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We calculate the energy spectrum of electrons detached from 0.5-MeV negative hydrogen
jons in collision with helium targets using the plane-wave Born approximation. Three
different models for continuum states of H~ are used to calculate electron-detachment
doubly differential cross sections. The first model uses a single exponential function for the
loosely bound electron of H™ and a plane wave for the detached electron. The second
model is similar to the first one, but the final state is Gram-Schmidt orthogonalized. The
third model includes the s-wave phase shifts obtained from Schwinger’s variational
principle. These phase shifts incorporate the radial correlations which are essential for the
study of such low-energy continuum electrons. The doubly differential cross section
obtained by the second and third models have a double-peak structure. These peaks are at
energies different from the ones measured by Menendez and Duncan. Based on this
calculation we observe that the ejected electrons are sensitive to the s-wave phase shifts and
electron-electron correlations. This observation rejects the use of plane-wave models for
the detached electrons and indicates the need for more accurate wave functions which
incorporate radial and angular correlations.
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I. INTRODUCTION

Recently Menendez and Duncan' (MD) in a
series of experiments explored the stripping of 0.5-
MeV H™ and D~ ions by He. They measured the
energy distribution of doubly differential cross sec-
tions for detached electrons at several laboratory
angles of ejected electrons 6;. These experiments
exhibit a sharp cusplike peak near 6; ~0° with a
shoulder on the low-energy side in the electron ener-
gy spectra. The sharp peak occurs at energies
where the velocity of the detached electrons in the
frame in which the H™ is at rest, hereafter referred
to as the projectile frame, is close to zero. This
peak diminishes as 6; increases and is not visible
for 6; greater than a few degrees, whereas the
lower-energy peak persists for larger 6;. These ex-
periments do not discriminate between detachment
processes with He or H in different final states.

Upon transforming the doubly differential
electron-detachment cross sections near the forward
direction from the laboratory to the H™ frame we
find that the energy of the observed electrons can be
as low as 7 meV, even lower than the 18-meV elec-
trons emitted in the decay of the !P shape reso-
nance.>* In this small energy range, 7 meV to 0.1
eV, the transition form factor of the negative hy-
drogen ion has some interesting structure. The pur-
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pose of this paper is to investigate the origin of such
structures. One possible origin is the low-energy s-
wave phase shift. By Levinson’s theorem, this shift
equals 7 at zero energy and decreases as electron en-
ergy increases. This shift in phase of the s-wave
function give rise to destructive interference with
higher partial waves resulting in structure in the
ionization matrix elements. It is remarkable that
this structure appears at an energy as low as 10
meV for the ejected electron in the H™ frame.
Another possible origin of the structures in the
form factors of H™ is the effect of the !P shape res-
onance of H™ in the detachment processes. We will
also briefly discuss the effect of the polarization of
the target atoms.

In the energy range of interest, the final s-wave
function of the e + H system is sensitive to the elec-
tron correlations. Accurate H™ wave functions in-
corporate radial and angular correlations, with the
radial correlations being the most important. Thus
MD’s experiments provide an opportunity to test
the sensitivity of the continuum H™ structure to
electron correlations. In the context of plane-wave
Born approximation we investigate the sensitivity of
the electron spectra to radial correlations. We cal-
culate the energy and angular distribution of doubly
differential cross sections for the detached electrons
in the collision of 0.5-MeV H~ with He, irrespec-
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tive of the final excited state of He.

