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where L' '(U) is obtained from S' '(u) as L (u) from
S(u) in Eq. (1) and where f (vz) is the isotropic velo-

city distribution of the target electrons normalized
as

4m f f (vz)uzduz= 1 . (10)

Equation (9} gives the stopping cross section from
the whole electronic distribution of the atom. If we
use the same arguments which led to Eq. (9) for
each atomic shell, we obtain

La(U) =n pa(vz)uzduz
0

where nk are the orbital occupation numbers obey-
ing the sum rule

nk=Z2 . (14)

Notice that even though na and wa fulfill the same
sum rule [cf. Eqs. (5) and (14)] they are not the
same quantity.

Both L'0'(U) and Lk '(v) derive from the stopping
cross section of target electrons at rest. The Bethe
formula without shell corrections is valid in the
limit u &&U„where u, is the velocity of the target
electrons. Thus the Bethe formula applies and

2
U2 U2x 1+———dv&,2 2

LI, (&)= » &(U —aa),(0) wk 2@iU

Z2 I
where

(15)

where pa(vz) now is the velocity distribution of a
k-shell electron which according to Eqs. (9) and (10)
must be normalized as

4~f pk(Uz }Uzdvz ——1 . (12)

From Eqs. (10) and (12) we see that for a neutral
atom the total and orbital velocity distributions are
related as

' 1/2
k

2Pll
(16)

Lindhard' has derived a similar expression for
L' '(U) for a homogeneous electron gas.

Introducing Eq. (15) in (11) we may perform the
integration over ui, analytically obtaining

wk
Lk(U}= lAk(U)+&k(z )+Ck(U)]

Z2
1f(Uz}= +napa(Uz),

k
(13) where

U —Ck
2 u —u2

2 2

Ak(u) =4~f pa(vz)uzln z dvz,
0

CXk

U +CEk

Ba(U)=4m f pk(uz)uz ln
&k

(aa —u) —Uz
2 2

du2,
2CXk U2

(19)

00 U2+U UCa(U)=Sr pa(uz)uz ln —2—duz .
U +Ck U2 —U V2

(20}

For large values of u (v »uz) it aPPears that Aa(u) »Bk(u), Ca(u). Thus

Wk
La(u)= Aa(U)

2

47Twk U2
2

Pk(Uz)Uz ln z +ln
Z2 0 Ak U

(21)

or, expanding

Wk U
Lk(U) = ln

Z2 Rk

(Uz)k 1 (Uz)k 1 (Uz ~k

u' 2 u4 3 u' (22)
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where

( u2) =4~I pk(u2)u2"+'du2 . (23)

Thus, by comparing Eqs. (6) and (22), and disre-

garding L
~ and L2, we see that for large projectile

velocities we may represent Ck(v) as"

(v2)k (u2 ~k+ tvk 4 + . (24)
U 2U

Ck(u) = tvk

where

Ltt (u)= (1+fk)ln(2A u /e )
2

(25a)

and ntt fz is the total oscillator strength of all opti-

Before proceeding we-would like to point out that
Eqs. (9) and (11) are, in general, different. Only in
the special case where II, is the same for all shells
and utk =nk, the occupation number of shell k, can
Eq. (9) be derived from Eq. (17) by means of the de-
finition in Eq. (8). We shall refer to such a situa-
tion as the "single-I" case.

We can now calculate the orbital shell corrections
Ck(u)/Z2 from Eqs. (6) and (17)—(20) using Eq.
(15), provided that we know tvk, Ik, and the orbital
velocity distribution pk(v). The latter quantities
were obtained from the nonrelativistic, numerical
atomic wave functions from the Froese Fischer pro-
gram system McHF72. Owing to the shellwise na-
ture of the present approach we have used Hartree-
Fock wave functions. However, we might also have
used multiconfigurational wave functions where all
configurations differ by at least two orbital replace-
ments, in which case the one eLectron density does
not have orbital cross terms. However, it has been
our experience' that the shell corrections are nearly
unaffected by inclusion of this kind of electronic
correlation. The Fourier transforms of the wave
functions yielding the momentum-space wave func-
tions were performed with the Talman ' ' method
which is a combination of the fast-Fourier-
transform technique and analytic evaluation of
some of the momentum-space integrals. The actual
details of the implementation of this method in the
present context can be found elsewhere' and it suf-
fices to state that it is a very accurate method for
obtaining momentum-space wave functions. Sum
rules for the momentum-space wave function are
fulfilled to within less than 0.01%.

