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Distorted eikonal cross sections: A time-dependent view
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For Hamiltonians with two potentials, differential cross sections are written as time-

correlation functions of reference and distorted transition operators. Distorted eikonal dif-
ferential cross sections are defined in terms of straight-line and reference classical trajec-
tories. Both elastic and inelastic results are obtained. Expressions for the inelastic cross
sections are presented in terms of tine-ordered cosine and sine memory functions through
the use of the Zwanzig-Feshbach projection-operator method.

I. INTRODUCTION

Eikonal theory' 'o of binary scattering is usually

presented from a time-independent viewpoint. Re-
cently, an alternate time-dependent description"
has been used to rederive elastic eikonal cross sec-
tions. ' Using time-dependent' ' solutions of the
Zwanzig-Feshbach' ' projection-operator method
inelastic eikonal cross sections have been obtained'
which differ from the standard time-independent
treatment. " Straight-line trajectories appear as a
common feature in these eikonal approximations.
However, distortions from linearity occur during a
collision and are expected to play an important role.
Thus it is desirable to build some distortion into the
trajectories. One way of doing so"' is to intro-
duce reference classical trajectories associated with

a reference Hamiltonian. This necessitates a two-
potential formulation for the appropriate cross sec-
tions in terms of distorted collision operators. "
Such a time-dependent description is presented in
this paper.

In Sec. II distorted inelastic cross sections are de-
fined in terms of time-correlation functions. Eikon-
al approximations are defined in Sec. III while ex-
plicit results for elastic scattering are presented in
Sec. IV. Explicit inelastic results are given in Sec.
V in terms of cosine and sine memory functions.

II. TIME-CORRELATION FUNCTIONS

The generalized cross section' '

mrs..(IP"~«)=Trl ln R)&n R
I j( —i~)l

I
I p")(lych'~p")&I'p"

I 1

I

(2.l)

is a convenient starting point for obtaining time-
correlation-function expressions for the differential
cross section. It involves a plane-wave density

~

I;p")(ph /p")( I;p"
~

which is transformed into
a spherical density

~
n;R ) (n;R

~
by the transition

superoperator W=&QI.+'. Here p is the reduced
mass, p" is the incoming momentum and R is the
observation direction. The transition superoperator
is the product of the potential superoperator &, R

times the commutator with the potential V, and the
Mbller superoperator

QL+' ——lim exp(lent)exp[ i (M+M;„,)t] . —
.f~—oo

(2.2)

Here, W is the full Liouville or von Neumann su-

peroperator, A
' times the commutator with the

Hamiltonian H =E+H;„,+ V, M is the drift or ki-
netic superoperator, fi ' times the commutator with
the kinetic energy K, and W;„, is the internal-state
Liouville superoperator, fi ' times the commutator
with the internal-state Hamiltonian H;„,. This ex-
act density-operator description' ' is equivalent to
the usual wave-function representation of the
scattering event.

The potential energy is now assumed to be the
sum of a reference potential Vo and a second poten-
tial V&. Associated with these potentials are the su-
peroperators &o and W&, respectively. The refer-
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Ql ——QI DQI
(+) (+) (+) (2.3)

ence potential is assumed to operate on the transla-
tional motion only and, thus, commutes with the
internal-state Hamiltonian while the potential V& is
responsible for the collisional coupling between the
translational and internal motions. Vhth this choice
for V the Mnller superoperator becomes a prod-
uct, "namely,

Ql. D —— lim exp(iWt)exp[ i—(Wo+ W;„,)tj&~—oo

x w, (~o) . (2.5)

Equation (2.5) involves the projection

&,(~p)&,p ——P, (Hp)A, pP, (HO), (2.6)

where WQ =A '[Ko,f],HO=X+ Vo and a dis-
torted Mdller superoperator

of the reference Mgller superoperator

Qz+'= lim exp(idiot)exp( iP—i t),f~—oo
(2.4)

made onto the continuum of Ho. Here A,~ is an
operator. Making use of the Lippmann-Schwinger
equation for the distorted Manlier operator,