To see the relative importance of radial correla-
tions we consider three different sets of wave func-
tions for the H™ bound state and the adjoining con-
tinuum. Firstly, we consider a simple independent-
particle ground-state function for H~ and a plane
wave for the outgoing electron. Clearly this set of
wave functions does not represent the system accu-
rately because the s-wave component of the very
low-energy ejected electrons has a phase shift 6y~
rather than the §,=0° of the plane wave. For the
same reason our second choice, i.e., the first set of
functions but with the plane-wave Gram-Schmidt
orthogonalized to the ground-state wave function, is
also not a good alternative. In this case s-wave
phase shift is also 0°. Frantz, Wright, and Genoni*
used the plane-wave orthogonalized wave functions
and calculated the electron-detachment doubly dif-
ferential cross sections around the forward direction
for 0.5-MeV H™ on He. They found good agree-
ment with the experimental results of MD. We also
find two peaks using this second set of wave func-
tions, nevertheless orthogonalized plane-wave func-
tions do not represent the low-energy ejected elec-
trons properly. Finally, for the third set we use
Schwinger’s variational wave functions® for the
bound state of H™ and the s wave of the detached
electron. These wave functions are obtained from
one-channel close-coupling equations (with ex-
change) by Schwinger’s variational method.
Schwinger’s variational phase shifts are equal to the
close-coupling phase shifts>® within 0.1% (see Fig.
1). Our wave functions are orthogonal, to a good
approximation, and incorporate radial correlations
through a qualitatively correct low-energy s-wave
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FIG. 1. Triplet (a) and singlet state (b) (static-
exchange) phase shifts for electrons in the continuum of
hydrogen atoms vs electron energy. Solid curves
represent the values obtained by Schwinger’s variational
principle and circles are the values obtained by solving
close-coupling equations numerically.

phase shift.

In Sec. II we review the relevant first Born-
approximation formula. In Sec. III we list the
Hartree-Fock wave functions of the He ground
state, and outline the derivation of Schwinger’s vari-
ational wave functions and phase shifts for the H™
system. The results are examined in Sec. IV where
we study the projectile and target form factors and
the electron-detachment doubly differential cross
sections. We find that stripping processes which
leave the He in an excited state contribute 99% of
the doubly differential cross section for these low-
energy electrons. Atomic units will be used
throughout unless otherwise specified.

II. REVIEW OF FIRST
BORN-APPROXIMATION FORMULA

When an incident atomic system “P* (projectile)
with np electrons and nucleus of charge Zp under-
goes a fast collision with an atomic system “T”
with np electrons and nucleus of charge Z, the
doubly differential cross section (DDCS) for elec-
tron detachment in the first Born approximation is’

u?

4r?

xJ

where p is the reduced mass of the system, ¥V is the
interaction potential between P and T, dQ and dw
are, respectively, the solid angles of scattered pro-
jectile and the ejected electron, k is the momentum
of the detached electron in any inertial frame, ff
and k; are, respectively, final and initial momentum
of the projectile, and W, and W; are, respectively,
the final and initial wave functions of the system.
Equation (1) can be written as

do
k2dk dw

(| V|9 |24, ()

kg
k;

do .
dodE ~

k
4ar 2o}

T Kmax
[T L 10w VW) K dK dp

)
where v; is the relative velocity of the projectile and
K=Kk,—k; 3)

is the momentum transfer, ¢ is the azimuthal angle
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of Ef in a frame with k; along the z axis and E is
the energy of the ejected electron. Since the DDCS
given by Eq. (1) is invariant under Galilean
transformations parallel to E,-, it holds in any frame
which has undergone such a transformation. We
shall refer to d’0/dk® of Eq. (1) as the Galilean-
invariant DDCS. Thus to write Eq. (2) in the labo-
ratory frame, one needs to express w and E on the
left-hand side and k from the right-hand side in
terms of variables given in the laboratory frame,
ie, to wy, and E; and k;, respectively. It follows
from Galilean invariance that

_ k| _do
dE do

do
dE dw

) )
proj

lab kP

where EP is the momentum of the electron in the
projectile frame. The laboratory cross section ap-
pears singular as the electron momentum kp ap-
proaches zero; however, the normalization of the
final-state wave function of the detached electron
cancels kp from the denominator of the right-hand
side of Eq. (4). In the case of electron detachment
from neutrals and positive ions the singularity is
not canceled and the cross section in the laboratory
frame, given by Eq. (4), becomes infinite.

