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The Faddeev-Yakubovsky theory is applied to the system of ( He)4 interacting pairwise
through a realistic He-He potential. The S-wave two-body t matrix is obtained using the
unitary pole expansion method, while the S-wave [3~1] and [2+2] subamplitudes are
obtained by the Hilbert-Schmidt and the energy-dependent pole expansion (EDPE)
methods. The convergences of the latter subamplitudes are tested and the superiority of
the EDPE over the Hilbert-Schmidt expansion (HSE) is confirmed. The present results
also confirm the results of a previous calculation using the ATMS method (amalgamation
of two-body correlations into the multiple-scattering process).

I. INTRODUCTION

Systems of helium atoms are of considerable in-

terest as their study may clarify the clustering
mechanism of quantum liquids. Thus, the ( He)3
trimer has been treated via ATMS-variational'
(amalgamation of two-body correlations into the
multiple-scattering process) and the Faddeev-UPE
(unitary pole expansion) methods. The resultant
ground-state energies, —0.105 and —0.087 K,
respectively, obtained assuming a realistic He-He in-

teraction, show good agreement with each other
and, incidentally, establish the accuracy of the UPE
method for the S-wave part of the interaction and
the relatively small contribution of 1+0 com-
ponents.

Recently, various extensions of Faddeev's three-

body theory to the four-, and, in general, n-body
systems have been proposed. The first was that of
Yakubovsky, later clarified by Faddeev so that the
formalism is labeled Faddeev- Yakubovsky (FY).
The second, and heuristically more appealing, is the
Alt, Grassberger, and Sandhas (AGS) formalism
which embodies the generalization of the
Lippman-Schwinger equation to the n-body system.
Among others, we mention the formalisms of
Sloan, Bencze, and Redish (SBR), and Baer, Kouri,
Levin, and Tobocman (BKLT).

Now although AGS is predated by FY, the first
explicit derivation of a single-variable integral equa-
tion and thus the first opportunity for numerical
solution, for the four-body problem was obtained

through AGS. Subsequently, Kharchenko,
Kuzmichev, and Shadchin, ' starting from FY and
using a one-term separable two-body interaction
and separable expressions for the [3 + 1] and

[2+ 2] subsystems, reduced the problem to a set of
single-variable integral equations which they solved.
Later, Narodetsky" repeated the approach of Khar-
chenko et al. but employed the Hilbert-Schmidt ex-

pansion (HSE) method to obtain separable expres-
sions for the subsystem amplitudes. Tjon' started
from a local pairwise potential, found the UPE
equivalent, then, just like Narodetsky, used the
Hilbert-Schmidt technique to solve the problem.
We did the same for the 4-a problem. ' All these
calculations were done with relevance only to the
nuclear domain. An exception is Tjon's recent work
on the ( He)4 tetramer which, however, is restricted
to simple interactions and two dimensions. ' Very
recently, Sofianos et al. ' proposed another separ-
able expansion method for the [3+ 1] and [2+ 2)
subsystems which is an analog of the UPE, but the
form factors have an energy dependence so that the
method is called the energy-dependent pole expan-
sion (EDPE) method. It was reported by them that
the convergence of the EDPE is faster than that of
the HSE in some cases of simple N-N interactions.

The purpose of this paper is to improve on Tjon's
calculation of ( He)4 by using a realistic local po-
tential and to extend his work to three dimensions.
At the same time, we are able to test the Hilbert-
Schmidt and the energy-dependent pole separable
expansion methods for the [3+ 1] and [2+ 2] sub-
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system amplitudes, by comparing with previous
ATMS-variational results. The He-He interaction
is a very resonant force in the sense that whether it
produces a bound dimer or not is yet an unresolved

problem. In the few-particle systems with such a
two-particle interaction, the higher partial-wave in-

teractions than the S-wave ones have only a small
effect. ' Thus, in our calculations we have restrict-
ed ourselves to I =0 partial waves, but we have
commented on I+0 contributions also from direct
comparison of our results with ATMS.