Using the Born approximation, Bethe et al. de-
rived an expression for the velocity dependent part-
Lx (u) of the stopping number Lx. '(u) for the E
shell. This takes the form

L~ '(v) =Ltd '(v) (1+f~)»(+I~—/n2e ),
2 (25)

cal transition from the E shell into unoccupied lev-
els (continuum and discrete). Equation (25a) was
derived by Bethe et al. and, in order to preserve
the standard form of the 1ogarithrnic term in the
Bethe formula [cf. Eq. (6)], we have also assumed
the same dependence of ntt and fx for the last term
in Eq. (25). In an independent-particle model, e.g.,
Hartree-Fock, where the generalized oscillator
strength is a sum of orbital terms, the derivation of
Bethe et al. is also valid for all other shells which
means that

Lk '(v) = ( I+fk )ln(2& u /e ),
2

where the index k labels the kth shell of the atom.
From Eq. (26) and the general form of Lk ' in Eq.
(15) it follows that the weight factor must be de-
fined as

(26)

(1+fk) .
2

(27)

This derivation [Eq. (27)] does not assume any spe-
cial form for the orbitals of the target atoms. It
should also be recalled that neither the velocity-
independent term of LI', ', i.e., the mean excitation
energy II„nor the oscillator strengths can be deter-
mined by the arguments given by Bethe et al.
Bethe et al. and Walske expressed Itt for the E
shell in the form

IK =~Zeff~ ~
(28)

where Z,ff is the effective nuclear charge in the K
shell and 8 is the Rydberg energy. The constant A,

was computed by Bethe et al. using screened hy-
drogenic orbitals for the E shell and it was found
that iL was close to 1. We shall (see Sec. III A) dis-
cuss how this result compares with the IE obtained
from the present calculation.

It was suggested earlier by Livingston and Bethe
to use a different expression for tvk for the E shell,
namely,

~k =nkfk (29)

and this formula was apphed to higher atomic
shells by Hirschfelder and Magee. This result
cannot rigorously be derived from the Born approx-
imation and its validity is based mainly on less
stringent arguments. However, we shall demon-
strate below that the shell corrections obtained with
Eqs. (27) and (29) do not deviate very much from
one another and the present calculation is not able
to resolve which of the two expressions give the
most reliable theoretical shell corrections.

The oscillator strengths fk are taken from the
Hartree-Slater calculation of oscillator strength mo-
ments by Inokuti and co-workers. ' ' The authors
calculated moments for all atoms with Z & 38:
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and

~(0)=g &kfk =g&k(0)
k k

(30)

I.(0)=Zulu ——:g tk(0) .
I
R

(31)

The authors also give the orbital terms sk(0) and

lk(0). By comparing Eqs. (4), (27), and (29)—(31)
we arrive at the following expression for the orbital
weight factors and mean excitation energies:

and

n/, +sk(0)
wk=

2

N/c sk (0)

(32)

(33)

lk(0)
Ik ——8 exp

Wk
(34)

In Sec. III we will consider the application of this
formalism to aluminum and argon.

III. APPLICATIONS

A. Orbital parameters for aluminum

The orbital weight factors and mean excitation
energies calculated from the oscillator strength mo-

ments of Inokuti and co-workers' ' using Eqs. (7),
(32), and (34) are reported in Table I. The relative
importance of the orbital contribution to lnI ac-
cording to Eq. (4) is indicated in the last column of
Table I and we see that the 2p subshell gives by far
the dominant contribution to I. A small value of
teak and/or a large value of Ik indicates small stop-
ping ability of the kth shell and the entries in Table
I thus imply that most stopping is accomplished by
the outer electrons. For instance, for 2-MeV
protons the relative contributions of I.P, ',

42%%uo, 26%, and 17%, respectively. The same trend

lk(0) =1k(0)+Zq ln
~k Inokuti

valence

(35)

is observed when corn. paring the orbital weight fac-
tors with the occupation numbers: wk is smaller
than nk for ls and 2s, while tc2& (and tc3~) are larger
than n2~ (and n3&). However, wk and nk are rather
similar for all k and nk would be a good zeroth-
order approximation for the weight factors. This is
in fact the approach followed by Sternheimer ' in
his calculation of the density-effect correction 5,
and our calculation thus indicates that this choice is
rather good. Also, since requiring that wk ——nk is a
necessary condition for obtaining the "single-I" ap-
proximation from the orbital expression, Eq. (11),
we see that the most important difference between
shell corrections calculated from Eqs. (9) and (11)
stems from the use of orbital mean excitation ener-

