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Quantum-mechanical elucidation is applied to the semiclassical theory in the dynamical-

state representation previously proposed to deal analytically with the nonadiabatic rotation-

ally induced transitions. A general path-integral formulation of the scattering matrix is

given in terms of a product of two kinds of matrices. This enables us to treat a multistate

curve-crossing problem involving both radial and rotational couplings. Discussions are
made on the qualitative difference in collision-energy dependences of the ordinary Landau-

Zener-type radial transitions and rotationally induced transitions.

I. INTRODUCTION

In previous papers' the dynamical-state repre-
sentation is employed to deal with the nonadiabatic
atomic collision processes involving both radial and
rotational couplings in a unified semiclassical way.
This representation transforms the analytical struc-
ture of rotational-coupling problems into the one
equal to that of the ordinary radial-coupling prob-
lems; thus enables us to apply the conventional
analytical formulas such as the Landau-Zener-

Stueckelberg or the Rosen-Zener formula. A big
advantage of this representation lies in the fact that
both radial and rotational nonadiabatic transitions
are made to occur locally at the avoided crossing
points of the dynamical-state potential energies.
The localization of transitions is very important and
useful, since the two-state collision theories can be
extended so as to be applicable to a more complicat-
ed multistate collision problem and also to a chemi-
cal reaction process.

Rotational coupling is known to play an impor-
tant role in atomic collisions not only in the high-

energy but also in the low-energy regions. ' The
transition induced by this coupling, however, is not
localized in the adiabatic state representation; thus
the path-integral formulation is not applicable to
the many-state collision systems which involve rota-
tional couplings. The dynamical-state representa-
tion makes this application possible. Furthermore
it is necessary to investigate a role of rotational cou-

pling in chemical reaction systems. This coupling
opens a new transition; for instance, a transition be-
tween the A' and A" states of the C, symmetry of
triatomic systems. These states can not be connect-

ed to each other by the ordinary radial coupling be-
cause of the difference in the reflection symmetry
with respect to molecular plane. As is well known,
electronically nonadiabatic chemical reactions in-
duced by radial coupling have been treated quite
successfully by the surface-hopping classical-
trajectory method and the semiclassical scattering
matrix theory. One can not apply these methods in
a straightforward way to the reaction processes in-
volving rotational couplings. The dynamical-state
representation would enable us to apply the
methods, since the transitions are made localized at
the region of avoided crossings of the dynamical
potential-energy hypersurfaces.

The dynamical-state representation is essentially

equal to the electronic-rotational state representa-
tion, ' X representation, " and angular- (or rota-
tionally) adiabatic representation' discussed by
several authors. Crothers used the terminology
"dynamical adiabatic. "' Since the rotational cou-
pling is a dynamic couplirig, and actually the poten-
tial depends on velocity (or angular momentum),
the expression "adiabatic" is considered not to be
very pertinent as was already mentioned in the pre-
vious paper. Besides any one of the terminologies
does not seem yet to be commonly and widely ac-
cepted; so the "dynamical-state representation" is
used in this paper by following the original termi-
nology of Crothers. 's

An application of this representation to a study
of the rotationally induced nonadiabatic electronic
transitions was discussed by Knudson and Thor-
son, " and by Crothers. ' Knudson and Thorson
discussed the transition between the 2po„and 2psr„
states of H2+. They concluded from the viewpoint
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of numerical solutions of coupled equations that the
representation was not useful. Our viewpoint is,
however, different, and is akin to that of Crothers.
Our interest is to obtain an analytical formula to be
applicable to a many-state collision problem in the
semiclassical path-integral formalism. For this pur-
pose localization of the transitions is very impor-
tant, as mentioned before frequently. The better lo-
calizability in the dynamical-state representation
was proved not only by looking into the analytical
properties of the representation, but also by the nu-

rnerical calculations. The similar representation is
used also in heavy-ion nuclear collisions. '