II. FORMALISM

Since the relevant equations forming the struc-
ture of our work are readily available elsewhere, we

present here only the barest outline of the Faddeev-
Yakubovsky equation for four bosons in the HSE
and EDPE approximations as well as the UPE one.

FIG. 1. Two kinds of Jacobi coordinates adopted in
the momentum space.
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the t matrix is also S-wave and can be written as

where a and P denote the 18 choices of Jacobi coor-
dinates in the momentum space which are illustrat-
ed in Fig. l.

In the case of a separable S-wave two-body poten-
tial

A. Faddeev- Yakubovsky equation
in the case of an S-wave

separable two-body potential

t(k, k ',z) =gg;(k)rj(z)gj(k')
4m

'

[r '(z)];J = —A,;5;J —f k'dk g;(k)gJ(k)
(3)

In the Faddeev- Yakubovsky formalism, the
bound-state wave function of a four-boson system is
written as a sum of two kinds of amplitudes l(t and where m is the mass of the particle. Then, l( and X

are written as

g(kpq)= 1
gg;(k)rj z — — AJ ( p q;z),3p 2q

z (k2+ p2+ q2) fj
4 3

(4)

g(k]c s)= 1 K S
gg, (k)r zJ——— BJ(K s;z) .

z ——(k+~+ —s) 'J]. 2. 2 & 2 .. ' '
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m 2

Here, z is to be considered as the energy of the bound state, and A and B are what satisfy

T
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where

1'j(z)= r (z)
4~ "

and X and Y, which can be seen as playing the role of effective potentials for A and B are, in turn, what satisfy

tl2

Xjj {p, p ';z) = V(( ( p, p ';z)+g fd p "V(((p, p ";z)7(( z-
ll' 4m

Y(('(K, K;Z)= Wj((K, K;Z)+g fdK Wj((K, K;Z)7(( z
ll'

Xl '(p", p', z),

Yl J (K",K',z),

(7)

where V and W are defined by

Vjj(P P 'z)=gj(
I P+P

z ——(p +p' + pp ')
m

g,'( I 0+ —,0 '
I

)

Wjj ( K, K 'Z) =gJ (K')
1

gj(K) .
z ——(K +K' )

Up to now, only the S-wave parts of X and Y are considered in the literature, so are they here:

XjJ (p, p ',z) =XJJ (p,p';z) 4'

Yjj ( K s K &Z) Yjj (K~K,'Z)
4~ '

tt2
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11' 4m

Xl (p" p'z)

Yj((K,K;Z)=Wjj(K,K;Z)+g f K dK Wj((K,K;Z)t(( Z
ll'

Yl j (K",K';z),

g, [( .p'+p'+ pp'«—)'"lgj[(p'+ .p'+pp'«)'"]—
V,, (p,p', z) =4'(r f d«—1

z ——(p +p' +pp'x)2

m

gj(K')gj (K)
WJJ (K,K;Z) =4'

Z — (K +K )
m

In such a case, Aj(p, q;z) and BJ(K, s;z) of Eq. (4) are also S wave.

B. Separable expansion of [3 + 1] and [2+ 2] subamplitudes

Several methods have been proposed to obtain a separable representation of X and Y, among which we

adopt in the present work the Hilbert-Schmidt (HSE) and the energy-dependent pole (EDPE) expansion
methods.
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(i) HSE.

In the HSE method, Iand Y are expressed as

X&i (p,p', z) =gxj"(p;z)H„(z)x&"(p', z),

FJJ'(N. ,s';z) =~J"(~;z)G„(z)yj"(a';z),

1

[g„(z)—1]N„„(z)
'

1

[g„(z)—1]M„„(z)

(10)

N„„(z)=g p dp xJ"(p;z)re z — xJ(p;z),
4m

M„„(z)=g lr dx'yj"(a;z)7&&' z ——yj"'(K;z),
0

JJ

where [g„(z),x~"(p;z)] and [g„(z),yJ(~;z)] are determined by an eigenvalue problem:

&2

xj"(p;z) =g„(z)gf p' dp'VJJ (p,p', z)7J J z —~ xj" (p', z),
'I 'll 4m

l2

yj"(rrz) =g„(z)y f ~' dK W~~ (K,K';z)T&y z —
y~ (K';z) .