Since our objective is to relate electron distribu-
tions to the structure of low-energy H™ continuum

In the case of electron detachment from H™ in col-
lision with He, in the H™ frame, the target (He) has
an initial velocity of —V;, and initial and final
momentum —k; and — Ef, respectively. The
initial- and final-state wave functions of the system
in the plane-wave Born approximation are

—
- - ik

— - B i'i’ - - - —
Vi(p1,p1;T1,TsR)=e $:(p1,P2Y:(T1, 1), (5)

and

S g - 3,
VA(pLpuTL TR = /7 ¢4(51, PP T, F)

(6)
where the subscripts i and f refer to initial and final
state, respectively. W(r’;,T,) is the wave function of

H™ with electron coordinate ; and T, in the H™
frame and ¢ (p,p>) is the wave function of He with
electrons at p; and p in the He frame. The transi-
tion form factors for H™ and He are given by

K= 1 T Ty, @)

eil;e(K):((ﬁfl(e—iK'?1+e—iK'?2)|¢i> .

(8)
When the He is left in the ground state

H~(1s%)+He(1s*)—H(1s)+e ~+He(1s?) ,

functions it is desirable to study the distribution of (9)
the detached electrons in the H™ projectile frame.8| we have’
do o (27 pKime g, He 24K
dE do =(4k/l), ) fO lemin |€if l Iz’—EOO K3 d‘PHe ’ (10)
[
where where
Kl =k1f+k, K] 3 =k1f—k Py (11)
max 1 min 1 K2 max =k2f+ki )

ks is the final momentum of the projectile, I S X PEIR, r
the ionization potential of H™ and k denotes the 2min =[k" 420 +T3e)]/ 20, 14

momentum of the detached electron in the H™
frame. The sum of all processes in which the target
is excited or ionized, i.e.,

H(1s?)+He(1s?)—H(1s)+e~ +He* (12)

is approximately given by’

do 2
=Y (4 :
JE d (4k /v;)

2 KZmax H— He | 2
Wil e CRLTRET

dK
X Fdfpae , (13)

ks is the final momentum of the projectile, and Iy,
is the average excitation energy of He.

III. WAVE FUNCTIONS

In the collision of 0.5-MeV H~ with He the
electron-detachment doubly differential cross sec-
tion is not very sensitive to the wave functions of
He. In the last section we showed that for processes
leaving He in an excited state the doubly differen-
tial cross section can be written in terms of the
form factors of H™ and He in its ground state. We
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will use Hartree-Fock wave functions'®

6T (F1,P2) =A(B1A,) (15)
for the helium ground state. In Eq. (13)

AF)=(a1e " +bre ") Yo(p) (16)
with

a,=2.60505, a,=1.41,

b, =2.08144, b,=2.61.

(17)

This wave function is sufficiently accurate for the
processes under investigation. Conversely, wave
functions of H™ are very crucial to the calculation
of electron-detachment DDCS in the energy range
of interest. We use

¢x(?17?2)=[¢1s(i?1 )¢g(?2)+¢ls(?2)¢g(?1)]/N (18)

for the initial H~ wave function and

YT, T =[$1(FDP T (T2 +1(H)Y T (F)1/V2
(19)

for the final e~ 4+ H wave functions, where ¢, is
the ground-state hydrogen wave function, ¥, is the
H~ bound-state wave function, N is a normaliza-
tion constant and ¥ is the wave function of the
ejected electron with energy E =k?/2.

To investigate radial correlations we choose three
different ), and ¢ . First we use''

wg(r)Ze —0.28r (20)
and
Y (P =2m) 2% E T e
& 1U+) , | sr
dr%—_ r% —W(r1)+k F,(rl)-i 2041

1
> <
0 I+1
r>
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These functions incorporate no electron correla-
tions. Frantz, Wright, and Genoni* applied the
Gram-Schmidt orthogonalization procedure to this
set of wave functions and calculated electron-
detachment DDCS for process (12). We used these
orthogonalized plane-wave functions for our second
set of wave functions. These functions also do not
include any electron correlation, but are orthogonal.
Next we use a partial-wave expansion of ¢/, i.e.,

Yo (H)=2m)=2 S (21 + Dexplis)
1=0

X (i)'uy(r)Py(cosh) . (22)

Since §;~0 for I5£0 for very low-energy electrons,
we approximated

u(r)=j(kr), 1>0 (23)

where j;(kr) is a spherical Bessel function of Ith or-
der. Equations (22) and (23) give

Y2 (F)=m"1(2) 7 2exp( — i8¢ )uo(r) Yoo (F)
—7 N 2) V2o (kr) Y go(F)
+2m) 2 KT (24)

which is normalized per unit momentum. In Egq.
(24) 8, is the s-wave phase shift and uy(7) is the s-
wave function with the radial correlation incor-
porated. To obtain a reliable closed-form expres-
sion for uy we use Schwinger’s variational principle.
These wave functions, to a good approximation, are
equal to the ones obtained by numerical integration
of the close-coupling equations.’