gies in Eq. (11).
The value calculated by Dehmer et a1. ' for I

(124 eV) and thus for lk(0) of aluminum is too small
relative to the commonly accepted experimental
value of about 163 eV. ' The main reason for
this discrepancy seems to be' that the calculations
are carried out for atoms while the experiments
refer to stopping by a metallic foil of aluminum.
To a lesser extent, it may also be caused by the ab-
sence of electronic correlation in the Hartree-Slater
calculation of Dehmer et al. ' Recently, Shiles
et aI hav. e analyzed a range of experimental opti-
cal data for metallic Al in order to determine the
dielectric response function over the entire range of
frequency as required by the Kramers-Kronig rela-
tions. From the dielectric response function they
compute a mean excitation energy of 166 eV; very
close to the best experimental estimate of I. Their
data also show that the entire additional oscillator
strength missing in the Hartree-Slater' calculation
is concentrated in the valence part of the spectrum.
Based on these findings we will thus increase the
values of lk(0) for the valence shells (2s, 3p) accord-
ing to the prescription

TABLE I. Orbital weight factors tok [Eq. (27)] and mean excitation energies Ik for Al cal-
culated from lI, (0) of Inokuti (Ref. 24), yielding I =123.6 eV.

Shell (k)

K
Li
L2
M)
M2

Wk

1.773
1.677
6.487
1.909
1.153

I/, (0)

8.181
4.397

18.088
—0.788
—1.189

I, (eV)

1373.0
187.2
221.2

9.003
4.849

%%uo of lnI

20.5
14.0
55.9
6.7
2.9
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TABLE II. Orbital weight factors wk [Eq. (27)] and mean excitation energies Iq for Al cal-
culated from renormalized lk (0) values in Eq. (35) which yield I =163 eV.

Shell (k)

E
L]
L2
M]
M2

Wk

1.773
1.677
6.487
1.909
1.153

lg', (0)

8.181
4.397

18.088
1.304
0.313

I, (ev)

1373.0
187.2
221.2
26.95
17.86

% of lnI

19.3
13.3
52.9
9.5
5.0

We have assumed that the term by which L(0)
should be incremented, i.e.,

exptI
Ii oLM

is added to the valence orbital terms proportionally
to the orbital weight factors.

Tables II and III give the renormalized mean ex-
citation energies as calculated from wk and wk in

Eqs. (27) and (29), respectively. Comparison of
Tables II and III shows that the increase of w2& re-
lative to n2& is more pronounced when we use the
original "intuitive" suggestion for wk of Livingston
and Bethe' (Table III) rather than the formula
which has a velocity dependence consistent with the
use of the Born approximation (Table II).

B. Shell corrections for aluminum

Using the Ik values of Tables I—III in Eq. (15)
and using Eqs. (6) and (11), yields the curves for
shell corrections versus incident-particle energy
displayed in Figs. 1 —4. In Fig. 1 we display the
calculated C/Z2 at three levels of approximation.
We also include the calculation of Bonderup which
treats the target as an electron gas with the ap-
propriate density. The experimental result is that of
Andersen et a/. in which the Barkas corrections
and the Bloch corrections, i.e., L t and L2 in Eq. (2),
have been subtracted out. It can thus be compared

to the present calculation which also does not in-
clude these terms. Both curve A [weight factors
computed from Eq. (27)] and curve 8 [wk from Eq.
(29)] agree well with the experimental C/Zz from
Andersen et al. Thus based on the present calcula-
tion, we can form no preference for the weight fac-
tors of Ref. 5 or 22. Both choices seem to yield ac-
ceptable shell corrections for aluminum. Also we
see from Fig. 1 that C/Z2 obtained by using a com-
mon mean excitation energy in L' '(U) for all atom-
ic shells [Eq. (9)] is much too large. The fact that
the single-I shell correction is too large is not
caused by the use of an incorrect I value. This can
be seen from Fig. 2 where we have displayed the to-
tal single-I shell correction for three rather different
values of the total mean excitation energy. C/Z2 is
almost independent of I in the single-I approxima-
tion. There is only a slight increase in the peak
value as I decreases.