)IJII m

Then, AJ ( p, q;z) and B~(~, s;z) are expressed in a separable series as

AJ.(p, q;z) =gx~" p;z — H„z — a„(q;z)Zq 2g
3m

"
3m

" '
4m

'

(12)
2

B~(lr, s;z)=~) ~;z-
2m

$2 1G„z— P„(s;z)
2m " 4n.

where a„(q;z) and P„(s;z) are determined by

a„(q;z)= g q' dq'E„„(q,q', z)H„z — a„(q',z)
0 3m

&2

+2+ f q' dq' f q" dq"F„„(q,q', z)G„z— 2q
Fn "n'(0 ', q ',z )Hn "

3m
an-(q";z),

2$
P„(s;z)=2+ s'~ds'F„„(s',s;z)H„z — a„(s',z),

E„„(q,q', z)=
2 g f dxx,"

l
—,q+q'l;z—

JJ
T

3q 3g gg „i l, 2qXr' z — — — x x"'
I

—q'+ql;z-
4m 4m 2m ' '

3m

(13)

1 22
JJ

The energy of the system is determined by the z value which satisfies the above equation for a„(q;z).
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(EV) EDPE.

In the EDPE method, X and Y are expressed as

Xjj (p,p';z) =gxj"(p;z)H„„(z)x&"' {p',z),
nn'

F&& (K,K z) =~j (K z)G«{z)pj' (K;z),

xj"(p;z)=g f p'dp'Vj, '(p, p', z)fj"(p'),
J

yz"(a ,z)=g-a' da'Wjj (rc, a';z)h&"'(s'),
0

J

[H-'(z)]„„=r„„.(z) —S„„,(z), {14)

[G '(z)]„„=L„„(z)—T„„(z),

r„„,( )=g f "p dp f p' dp'f"(p}V, (pp';z) f,", (p')
JJ

L«(z)=g f s. da a' de'hj"(x)Wjj (s,s', z)hj"' (a'),
0 0

JJ

00 32
S„„(z)=g p dp xj"(p;z)7ii z — xj" (p;z),

4m

00 KT (z) =g K dK J&j (K,z) Tgg z —'yj' (K;z),
0

JJ

where fj".(p) and h ( j)sare determined by an eigenvalue problem:

00

fj"(p)=g„gV,,' E, — f p'dp'Vj (p,p';E„)fj"-(p'),JJ 4

2

h,". (~)=g„g1,~ Ey — f K ds'Wj j (K,K';Ey )h (j')s.
JJ~ t ~ II m 0

{15)

The values of E„and E~ are chosen such that each of these equations has a solution which has an eigenvalue
of unity.

Then, Aj ( p, q;z) and Bj(a, s;z) of Eq. (4) are. expressed in a separable series as

Aj(p, q, z)=gxj" p;z — H„„z— a„(q;z)n . 2q 2q . 1

3m ""
3m " ' 4n. '

2

Bj(a,s;z}=~) .a-,z-
2m

s 1G„„z— P„(s;z}

where a„(q;z) and P„(s;z) are determined by
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a„(q;z)= g f q'2dq'
n'n"

Ir2

&& E„„(q,q', z)+2+ q" dq "F„(q,q";z)G~ ~ z — F„- (q', q";z)
2m
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~
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The energy of the system is determined by the z
value which satisfies the above equation for
a„(q;z).

C. UPE

We derive the form factors g;(k) of the separable
two-body potential from a realistic local potential
v (r) by the UPE method, as Tjon did in his calcula-
tion of He nucleus. ' To obtain a separable poten-
tial in this scheme, we must perform a Fourier
transformation from the configuration space to the
momentum space. Every realistic He-He potential
has a very strong repulsive core at small He-He dis-
tances. In such a case, it is better to transform the
form factor g;(r) than to transform the potential
v (r), for greater numerical accuracy.