Equation (L65) of Ref. 12, the integro-differential
equation for the scattering of electrons by hydrogen
atoms in the Hartree-Fock approximation, reads'?

Fi(ry)¢ 15(ry)rydr,

—4r(1+kD811+k) [ Filr))islryradry [ rigu(r),  @25)

where 8, is the Kronecker delta function and
W(r)=—2(1+1/r)e % .

Equation (25) has the operator form
(h—E)|F)=—V|F),

where

(26)

27N
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h,=—~;~ ;—,,22_1(1;1) , (28)
E=k%/2, (29)
and
1 8 "l< 2 1 | -2,
V(rl,r2)=i3 41 F¢ls(r2)—4n(1+k )b 15(73)8y0 | 15(ry) — 1+72- e 8(ri—ry). (30)

Schwinger’s variational phase shifts and wave
functions for the e ~ + H system are given by>®

k cotd; = —(F, | (V+VGEV) | E) /| (F | V| f) |2,
31)
lup)= | ;) +tan(8)GPV | F) /(F, |V | f1) .
(32)

The wave function for the bound state of H™, i.e.,
Y, is
|¢g>=_GbVlFt>, (33)

where G” is the principal part of the free Green’s
function

fitr)=jikr), (34)

and G, is the analytical continuation of G to the
negative-energy region, i.e., where x?/2 is the ioni-
zation potential of H™.

In Egs. (31), (32), and (33) F,’s are trial functions
which are only required to be accurate in the region
where V=40 (Ref. 6); when one trial function (for
1=0),

F(r)=e~%, b=0.47, 35)

is used, good agreement with the results of numeri-
cal integration of Eq. (25) is achieved, as shown in
Fig. 1.

The s-wave phase shifts obtained by this varia-
tional method are accurately given by the effective-
range formula

ro

kcotﬁoz—%ﬂ- K. (36)

The scattering length a and effective range r( are
found to be

a=8.06, ry=3.02. 37)

We have used these values of a and 7, to obtain
k2=0.028 a.u. for the bound-state energy of H™.
These results agree within 0.1% with those obtained

[
by direct numerical integration of Eq. (25).>12

Our explicit expression for the continuum s-wave
function, Eq. (32), and the bound-state wave func-
tion of H™, Eq. (33), are given by

uo(r)= (kr)~lsin(kr +8,)
+k ~1sin8yPE(r) (38)
and
tﬁg(r):r'le =1 P%r) , (39)
where

P(r)=—rlexp[ — (b +2)r]

+afexp[ —(b +2)r]+aSe™" (40)
and
Pi(r)=—rlexp[ — (b +2)r]
+abexp[ —(b +2)r]+ade— . (41)
The coefficients in P*(r) and PY(r) are
ab=-0.4884, a%=—1.3097 42)
and

a$=-—0.4893—0.0318k2 ,

[4

1
43
a$=—1.3184—0.1k?, “3)

to order k*.

Equations (42) and (43) indicate that P%r) and
P<(r) for most practical purposes can be considered
equal for k><0.1 a.u. Equation (38) for uy(r) is
designed so that the incoming electron wave has
correct asymptotic behavior, that is,

ug(r) ~ (kr)~'sin(kr +8,) . (44)
r— o

The wave functions evaluated by this method are
also in good agreement with the ones obtained by
numerical integration of Eq. (25). Clearly the initial
state of H™ and the final state of the e + H system
constructed from' the exact numerical functions are
orthogonal. Thus the agreement between the
Schwinger’s variational and the numerical wave



function establishes, to a good approximation, the
orthogonality of our initial and final states. These
wave functions do not, however, take into account
any angular correlations. We used the three sets of
wave functions, given in this section, to investigate
electron-detachment DDCS from 0.5-MeV H™ in
the collision with He. Such processes are studied in
the next section, first by considering H™ and He
form factors as a function of momentum transfer
and then examining the sensitivity of DDCS to s-
wave phase shifts.