0
QL+D =9 &(&0)—l f 'ds exp[i (Wc+ W;„,)sju D exp[ i (W—o+W;„,)s] (2.7)

the transition superoperator becomes
p

(~0+~1)QI.DQL ~0+~DQL ~ f ds ~oexp[~ (~ +0~i t)s j~ DQL exp[ ~ (~+~i )s]

(2.8)

where X~ =P"&Ql+n'. To obtain the last form of Eq. (2.8) the intertwining relation

exp( i &os)Q—L+ ' =Q~+
' exp( i Ms)— (2.9)

has been used.
Since the generalized cross section is on the frequency shell of A", it can be exactly written as the sum

os,„(1p" nR )=os,„'(p" R )5„&+ Os'(1 p" nR )

of a reference generalized cross section
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and a distorted generalized cross section '
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where the post-Miler superoperator is

QL,
' ——lim exp(i&at)exp( i Mt) . —

t —+co
(2.13)

Equations (2.11) and (2.12) are the starting points for deriving the time-correlation expressions for the dif-
ferential cross sections. The reference cross section is considered first.

A. Reference cross section

Following the procedure of Ref. 12, the generalized reference cross section becomes

~s',„'(p" R)= (4~a'pep")lm—f Zpp'(pR
~
Q,'+'~ p"&&p"

~
r,'~ pR &

when the relation '

QL, Hop
——Qp A,pQp
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between the reference MgQler superoperator and the reference M@ller operator

(2.14)

(2.15)
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0
Qo+'= lim exp(iHot/A')exp( iK—t/A) =1—(i/h) f ds to(s)

t —+ —ao 00
(2.16)

is used. Here to Vo——Qo+' is the reference transition operator. The last form of Eq. (2.16) is the Lippman-
Schwinger equation for the reference Manlier operator in terms of the time-dependent reference transition
operator

to(s)=exp(&ms)to= Vo(s)Qo+'(s) .

This latter operator is the product of the time-dependent reference potential

Vo(s) =exp(iPCs) Vo = Vo( r,z+ p,zs/p)

and the time-dependent Mgller operator

(2.17)

(2.18)

S

Qo+'(s)=exp(its)Qo+' ——T exp ( i/fi) — ds~ Vo(s&) (2.19)

where T is the Dyson chronological operator. '

Using Eq. (2.16) in Eq. (2.14) the generalized reference cross section becomes the difference

us, „'(p"~R}=0' '(p "~R ) —oI,,'5' '(p" R), —

between the reference differential cross section

0' ~(p"~R)=(4n. hp/p")Re f ds f dpp (pR
~
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and the product of the reference total cross section
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~
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~
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with a two-dimensional Dirac 5 function in the forward direction. Equation (2.21) is the time-
autocorrelation-function expression for the reference differential cross section. This process of relating the
generalized cross section to the differential and total cross sections is now applied to the distorted expression,
Eq. (2.12).

B. Distorted cross section

Using relations of the form of Eq. (2.15) for the various Mt}lier superoperators the generalized cross section
becomes

os,„'(Ip"~nR)= (4mh pl—p")Im dpp (n;pR
~
Qo ' Qn+'Qo+' ~1;p")(I',p"

~
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where tD ——V~ Qz+' is the distorted transition operator and where
0

QD+' ——lim exp(iHt/A)exp[ i (Ho+H;„, )/A'] —=P, (Ho) —(i/fi) f ds tD(s)
f—+—oo 00

(2.24)

is the distorted Mt}lier operator. Equation (2.24} involves the time-dependent distorted transition operator

t~(s) =exp[i (Wo+ W;„,)s]t~ ——V~(s)Q~+'(s)

which is the product of the interaction-picture potential

V~ (s)=exp[i ( Wo+ W;„,)s]V~

and the time-dependent Mufller operator

QD+'(s}=Texp ( i/R) f ds, —V, (s&)

(2.25)

(2.26)

(2.27)
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(2.28)