All calculations in Fig. 1 are performed with or-
bital mean excitation energies which give a total I
of 163 eV, the "experimental" value for I. Using
the unnormalized orbital mean excitation energies
in Table I we obtain nearly the same shell correc-
tions as curve 8 in Fig. 1. The changes are smaller
than 0.5%. The reason for the insensitivity of the
shell correction to the renormalization effect can be
seen from Table IV. The whole M shell contributes
merely 1 —3% to the total C/Z2 and only the M-
shell corrections are altered when using the orbital
mean excitation energies of Table I rather than

TABLE III. Orbital weight factors wk [Eq. (29)] and mean excitation energies Ik for Al
calculated from renormalized values of lk (0) [Eq. (35)] which yield I= 163 eV.

Shell (k)

E
L]
L2
M]
M2

1.546
1.354
6.973
1.818
1.305

lk (0)

8.181
4.397

18.088
1.304
0.313

Ik (eV)

2704.0
349.7
182.1
27.89
17.30

% of lnI

18.5
12.0
54.8
9.1

5.6
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'
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FIG. 1. Total shell correction for Al {I=163 eV) as
a function of the projectile velocity. Curve A: this
work with mk and Ik from Table III. Curve 8: this
work with wk and Ik from Table II. Expt. : Andersen
et al. (Ref. 27). Single-I: All Ik ——163 eV and wq ——nk.
Bonderup: Ref. 4.

30 E (proton MeV)

FIG. 2. Total shell correction for Al in the single-I
approximation as a function of the projectile velocity
calculated for three single-I values of the mean excita-
tion energy I =143, 163, and 183 eV.

those of Table II. Thus, the shell correction is
predominantly determined by the sum of the E and-
L-shell corrections. Table IV shows that the L shell
gives the dominant contribution for small projectile
velocities (90% for v =6 a.u.), while the II."-shell

corrections do not fall off as fast as the L-shell
corrections, being about 66% of CyZ, for U =40
a.u.

Using the formalism of Bethe' and screened hy-

drogenic orbitals for the target electrons, Walske '

calculated the E- and L-shell corrections for a range
of atoms. We compare our calculation with his re-
sults in Figs. 3 and 4 for the II. and L shell, respec-
tively. For small projectile velocities the Walske
K-shell corrections lie between the shell correction

obtained with weight factors in Eq. (27) (curve B)
and with wj, of Eq. (29) (curve A), whereas curve B
seems to be closer to Walske's results for larger ve-
locities. However, it appears from Fig. 3 as if the
Walske shell corrections may be too large for pro-
jectile energies 22 MeV and the agreement between
the Walske shell correction and curve B in this ener-

gy range thus does not tell us whether wk or mk is
the most appropriate choice of weight factors.
Walske's shell corrections correspond to a K-shell
mean excitation energy of about 2300 eV [A, —1.05
in Eq. (28)], i.e., in between the I~ values of Tables
II and III. Thus, Fig. 3 shows that the magnitude
of the IC-shell correction is mainly a function of I~,'
Cz is larger for smaller Ix, with the single-I

TABLE IV. Orbital shell corrections' for Al.

(a.u.)"

6
8
10
12
16
20
24
32
40

(Mev)

0.8993
1.5988
2.4981
3.5972
6.3951
9.9923

14.3889
25.5803
39.9693

Cis

Z2

0.023 86
0.073 57
0.095 62
0.10046
0.086 57
0.065 83
0.048 64
0.02741
0.01684

C2s

Z2

0.043 18
0.037 70
0.03243
0.02660
0.01679
0.01066
0.00707
0.003 61
0.002 14

C2p

Z2

0.29076
0.19433
0.12661
0.085 50
0.04477
0.02722
0.018 31
0.009 97
0.00629

C3s

Z2

0.007 21
0.005 30
0.00402
0.003 02
0.001 71
0.001 04
0.00067
0.000 34
0.00020

C3p

Z2

0.004 12
0.002 25
0.001 34
0.000 87
0.00045
0.00027
0.000 18
0.000 10
0.OOOO6

C
Z2

0.369 13
0.313 16
0.26003
0.21645
0.15028
0.10501
0.074 88
0.041 42
0.025 53

'Using the orbital Iq's in Table II, i.e., yielding I = 163 eV.
In units of e /A,

'Proton MeV.
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005—

FIGG. 3. K-shell correction for Al as a function of the

projectile velocity. Curve A: this work with I =2704K

eV (Table III). Curve B: this work with I~ ——1373 eV
(Table II). Walske: Ref. 2. Single-I: I =163 eV.