IV. RESULTS

In this section we evaluate the target transition
form factors and show that DDCS for process (12)
overwhelms the contribution from process (9).
Then we study H™ form factors and electron-
detachment DDCS evaluated using the three dif-
ferent sets of H~ wave functions discussed in Sec.
IIL

We have evaluated the DDCS using Egs. (10) and
(13) and find that processes in which the He is ex-
cited [Eq. (12)] dominate in the energy region of in-
terest. To see how this arises note that Egs. (10)
and (13) suggest that for the low-energy detached
electrons the ratio

Rr=(Z3— |k |/ | Zr—edy|? (45)

is a measure of the relative contribution to electron
detachment DDCS from processes leaving the tar-
get in the ground state as compared to processes
leaving the target in any excited state. In the case
of the He atom as target we use Hartree-Fock wave
functions given by Eq. (15) for calculation of ef.
Simple integration leads to

4(12(11 4b2b1
(4a3+K??  (4b3+K?)?
401b](02+b2)
[(a;+b,)+K*)

el (K)=2

(46)

For all values of K this form is in excellent agree-
ment with the form factor obtained from the 20-
term Hylleras wave function.!* Since K is small we
expand €& around zero momentum transfer and re-
tain only the terms up to K2 order;

€H(K)~Zr—CK?, 47

where C is a constant which depends on the target,
for example, for hydrogen C=0.5 and for helium
C=0.3946. Substitution of €k from Eq. (47) into
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FIG. 2. J(K) vs InK in the laboratory frame with ini-
tial and final states of H™ constructed by Schwinger’s
variational s-wave functions. Area under the curve is the
DDCS for electron detachment from 0.5-MeV H™ in the
collision with He for 68; =0.3° and k; =4.43 a.u.

Eq. (45) gives
Ry=2Z;/CK? (48)

which is a large number in the region of small
momentum transfer.

Since Ry >>1 we calculate DDCS using Eq. (13).
This equation can be put into a more convenient
form by substitution of i from Eq. (47); we ob-
tain

T~ do S 1 P e
- I::‘:‘J(K)d[ln(x)], 49)
where
J(K)= 1i1§c NGRS (50)
i

In Fig. 2 J(K) is plotted versus InK for k; =4.43

300

HYDROGEN-ION FORM FACTOR

0

Klau) .
FIG. 3. €& vs K, where jo(kr) and e %" are used
for ¢y and ¥ ;. Solid, dashed, and dot-dashed curves are
for k=0.05, 0.1, and 0.2 a.u., respectively.
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FIG. 4. €b) vs K, where jo(kr) and e 2% are used
for ¥ ¢ and 4, with ¢, and ¢; Gram-Schmidt orthogo-
nalized. (See caption of Fig. 3 for identification of
curves.)

using the third set of wave functions. The area
under this curve gives the DDCS for process leav-
ing the target in an excited state. Note that since
InK,,;, is of the order of —1.6 where J(K) is
small, the integral in Eq. (50) is insensitive to the
lower limit of integration.

Figures 3—13 contain the plots of H~ form fac-
tors and DDCS for 0.5-MeV H~ 1s? on the He 1s?
target. In order to clarify the importance of the s-
wave phase shifts we also use jy(kr) for u, and
e~ %% for ¢,. The corresponding form factors
€w (K) are plotted in Fig. 3. The large value at
K=0 suggests the need for better ¢, ¥, and the
orthogonality of ¢; and ;. With the Gram-
Schmidt-orthogonalized final free s-wave function,
the s-wave form factor as shown in Fig. 4 improves
significantly for low momentum transfer and small
electron energies, but it goes through two zeros for
higher electron energies. The zeros in the form fac-
tors are due to the orthogonalization and have no
apparent physical basis.