To obtain distorted eikonal cross sections it is convenient to introduce a further transformation of these dis-
torted operators. In particular, using the relation

Q,'+'Q,'+"=a, (H, )

the time-dependent distorted transition operator becomes

Qo tD(s)QO+' Sot——g)(s),

where the transformed transition operator

to(s}=U~(s)Q~+ (s)

involves the potential

U((s)=QO+' V)(s)Qo+' ——QL,
+' V)(s)=exp[i(Pi +W;„,)s]QL+,

'
V)

(+)t

and the distorted Mufller operator

QD+'(s)=Texp ( —i/ri) f ds, U, (s, )

(2.29)

(2.30)

(2.31)

(2.32)

Equation (2.29) also involves the reference scattering operator

So ——Qo ' Qo+' ——1 (i/fr) f— dsto(s) .

Applying Eqs. (2.24), (2.29), and (2.33) to Eq. (2.23) leads to the sum

os,„(1p"~nR ) =5„~cr' ~(1 p"—+18 )+cr~ ~( 1 p
"~nR ) —crI$'5' '(p "—R },

where
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o' '(lp"~nR)=(4~ hp/p")Re f ds f dpp (n;pR ISotD(s) ~1;p")(1;p"~tDSOIn'pR) (2.35)

is the time-autocorrelation-function representation of the distorted differential cross section, and where

cr' '(lp"~1R)=(8n. hp/p")Re f ds f dpp (pR (to(s)
~

p")(1;p"
~
tnSO

~
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is the time-correlation-function representation of the coupling differential cross section; it represents quantal

interference between the reference and distorted motions. Also,

oIot = (4nh p/—p")Im(1;p" ~Sota
~

p")=f dR cr' '(lp" —+1R)+g o' '(lp"~nR)
n=1

(2.37)

is the total distorted cross section.
In summary, the full generalized cross section, Eq. (2.1), can be exactly expressed as the difference

crs,„(1p"~nR)=cr(1p"~nR) —o„,5' '(p ' —R) (2.38)

between the differential cross section

cr(1p" nR)=5„,[cr' '(p" R)+o~ ~(1p" 1R)]~cr (lp" nR) (2.39)

and the product of the total cross section

(0) (D)
O tot ~tot +~tot (2.40)

with the two-dimensional Dirac 5 function in the forward direction.
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III. EIKONAL APPROXIMATION
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A. Reference cross section

The reference eikonal potential"

Vo"(s)= Vo(r»+Ps/p, ) (3.1)

is obtained from Eq. (2.18) when the momentum operator p» is approximated by a momentum parameter,
namely, P. Thus the reference eikonal Mt)lier operator is

Qo '+'(s)=exp ( —i/R) f ds~ Vo(r»+Ps/p) (3.2)

while the time integral of the eikonal transition operator is

f ds&pR
I t,"(s)

I
p" &=5((pR —p") P}(iP/h) f dbbJO( ~pR —p I

b/fair) texp[ i(p"—/p)Xp(b)] lj-
=ph6((pR —p").P}&pR

~
t, (0)

~

p" &, (3.3)

where, for central potentials,

Xo(b) =(p/p'Vi) f dz V,((b'+z')' ') (3.4)

is the Glauber phase and where Jo(x) is the zeroth-order Bessel function. Choosing P to be —,(pR+ p") and

using Eq. (3.3) in Eq. (2.21) gives the reference eikonal differential cross section, namely,

00 2
cr ' '(p"~R)=(p"/A') cos ( —,8) f db bJO(2p "b sin( —,8)/A')Iexp[ i sec( —,8—)Xo(b)]—1I0

(3.5)

where 8 is the scattering angle (R p '=cos8 }. This cross section reduces to the Born differential cross section
when the Glauber phase is small.