Thus, the form factors g;(k) are obtained by

C6 C8 0

(r &3.6828 A),
r

(20)

where x =r/3. 024 A, a=6.12777, a=10.75 K,
c6 ——12014 A K& and c8 ——27 670 A K. We take as
1/m =12.02 KA2.

The MDD-2 potential assures a bound dimer at
energy —0.0005 K. We choose for s this ground-
state energy, so that the separable potential

1
su;(r) = —— +A,;v (r) u;(r),

m dp2

A,;f dr u;(r)v (r)u;(r) = —l . (19)

We adopt the MDD-2 (Morse dipole-dipole) poten-

tial for He-He interaction:

v(r)=E( 2ea(1 —x) 2ea(1 —x))

(0&r (3.6828 A)

2
g (k)=

' 1/2

f r drjo(kr)g;(r),
g;(k)g;(k')

v(k, k') =— (21)

gj(r) Xf v (r)u (r)

jo(x)=sinx /x,
where A,; and u; are determined by

(18)

is the same in its operation on the two-body ground
state as the original potential v (r).

To determine A,; and u;(r) (for A.;Ql), we take a
trial A,; and solve an eigenvalue problem for s, and if
the output value is the desired s, then the chosen A,;
is what we wanted. This determines u;(r) at the
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same time. This procedure is superior in numerical
accuracy to a direct solution of A,; from the corre-
sponding eigenvalue problem, because of the small
values of U (r) at larger r.

TABLE I. Two-atom UPE eigenvalues. MDD-2 po-
tential of McGee and Bruch is used. A.q and A,q denote

the attractive and repulsive eigenvalues, respectively.

III. NUMERICAL METHOD

Since the integral-equation method of solving the
four-body problem is "old stuff, " we should stress
the numerical aspects a little more to document the
differences between the molecular and nuclear ap-
plications. (We did a part of it in Sec. II C.)

Numerical solution of the Faddeev-Yakubovsky
equation for the ( He)4 system consists of three
steps:

(I} A separable expansion of the interatomic po-
tential through the UPE method, which means a
separable two-body t matrix;

(II} a separable expansion of the [3+ 1] and

[2+ 2] subamplitudes through the HSE or EDPE
methods;

(III) the solution of the four-body equation which
determines the four-body energy.

Each of these steps involves diagonalization of a
matrix of finite rank. The diagonalization is per-
formed in the configuration space in step I, while it
is performed in the momentum space in steps II and
III. We take the meshpoints for the variables by

r; =r&+c„tan —x; (step I)
2

p;=p&+cp tan x (steps I, II, III)
2

x; =(i —1)/N, i = 1,2, . . . , N

(22)

where X is the number of meshpoints. (We take
%=30, r& ——1.3 A, c,=1 A, p& ——0.0001 A ', and

cp ——1 A ' throughout the present calculation. )

This type of transformation of variables was al-

ready adopted in our previous variational calcula-
tion of the ( He)4 system. ' To represent the in-

tegration we adopt the Simpson weight.
In steps II and III, we need the values of the UPE

form factors and those of the [3+ 1] and [2+ 2]
subamplitudes at arbitrary values of the momentum
variables. Then an interpolation is necessary which
we perform by the Lagrange method of rank four.
Further, if it is possible firstly to prepare this inter-
polation in a large number of meshpoints and ap-
proximate the values of the form factors at any ar-
bitrary point by a Taylor expansion of order one,
then it saves computer time considerably. We actu-
ally do this in step II.

1

7.044
18.418

—0.000 128 846
—0.000 679 83
—0.001 673 02

To test the numerical accuracy of the present cal-
culation, we varied N and c~ of Eq. (22) (N from 20
to 30 and cp from 0.6 to 1.4 A ), and found the
resultant four-body energies are essentially un-

changed in their absolute values up to the second di-

git.