Figure 5 shows the s-wave form factors obtained
using Schwinger’s variational functions for 4, and
Y. the approximate orthogonality of 1; and ¢ is
apparent from Fig. 5. Comparison of Figs. 4 and 5

HYDROGEN-ION FORM FACTOR

2
Klau)

FIG. 5. s-wave €& plotted vs K, where Schwinger’s
s-wave functions given in Sec. II are used for ¢, and ¥ 7.
(See caption of Fig. 3 for identification of curves.)

FIG. 6. Galilean-invariant DDCS in the projectile
frame vs k and 6, with $7=027)"%*7 and
g =e %%, Solid and dashed curves on the surface sam-
ple electron energies from the laboratory frame for
6, =0.3° and 1.5°, respectively.

indicates distinct differences due to incorporation of
radial correlation through the s-wave phase shifts
by Schwinger’s variational functions. The s-wave
form factors obtained by Schwinger’s variational
functions differ in sign from those obtained using
the orthogonalization procedure. This difference in
sign is partially compensated by the exp(—i8,) fac-
tor in the partial-wave expansion given by Eq. (24).
These more accurate form factors are sharply
peaked, concentrated near smaller K, and are
smooth functions of electron energy in contrast to
those of Fig. 4.

To see the importance of the other partial waves
relative to the s-wave we include higher partial
waves as in Eq. (24). Using this set of wave func-
tions we calculated

- 2 — 172
(€8 (K)),, = [fo ledo |’dpuc| /27 (5D

which is the H™ form factor averaged over the az-
imuthal angle of the projectile. We find that al-

180

90
[} \deﬂ

FIG. 7. Galilean-invariant DDCS in the projectile
frame vs k and 6 with ¥ =027)"¥%*T and
Yy =e 02" where 1y and ¢; are Gram-Schmidt orthogo-
nalized. (See caption of Fig. 6 for identification of the
solid and dashed curves.)
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FIG. 8. Galilean-invariant DDCS in the projectile
frame vs k and 6, where Schwinger’s s-wave functions
are used for 1, and in partial-wave expansion of ¢ .
(See caption of Fig. 6 for identification of the solid and
dashed curves.)

though the s wave is the most important partial
wave in this calculation, the contribution due to the
higher partial waves is not negligible. Because the
higher-partial-wave phase shifts can be practically
set equal to zero, our results imply that the electron
radial correlations are adequately incorporated
through phase-shifted s waves for small electron en-
ergies.

Figure 6—8 show the Galilean-invariant DDCS
for electron detachment versus k and 6 in the H™
frame where 0 is the electron-gjection angle in the
H~ frame, that is, the angle between K and —V.
From

K. =K+7V; (52)

DDCS (a.u)
T

DDCS (au)

0 TN
100 200 300 400
ELECTRON ENERGY (eV)

FIG. 9. Laboratory-frame DDCS for electron detach-
ment of H™ vs detached-electron energies with the
plane-wave model. Parts (a) and (b) are for 6, =0.3° and
1.5°, respectively. Solid curves are the results of this cal-
culation and the dashed curves are experimental results
of Menendez and Duncan.

340
R4
8 L
Q20
o
)
(b
=S o
397 6.=15
8 i /"'/\\
8 20 / \
/ \
- y, \
17 1 NSy

0
100 200 300 400
ELECTRON ENERGY (eV)

FIG. 10. Same as Fig. 9, but the final plane-wave
function is Gram-Schmidt orthogonalized to the initial
state.

k?=k} +v?—2k v;cos6y (53)
and
cos@ =(ky cosO; —v;)/k . (54)

At fixed ejection angle, say 6; =0.3 or 1.5, the elec-
tron energy in the laboratory frame %k,? samples
the two-dimensional surface of Figs. 6—8 at a series
of points along a curve determined by Egs. (53) and
(54). The solid and dashed curves trace the labora-
tory electron energies for 8; =0.3° and 1.5°, respec-
tively. The peak in the laboratory frame occurs at
those points along the curves where DDCS goes
through a maxima.