S. Distorted cross sections

The reference potential naturally contains a straight-line trajectory to which the eikonal approximation can
be made. However, the distorted potential U~(s}, Eq. (2.31},has motion generated by the reference Liouville
superoperator, Mo, which quantally does not have an associated single trajectory. To define a distorted eikon-
al approximation" it is convenient to replace the exact quantal potential with an approximate quantal poten-
tial"

&7"(s}=f d«p
I
r P»o exp(i~i. ~s)s&& r+ps/V, p I

ftL+,„',
I

Vi &&o (3.6)

which has motion generated by the classical reference Liouville superoperator (Poisson bracket with Ho).
Here,

~
r, p &&o

——h h(r, p) and
~
r, p &&s

——h(r, p) are ideal observable and statistical state elements of the
Weyl correspondence (Wigner equivalence representation ) where

b(r, p)= f dRexp( —iR p/A')
~

r ——,R&& r+ —,R
~

. (3.7)

Equation (3.6) involves the phase-space function

s«r+ps/p p I
flL, +,, ci I

V& »o= »m s«r+ps/V p I
exp(i~t)exp(t~ —eo

lim s« r+ p(s+t)lp, p ~
exp( i&0,)t)

~
V) &&o . —

f~ —oo

Upon writing r =b+zp, b.p =0 and then defining t'=t +s +pz/p this phase-space function becomes

(3.g)
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s((r+ps/p, p i
nl+,'[

i
V)))o —— lim s((b+pt'/p, p i

exp[iWO, /(s+pz/p —t')]
i V$))ot'~ —oo

= V~(RO(s+pz/p
i
b, p);X,„), (3.9)

where X p is the position operator associated with the internal-state Hamiltonian. The position trajectory
R0(t

i
b, p ) is a solution of Hamilton s equations of motion subject to the initial condition

Ro(t
i
b, p) — b+ pt/p .

t—+ —oo
(3.10)

Inserting Eq. (3.9) into Eq. (3.6) gives the classical-trajectory quantum potential from which the distorted
eikonal potential can be derived. That is, replacing p with P, a momentum parameter, in the classical trajec-
tory in Eq. (3.9) leads to the distorted eikonal potential

UI (s)=(P/p) f dt f d' 'b
i
b+P(t —s)/p) Iexp[i&;„,(s —t)]W| (t)J(b+P(t —s)/p i, (3.11)

where

W, (t) =exp(iW;„,t) V&(Ro(t
i
b, P);X») .

Thus the distorted eikonal Manlier operator, Eq. (2.32), becomes

(3.12)

r

LTD '+'(s)=Texp ( i/A) —f ds, U) (s()

=(P/p) f dt f d' 'b
i
b+P(t —s)/p) Iexp[i&;„,(s t)]G —"(t;—oo)I(b+P(t —s)/p i,

(3.13)

where

G (t; —ao)=Texp ( —i/fi) f ds~W~ (s~) (3.14)

is the time-ordered group associated with the potential Wl (t). The time integral of the distorted transition
operator is then

f ds(n;pR
i S,'"t nE~(s)

i
1;p")

=(P/ph') f ds f dt f d"'b(n
i

W, (t)G "(t; m)i 1)—
&( exp I i (pR p"—) [b +P—(t s)/IJ, ]/@+ice„—

&
(s t) + (p "/P)Xo(b) —

I

=ph5((pR —p").P +pfico„, ()n;pR
i
So t D (0)

I
1'p") (3.15)

where co„&
——A (E„E,). Therefore —the distorted eikonal differential cross section is

o ' '(lp"~nR)=(2nhp) f dp(p /p")5((pR p") P+pfico„i) i
(—n;pR

i
SO tD"(0)

i
1;p")

i

while the eikonal coupling differential cross section is

o ' '(lp" ~18)=—2(2nhp) Im f dp(p /p")5((pR —p") P)(pR
i to (0)

i
p")

x(1;p" itD (0)SO
i 1;pR) .

Finally, the complete eikonal differential cross section is the sum

o (1p"~nR)=5 [o ' '(p"—+R)+o ' '(lp" —+1R)]+o ' '(lp" —+nR) .