IV. RESULTS AND DISCUSSIONS

TABLE II. Behavior of the three-atom ground-state
energy with respect to the two-atom UPE. 1A +1R, for
example, denotes that one attractive and one repulsive
UPE term is retained in the calculation. In this three-
body calculation, 50 meshpoints for the momentum vari-
ables are taken.

(2A) —0.0926 K
(1A) —0.0912 K (2A +1R) —0.0883 K

(1A +1R) —0.0838 K

In Table I, we list the UPE eigenvalues for the
MDD-2 He-He potential. The extremely small

values A,~ for the repulsive UPE terms come from
the very strong short-range repulsion of the He-He
potential. From the trend of the trimer energy
(Table II) and the agreement with the results of Ref.
2, it seems that our most accurate results must be
associated with UPE =28 + 1R.

The resultant tetramer energy for each case of re-

taining various numbers of separable terms in the
two-body t matrix and the [3+ 1] and [2+ 2]
subamplitudes are listed in Table III and plotted in

Fig. 2. These results show a tendency for conver-

gence in both of HSE and EDPE, and indicate a
converged value of some 0.37 K for the tetramer
binding energy. When we compare this value with
the ATMS value 0.49 K and consider the loosely-
bound nature of small He clusters (the small con-
tributions coming from the higher partial waves
than the S-wave ones, those of the two-body in-
teraction and those of the [3+1] and [2+2]
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TABLE III. Four-atom ground-state energy obtained by retaining various numbers of
two-atom UPE and the subamplitude HSE or EDPE terms. Energies are in K, and "a"
means the attractive terms. To clarify how the four-body energy changes as we include the
higher terms of the subamplitudes, we hst the numbers to the third digit because for a fixed
condition of numerical integration, the third digit can show the trend of the energy conver-

gence (also the same for Table IV).

T(2) T(3+1) T(2+2) E4(HSE) Eg(EDPE)

la
2a
3a

la
2a
3a

—0.198
—0.380
—0.404

—0.405
—0.411
—0.413

13 +1R la
2a
3a

la
2a
3a

—0.306
—0.351
—0.355

—0.364
—0.366
—0.366

2A +1R la
2a
3a

la
2a
3a

—0.308
—0.356
—0.360

—0.371
—0.373
—0.373

1a1a 2a 2a 3a 3a

-0.2

-03-

-04-
K

a
I

I
I
i
I

l

I

1
\

a \

\

I

HSE
eEDPE

'}1A+1R
2A+1R

ATM S

FIG. 2. Convergence behaviors of the four-body en-

ergy with respect to the S-wave HSE and EDPE.
Dashed and dotted lines are drawn to guide the eye.

subamplitudes), the agreement between the two cal-
culations is good and shows the accuracies of the
HSE and EDPE in this helium molecule system.
This is the most important result of this work. The
difference between the ATMS and the Faddeev-
Yakubovsky energy is 2.6% of the potential energy
(—4.62 K).

The first attempt to test the [3+ 1] and [2+ 2]
subamplitude separable expansions was performed

by Gibson and Lehman. ' They directly solved the
two-variable integral equations for X and Y by ma-
trix inversion, and then solved the equations for the
spectator functions A and B [Eq. (5)] by an iterative

procedure. The resultant binding energies were
compared with those obtained through the Bateman
and the HSE methods. However, their value 89.6
MeV obtained for a one-term Yamaguchi triplet
NN potential (A, =0.415 fm 3, P=1.45 fm ') is
smaller than that obtained by Narodetsky through
HSE (90.10 MeV). This seems to be a contradiction
because a further inclusion of the attractive HSE
terms will increase the binding energy while the ef-
fect of including the repulsive terms is negligible.
Our code also reproduced this HSE value and we
found the numerical accuracy for this one-term
Yamaguchi potential is fairly good. Probably, the
6-point Gaussian quadrature in the angular variable
and the 12-point Gegenbauer quadrature in the
momentum variables they adopted is insufficient in
solving the two-variable integral equations. It
should be emphasized that our present confirmation
of the separable expansion methods is based on a
comparison with an ATMS calculation and on the
loose-binding characteristics of the helium mole-
cule.