0.00

0 5 10 15
I I

20 25 E {proton NeV) 35

FIG. 4. L-shell correction for Al (L&+L2) as a func-
tion of the projectile velocity. Curve 3: this work with

k and wk from Table III. Curve B: this work with Ik
and wk from Table II. %'alske: Ref. 3.

( = 63 eV) case producing a value which is far too
arge. Since the E shell gives the dominant contri-

bution to the shell correction in the single-I case the
large difference between curve B and the single-I
curve in Fig. 3 has the same origin as the difference
between the same two curves in Fig. 1. This is also
supported by the fact that if we had included the
single-I curve in Fig. 4, it would have coincided
with curve A.

Figure 4 shows that the Walske L-shell correc-
tions are substantially smaller than those obtained
in both of the present calculations, indicating that
the screened hydrogenic approximation does not
work as well for the L shell as for the K shell. No-

ticing the difference in scale between Figs. 3 and 4

this means that the total %alske shell correction is
smaller than ours (the contribution to C/Zz from

Ref. 10.
the M shell is only a few percent see T bl IV d

e . 10). The total Walske shell correction is also
smaller than that calculated by Bonderup. This is
a consistent trend over the periodic system as seen,
e.g., in the analysis of stopping powers by Andersen
et al.

Finally we investigated the validity of the asymp-
totic expansion of C/Zq for large projectile veloci-
ties, i.e., Eq. (24). Since we have almost the same
convergence for all individual shell corrections, we
have given the results for the total shell correction
in Table V. The rest correction, defined as C/Z2
minus the two leading expansion terms in Eq. (24)

(u' &'

U2
Rest correction(a.u. ) (MeV)' C/Z2 4

TABLE V. The expansion of the total' shell correction Ca s e correction /Zz of aluminum in terms of m-
s o u, an (u2) [cf. Eq. (24)].

0-

U —M v
1

2

10
12
16
20
24
32
40

2.4981
3.5972
6.3951
9.9923

14.3889
25.5803
30.9693

0.26003
0.21645
0.15028
0.105 01
0.074 88
0.041 42
0.025 53

0.34646
0.24060
0.135 34
0.086 62
0.060 15
0.033 83
0.021 61

0.982 79
0.473 95
0.14996
0.061 42
0.029 62
0.009 37
0.003 80

—1.069 22
—0.498 11
—0.13502
—0.043 03
—0.01489
—0.001 78
—0.00004

'Using the Ik values in Table II,
In units of e /A.

'Proton MeV.
( uq ) =34.646 a.u.

'(u2) =1.9656X10' a.u.

fThe rest correction is defined as

i.e., with I=163 eV.

c/z (u2 ) 1 (u2
U2 2 ~4
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TABLE VI. Orbital weight factors wk [Eq. (27)] and mean excitation energies Ik for Ar
yielding I = 194 eV.

Shell (k)

E
Lj
L2
Mi
M2

Wk

1.705
1.691
6.447
1.337
6.820

Ik (0)

8.462
5.666

24.107
1.886
7.713

Ik (eV)

1947.0
388.1

572.2
55.78
42.15

% of lnI

13.6
10.6
43.2

5.7
26.9

is always negative, which means that the two-term
expansion always lies above C/Z2, while the lead-
ing term in the expansion, proportional to U, lies
above C/Z2 for small v but below it for larger
()5-MeV) projectile velocities. Table V also shows
that the series expansion converges rather well;
above 25 MeV the rest correction is less than 5% of
the total shell correction.

C. Results for argon

We also performed a calculation on Ar using the
orbital weight factors of Eqs. (27) and (29). The
weight factors obtained from Eq. (27) and the corre-
sponding mean excitation energies are given in
Table VI, and they are calculated from the oscilla-
tor strength moments of Inokuti renormalized ac-
cording to Eq. (35) to yield I =194 eV (Ref. 28) in-
stead of the value of 175 eV found by Dehmer
et al. ' ' However, according to the discussion
concerning Fig. 1, this renormalization has nearly
no effect on the computed shell corrections.

The shell corrections are plotted in Fig. 5 togeth-
er with C/Z2 calculated by Bonderup and C/Z2
in the approximation which uses a common I in all

Lk '(v), i.e., Eq. (9). The relation between the
curves is similar to that found for Al in Fig. 1. The
only experimental determination of C/Z2 versus v

is that of Besenbacher et a/. ' However, these mea-

surements are carried out only in the energy range
100—800 keV which corresponds to such low pro-
jectile velocities that it is difficult to compare with
the present calculation. Furthermore, Besenbacher
et al. ' have not determined the Barkas and Bloch
corrections separately. These terms are thus includ-
ed in the experimental C/Z2 but not in our calcu-
lated values. Besenbacher et al. ' made an empiri-
cal estimate of L& and L2, and by subtracting those
terms they arrive at an experimental curve for
C/Zz vs v which is rather close to the calculation
of Bonderup. However, the uncertainties in the
Barkas and Bloch terms are so great that the agree-
ment with Bonderup's calculation may be fortui-
tous.