For Fig. 6 we use the first set of wave functions
given in Sec. III. It is clear that the first approxi-
mation gives only one maximum which corresponds

n
(o]

DDCS (a.u)
e
T

[e]

n
o
T

DDCS (au)
o
T

o]
100 200 300 400
ELECTRON ENERGY (eV)

FIG. 11. Laboratory-frame DDCS for electron de-
tachment of H~ vs detached-electron energies, with
Schwinger’s variational s-wave functions used for 1, and
in partial-wave expansion of 3 . Parts (a) and (b) are,
respectively, for 6, =0.3° and 1.5°. (See caption of Fig. 9
for identification of the solid and dashed curves.)
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FIG. 12. Laboratory-frame 'P shape resonance cross
section of H™ vs electron energies in the laboratory
frame. Solid curve for 6;=0.3°, dashed curve for
6, =0.45° and dot-dashed curve for 8, =0.85".

to the smallest electron velocity V,=4.47 a.u. in
the H™ frame. Figure 7 has an extra maximum due
to the orthogonalization of the second set of wave
functions, which has no apparent physical basis.
For the results in Fig. 8, the third set of wave func-
tions are used, that is, incorporated the Schwinger’s
variational s-wave functions in a partial-wave ex-
pansion of ¢ for the ejected electron. This figure
shows a double-peak structure in DDCS which cor-
responds to a double peak in the laboratory frame at
electron energies of 262 and 295 eV for 6, =0.3°
and 1.5°.

Figures 9—11 show the DDCS versus detached
electron energies in the laboratory frame at 6; =0.3°
and 1.5°. For comparison, the experimental results
of Menendez and Duncan! are also plotted. These
data are scaled to have the same order of magnitude
as the calculated DDCS. Figure 9 is obtained by
the first set of wave functions. This figure has only
one maximum, as predicted by Fig. 6, in disagree-
ment with the experimental results. The maximum
occurs approximately at the electron-projectile velo-
city matching point, i.e., vg =~v; =4.47 a.u.

With the second set of wave functions the calcu-
lated DDCS in Fig. 10 has peaks at 250 and 274 eV
as shown by the experiments and the calculation of
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FIG. 13. Laboratory-frame DDCS for electron de-
tachment of H™ vs detached-electron energy with 8, =4°
and I7=0, 15, and 20 eV. Schwinger’s variational s-
wave functions are used for ¥, and in a partial-wave ex-
pansion of ¢ 2.

Franz, Wright, and Genoni.* This apparently for-
tuitous agreement is due to destructive interference
between the s-wave component and the higher-
partial-wave components of the transition form fac-
tor of H™. The physical basis of such interference
is the phase shift of the s partial wave which is con-
sistently treated with the third set of wave func-
tions. The DDCS of Fig. 11 are obtained using this
set of wave functions. They have a double-peak
structure as predicted by Fig. 8; however, the posi-
tion of the peaks (244 and 278 eV for 6, =0.3°, 246,
and 278 eV for 6; =1.5°) are not in agreement with
experiment and their magnitudes do not have the
same sensitivity to 8, as in the experiments. These
results are very sensitive to the s-wave phase shifts
which incorporate radial correlations only. Thus
the forward-angle DDCS could provide a sensitive
test of the electron-electron correlations for loosely
bound system such as H™. In the rest of this sec-
tion we will discuss two additional factors which
may affect the magnitude and the positions of the
maxima in DDCS, that is, the decay of the !P shape
resonance of H™ and the polarizability of the target
atom.

Our results in Fig. 11 do not show a sharp peak
at 0.3° which disappears at 1.5°, in contrast to the
experimental results. Furthermore, the minimum
between the peaks in experimental curves is much
less pronounced than in any of the calculations. We
have noted, however, that the electron energy in the
H~ frame is as low as 7 meV for 6; =0.3°, which is
lower than the energy of 18-meV electrons from the
decay of the doubly excited 'P shape resonance of
H~. This resonance could contribute to DDCS at
0.3° but not at 1.5°. We investigate its contribution
phenomenologically by using the Breit-Wigner for-
mula to model the resonance contribution. We have
in the H™ frame

rs2
(E—E,?+(T /27’
where E is the electron energy in H frame, I', and
E, are, respectively, resonance width and energy,
with®3 values E, =18 meV and I', =85.4 meV. We
have actually taken I', =k >y, where ¥ is a constant
in accord with the argument of Macek.? The re-
sults are plotted versus electron energy in the labo-
ratory frame in Fig. 12 for 6; =0.3°, 0.45°, and
0.85°. For 0; =0.3° there is a double peak around
270 eV but when 6, is increased by 0.15°, do has
one single peak. As O increases, this peak, which
is at 272 eV, vanishes. More precisely the resonance
disappears at about 6; =0.85°. Comparison of Fig.
12 with the experimental data in Figs. 9— 11 shows

o(E) < (55)