From Fig. 2, we can see clearly a superiority of
the EDPE in convergence over the HSE; in the
EDPE, the value for EDPE=(1a, la) reaches 98%%uo

of the converged value for UPE=1A and larger
than 99/o for UPE=1A+1R, in contrast to the
fact that in the HSE we need at least three attrac-
tive terms for each of the [3 + 1] and [2+ 2] sub-
systems [(3a,3a)] to estimate the converged value.
This advantage amounts to a reduction of computer
time by 15 to 20 times. The faster convergence of
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I
I

1

1

I

I
I
1
'I y
\

'I

7g(&)

TABLE IV. Separate convergence behavior with

respect to the [3+1] and [2+2] subamplitudes. See
the text.

[3+ 1] behavior [2+ 2] behavior

Z
0 -0.1 -0.2 -0.3 -0.4 K

FIG. 3. Behavior of the Lagrange multiplier g4(z)
which is introduced, in numerical calculation, on the
right-hand side of the first equation in Eq. (13), with

respect to trial four-body energy z.

la
2a
30

—0.306
—0.319
—0.321

—0.306
—0.338
—0.343

EDPE was already pointed out by Sofianos et al.
for cases of one-term Yamaguchi potentials. The
significance of the present result lies in the fact that
this feature is much enhanced in this helium mole-
cule system.

It should also be noted that the convergence gets
better in both of the HSE and EDPE when we in-

clude the repulsive terms in the two-body t matrix.
To clarify this, we plot in Fig. 3 the values of the
Lagrange multiplier g4 introduced in the right-hand
side of Eq. (4) to convert the equation into a form
of matrix diagonalization which is performed by
taking a trial z. When g4 ——1, the trial z is
representing the four-body energy E4. We see that
there appear two kinds of g4(z) in Fig. 3 for
UPE= la: "physical" ones and "unphysical" ones,
the htter being quite insensitive to the variation of
z. This shows that the four-body kernel obtained by
UPE= 1A will involve an unphysical part. The un-

physical r14(z) disappear when we consider the first
repulsive term in the two-body t matrix.

Table IV shows separate convergence behaviors
of the HS [3 + 1]- and [2+ 2]-separable expansions
coupled with UPE = 1A + 1R. In the second
column we fix the [2+ 2] amplitude to la and in-

crease the [3 + 1] attractive terms, while we fix the
[3 + 1] amplitude to la and increase the [2+2] at-
tractive terms in the third column. We see that the
effect of including higher [2+2] terms is larger
than that of including higher [3+ 1) terms. The
importance of the [2+ 2) subsystem amplitude is
also realized in Gibson and Lehman's calculations. '

Finally, we mention that we could not find an ex-
cited state below the [3+ 1] threshold. This does
not imply that such states do not exist; they may lie

too close to the threshold to be "pulled out" for
view.

V. CONCLUSION

The most important conclusion drawn from this
work is that we could show the accuracy of the
HSE and EDPE methods for the S-wave [3+ 1]
and [2+ 2] subamplitudes. This is made possible

by a comparison with an ATMS calculation and the
loose-binding nature of the helium molecule. We
found, however, the convergence rate of the HSE is
rather slow, requiring much computer time, while
that of the EDPE is clearly faster and one term for
each of the [3 + 1] and [2+ 2] subsystems is suffi-
cient in this helium molecule system. The present
calculation is the first calculation using the EDPE
in the case of realistic force, in particular, with in-
clusion of a strong short-range repulsion in the
two-body interaction, and encourages the use of this
expansion in other He molecule problems. With the
EDPE and perhaps the separable expansion for
subamplitudes suggested by Casel et al. ,

' ' calcu-
lations in the scattering domain should become
more accessible.
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