IV. SUMMARY AND DISCUSSION

C

Zs
0.30-

I
x

0.20- i

I

0.IO —,I

I

om-~

I

Single I

-0.2G
0 25 E (proton MeV) 35

FIG. 5. Total shell correction for Ar as a function of
the projectile velocity with I =194 eV. Curve A: wk

and Ik from Table VI. Curve B: wk calculated from

Eq. (29). Single-I: All Ik ——194 eV and wk ——nk.
Bonderup: Ref. 4.

Using the theory of Sigmund, "which relates the

stopping cross section of moving scatterers to that
of scatterers at rest, S' '(v), we have calculated shell

corrections to electronic stopping powers for Al and

Ar. The velocity distribution of the scatterers is
calculated from Froese Fischer nonrelativistic
atomic wave function at the Hartree-Fock level of
approximation. We have shown that by using an
S' '(v) function composed of orbital mean excita-
tion energies which summed and weighted accord-
ing to Eq. (4) give the experimental mean excita-
tion energy, we are obtaining a total shell correction
which is substantially smaller than that obtained
when we use a common mean excitation energy
(equal to the experimental mean excitation energy2s)

for all the shells. Furthermore, the shell corrections
calculated from orbital mean excitation energies are
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in good agreement with both the calculation of
Bonderup and the measurements of Andersen
et al. for Al.

The orbital mean excitation energies are large for
the E shell (small stopping ability) and small for M
shell (large stopping ability). The orbital weight
factors and mean excitation energies are computed
from the Hartee-Slater calculations of Inokuti and
co-workers. '

One of the key assumptions in Sigmund's deriva-

tion of L (v) in terms of L' '(u) is that the stopping
of the projectile is accomplished by collisions with

target electrons with a velocity distribution f(U2).
By using a different mean excitation energy for
each orbital velocity distribution we take into ac-
count that the binding energy differs from shell to
shell. In the single-I approximation we do not con-
sider the shell structure of the atom which probably
is the reason for the unrealistically large shell

correction in the latter approximation.
At sufficiently high projectile velocities the shell

correction is given by the asymptotic expansion in

Eq. (24) and is thus independent of the mean excita-
tion energy. However, the velocity at which this is
true is much larger than the velocities normally at-
tained in stopping-power measurements. Also, our
calculations show that even at a proton energy of 35
MeV we still do not obtain quite the same shell

correction in the single-I and in the orbital approxi-
mations.

We will end the discussion with a few remarks on
the implication of the present calculation on the ex-

perimental data analysis as, e.g., pursued by Ander-
sen et al. From the experiments one obtains the
stopping number L (U) and Andersen et al. then add
the total shell correction as computed by Bonderup
or Walske ' to L (v) in order to obtain the logarith-
mic term in the Bethe formula [cf. Eq. (2) without
Barkas and Bloch corrections]. If the computed
shell correction did indeed include all velocity-
dependent terms in L (U) except for ln(mu ), the in-

C/Z2 ——ln(2mu /I) —L (u) . (36)

This follows trivially from Eqs. (4)—(8) for
2rnv & Ik. Since Eq. (36) is just the definition used
for the total shell correction in the data analysis of
Andersen et al. and of Besenbacher et al. ,

' we
conclude that the evaluation of L(U) from orbital
mean excitation energies does not deviate from the
conventional definition of C/Z2 nor does it influ-
ence the standard procedure used for extracting ex-
perimental mean excitation energies from measure-
ments of stopping cross sections.
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ferred value for I would be a constant as a function
of v. This is of course not the case. However, if I
as computed by adding the shell corrections of both
Bonderup and Walske ' seems to converge to-
wards the same value for large projectile velocity,
Andersen et al. conclude that this value of I
represents the experimental mean excitation energy.
Thus, in the data analysis only the total shell

correction is needed. Even though we compute the
total stopping number by adding up orbital contri-
butions which are computed from different orbital
mean excitation energies, we still obtain the total
shell correction from the relation
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