(3.16)

(3.17)

(3.18)
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IV. ELASTIC CROSS SECTIONS
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For elastic cross sections the matrix element of the distorted transition operator becomes

(pR i
S o"t ~"(0)

i
p") =(P/ph') f dt f d"'b V, (RO(t

i
b, P))

t

Xexp ( —i/&) [(pR —p").b+ A'(p" /P)XO(b)]

+ f ds V, (Ro(s
I
1,P) )

=i(P/2mijh ) f d' 'bexp[ —i(pR —p") b/A' —i(p"/P)XO(b)]

X texp[ —iX, (b)]—1 j, (4.1)

where the distorted Glauber phase is

Xi(b)=A' ' f dt Vi(RO(t
i
b, P)) . (4.2)

To obtain Eq. (4.1) the 5 function in Eq. (3.15) has been used to restrict the momentum transfer to the b
plane. Thus the elastic eikonal differential coupling cross section, Eq. (3.17), becomes

aE~'c'(p" ~R ) = —m '(p "/R) cos ( —,8)

XIm f db bJO(2p" sin( —,8)b/trt) [exp[ i se—c( —,8)XO(b)] —1 j

)& f d'2'b'exp[ip"(R p') —b'/%+i sec(28)XO(b')]texp[iX&(b')] —lj (43)

while the elastic distorted eikonal differential cross section is

tr "' '(p "~R)=(p"/A') cos ( —,8)
i

(2n. )
' f d' '1 exp[ ip"(R —p') b/—fi i sec( —,—8)XO(b)]

X I exp[ —iX) (b )]—1 j i

' . (4.4)
+

Again the momentum P has been taken as —,(pR +p"). The full elastic eikonal differential cross section is the

sum of the eikonal reference differential cross section, Eq. (3.5), and Eqs. (4.3) and (4.4).

V. INELASTIC CROSS SECTIONS

Using the definition of the internal-state group, Eq. (3.14), the inelastic matrix element of the distorted
transition operator, Eq. (3.15), becomes

(5.1)

(n;pR
i
S,'"t DE"(0)

i
1;p-)

=(Plph ) f d' 'b f dt(n W& (t)G (t; —m)
i
1) expI —i[(pR —p") b/R+(p"/P)XO(b)]j

=(iP/2m ph ) f d' 'b expI i [(pR ——p").b/A'+(p"/P)X0(b)] j [6„) (ao, —ao) —5„,] .

It is of Glauber form due to the momentum-transfer 5 function. Taking P= —,(pR+ p") the distorted eikonal
differential cross section becomes

a ' '(lp" —+nR)= (P/h) A,„~ f d' 'bexpI i [p(A,„ tR——p") bhri+(p"/P)XO(b)]j

x [G„) ( ao, —m ) —5„)] ', (5.2)

where A,„&
——(1 2pfico„~/p" )'~ &0. B—ecause the momentum-transfer 5 function in Eq. (3.16) has been

evaluated the momentum parameter P becomes —,p "(A,„&R+p ") in Eq. (5.2). The coupling eikonal differen-
tial cross section, Eq. (3.17), follows in a similar manner.

This distorted eikonal differential cross section involves the group G ( oo', —oo ), Eq. (3.14), which is re-
sponsible for the internal-state motion along the given reference classical trajectory Ro(t

i
b, P). This group
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can be formally solved using the Zwanzig-Feshbach' ' projection-operator method. However, rather than
using the standard energy-resolved solutions it is more convenient to use the explicitly time-dependent solu-
tions'3

Ga"(t; — )P =6 (t; — )ME"c(t;— )P i—Gg (t; — )ME~(t; — )P . (5.3)

Here the P space is taken to be the initial state of the target so that its projection operator can be written as

~

1)(l ~. Therefore, only 6 (t; —a&}P need be calculated for the cross sections. The orthogonal internal-
state projection to P is then Q =1—P =+„2 ~

n ) ( n
~

(where H&„, is assumed to admit N eigenstates).