26 DOUBLY DIFFERENTIAL CROSS SECTION FOR ELECTRON. .. 3207

that the behavior of the resonance cross section is
similar to the behavior of the sharp peak at 272 eV
in the experimental DDCS for electron detachment.
This suggests the possibility of a !P shape resonance
contributiori in the electron-detachment processes.
Since the P resonance decays predominantly to the
n=2 state of hydrogen, detection of the secondary
electrons in coincidence with Lyman-a photons
would provide a more definitive test of this hy-
pothesis.

In Fig. 11 the slopes of the low-energy shoulder
of DDCS are different from the slopes predicted by
the experiments. Since this laboratory energy re-
gion corresponds to k2> 0.09 a.u. where the p-wave
phase shifts become important,'? the disagreement
may be due to the absence of p-wave phase shifts in
our calculation.

The angular distribution of the detached electron
from H™ in the collison with Ar or He at large an-
gle can be approximated by the angular distribution
of elastic scattering of electrons from Ar or He.!*
Here, the polarization of the target affects the
scattered-electron distribution in the forward direc-
tion.> Hence, the dynamic dipole interaction in de-
tachment collisions of H™ from He influences the
angular distribution of the ejected electrons. Some
evidence for this is provided by the observation of a
target dependence in the DDCS for H™ stripping.
We have seen that the DDCS is almost independent
of the target structure except through K, ;, which
depends on the average ionization energy It of the
target. To examine this dependence we have calcu-
lated the DDCS at 8; =4° for I;=0, 15, and 20 eV.
We see in Fig. 13 that the peak shifts toward higher
energies as I decreases. Now I1=0 corresponds to
stripping by a target with a permanent dipole mo-
ment, thus a peak shift may indicate the influence
of an induced dipole moment in the target. Such an
effect is not incorporated in the first Born approxi-
mation considered here.

V. CONCLUSIONS

In the context of the plane-wave Born approxi-
mation three models for e ~ + H system are used to

calculate electron-detachment DDCS from 0.5-MeV
H™ in collision with He. The first two models,
namely, plane waves and orthogonalized plane
waves for the detached electron are not satisfactory
due to the very low energy of the detached elec-
trons. Our third choice of the e~ +H wave func-
tion incorporates radial correlations through the s-
wave functions of the detached electrons, which are
obtained by Schwinger’s variational principle. An-
gular correlations are neglected in this calculation.
The DDCS obtained by the third set of wave func-
tions are sensitive to the s-wave phase shifts and
have the double-peak structure. These peaks do not
have the same sensitivity to 8; as in the experi-
ments of Menendez and Duncan and their positions
do not agree with experiments. These results also
show that, although the s waves are the most im-
portant for such calculations, the effect of other
partial waves is not negligible; our calculations sug-
gest the need for a more accurate set of e + H wave
functions, that is, wave functions which treat angu-
lar correlations as well.

Independent of projectile structure we showed
that the excitation of the target has an overwhelm-
ing effect on the magnitude of the DDCS’s in the
detached-electron energy region under considera-
tion. Since the polarization of the He in the detach-
ment process is not negligible, the dynamic dipole
interaction may influence the angular distribution
of the detached electrons and could enhance pro-
cesses in which the target is left in the ground state.
We have also examined the contribution of the 'P
shape resonance of H™ phenomenologically. The
peak in the DDCS for this resonance vanishes by
increasing the laboratory detection angle of the de-
tached electron. This behavior is similar to the
behavior of the large peak in Menendez and
Duncan’s experimental results.
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