Equation (5.3) involves the motion groups (S =P,Q}
P

Gs (t; —oo ) =STexp (i /fi—) f ds SW~(s)S S (5.4)

in the P and Q spaces, as well as the cosine memory operator

M (t; —ao}=Tcos ds8 "(—oo,s} (5.5)

and the sine memory operator
r

M "(t;—oo)=Tsin f ds8 "(—oo', s) (5.6}

These memory operators have motion generated by the self-adjoint 8 operators; that is,

8 ( —0D,s) =trt 'Gt ( —oo,.s)PWi (s)QGg (s; —(g) )+A' 'Gg~( —gg, s)QWi (s)PGp"(s; —(g&) . (5.7)

The inelastic eikonal differential cross section is then the sum

0 "(Ip"~nR)=5 [o ' '(p"~R)+o ' '(lp" —+IR)+0 ' '(I p"~IR)]+cr ' '(lp"~n R)

(5.8)

where the elastic eikonal differential cross section involves the eikonal reference differential cross section, Eq.
(3.5), the eikonal coupling differential cross stLtion

oE"'c'(
1p

"~18 )= —m '(p "/fi) cos ( —,8)

Xim f db'O'Jo(2p"b'sin(
z 8)/fi)Iexp[ i sec( —,8—)Xo(b')] —1I

)& f d'2'b exp fi [p"(R —p ") b/%+sec( —,8)XO(b)] j

X[(1~6& (~;—~)M'"c(~;—~) ~1)'—1], (5.9)

and the elastic distorted eikonal differential cross section

o "' '(Ip"~IX)= (p"/A') cos ( —8)

X (2m. )
' f d' 'bexpI —i[p"(R —p") b/%+sec( —,8)XO(b)]I

2
X [(1 i Gp "(;— )M "(;— )

i
1)—1] (5.10)

Finally, the inelastic eikonal differential cross section is (n+ I )

cr "' '(
1 p

"~nR )= (p "/2A') lL,„i i
A,„R+p "

i

&& (2n ) ' f d' '1 expI i [p"(A,„~R p"—) b/fi+2Xe(b—)/
~

A,„~R+p "
~ ] (
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Equations (5.10) and (5.11) are equivalent to Eq.
(5.2) since no approximations to the internal motion
have, as yet, been made.

Two different types of approximation schemes
can be applied to these distorted eikonal cross sec-
tions. In one, the standard time-independent ap-
proach, " the time scale for internal-state reorien-
tations is assumed to be much larger than the dura-
tion of the collision. Thus the sudden approxima-
tion to Eq. (3.14) is used to describe the internal-
state dynamics. That is, the motion generated by

H;„, is neglected so that the group becomes a simple
exponential of the time integral of the potential
Vt{Ro(t

~
b, P);X,„}.This approximation is applied

to Eq. (5.2). On the other hand, if the time scale for
internal-state reorientations is of the order of, or
less than, the duration of the collision, then the
motion due to H;„, cannot be neglected. In this
case, an approximation scheme' based upon Eqs.
(5.10) and (5.11) is more appropriate. That is, the
memory operators are represented in the time-
disordered approximation while a perturbation ap-
proximation is applied to the Q space group. Both
approximations involve all orders of the potential
V).

VI. DISCUSSION

Exact expressions for the differential cross sec-
tion involving two potentials have been presented in

terms of time-correlation functions. They were ob-
tained directly from the generalized cross sec-
tion' ' rather than from scattering amplitudes.
Since both density operators and wave functions are
equivalent descriptions of the scattering event, ei-
ther one of them could have been used to derive
these exact results. The density-operator descrip-
tion was used here since it emphasizes the observ-
ables, namely, the cross sections.

Distorted eikonal differential cross sections were
obtained in terms of straight-line and reference clas-
sical trajectories. Inclusion of curved trajectories in
eikonal theory, which is a high-energy semiclassical
approximation, is expected to give a better represen-
tation of the collision event since the translational
motion is treated in a more realistic fashion. It is to
be noted that these distorted eikonal cross sections
reduce to the standard straight-line eikonal cross
section when the reference potential is taken to be
zero.
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