Section II of this paper is devoted to a quantum-
mechanical formulation of the dynamical-state rep-
resentation to make clear the nature of the semiclas-
sical approximation employed previously. ' In Sec.
III the scattering matrix in a general multistate
curve-crossing problem involving both radial and
rotational couplings is formulated in terms of a
product of two kinds of matrices within a frame-
work of the path-integral method. The first kind of
matrix is a diagonal propagation matrix which
represents a probability amplitude propagation
from one avoided crossing point to the other. The
second kind of matrix is a nondiagonal transition
matrix which gives a probability distribution be-
tween two coupled states at an avoided crossing.
Phase corrections due to the analytic continuation
of a path into the complex R (internuclear distance)
plane are incorporated in these matrices. Section IV
is denoted to a discussion on the qualitative differ-
ence of the collision-energy dependence of cross sec-
tions for the rotationally induced transitions from
that of the radially induced transitions. It is shown
that the semiclassical theory gives the following
collision-velocity (u) dependence of the cross sec-
tions (Q): (a) Q-u for the case of united-atom
degeneracy and (b) Q-U for the case of constant
adiabatic energy difference. These dependences
agree with the exact ones obtained from a dimen-
sion analysis of the time-dependent coupled equa-
tions, indicating the effectiveness of the semiclassi-
cal theory based on the dynamical-state representa-
tion.
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The following notations are used here. H, 1 is the
electronic Hamiltonian, p is the reduced mass of
the collision system, 0 and y are the ordinary angle
variables to define the molecular axis orientation
with respect to the space-fixed frame, L is the elec-
tronic orbital angular momentum, and L~, L„, and

L~ are components of L in the molecule-fixed coor-
dinate system with the g axis along the molecular
axis. Eigenfunctions of H„, are given explicitly as

H„,S'(KM»A:O, p)

=[K(K + I ) 2A 2]9'(KM»A:O—,y), (2.7)

It is necessary to give a quantum-mechanical foun-
dation to the semiclassical approximation and to
clarify its nature.

The starting Hamiltonian for the collision system
should be the one expressed in the molecule-fixed
coordinate system which is discussed by several au-
thors. ' Here the following explicit expression
given by Thorson "is employed:

8 2 B2
(1) (2)+=+el 2 ~

R
~

+~rot ++cor +~cor ~

2pR BR BR

(2.1)

II. QUANTUM-MECHANICAL
FORMULATION OF DYNAMICAL-STATE

REPRESENTATION

8'(KM» A:8,q) )

1/2

)p + I d» &M»q&

4 M~A (2.8)

In previous papers' discussions are made only in
the framework of the semiclassical collision theory.

where E and M~ are the total angular momentum
quantum number and its z component in the space-
fixed coordinate system, i.e., E =L +Lz, Lz is the
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where

=A ~(K,A)3'(KM«, A+1:H,y), (2.9)

A+(K, A) =[(K+A)(K+A+1)]'" . (2.10)

Let us define the adiabatic electronic eigenfunctions
I

angular momentum of the relative motion of nuclei,
A is the eigenvalue of L~, and dl z(8) is the finite

rotation matrix element. ' The functions (2.8) can
be shown to satisfy

U+ 9'(KM«A:8, q&)

P, (A;v:R) of H, i by

H, ig, (A;r:R) =E(A:R)P,(A;v:R), (2.11)

where r represents the totality of electron coordi-
nates. The spin-orbit interaction is not explicitly
taken into account here, but, if necessary, it can be
included in H,&. In the latter case the angular
momentum L and the quantum number A should
be replaced by J =L +S, the electronic total (orbital
plus spin) angular momentum, and 0, the molecu-
lar axis component of J. Let us next introduce the
electronic-rotational basis functions defined as

C&«+(A) = [P,(A+)9 (KA+)+P, (A )9'(KA )],1

2

for A@0 and

4 (X )=P, (X )5'(KX ),

(2.12)

(2.13)

where A:—
~

A ~, A +-=+A, and 9'(KA ) is given by Eq. (2.8). These functions satisfy the following relations:
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(H„+H...)C,(A)= e(A:R)+ [K(K+1)—2A'] 4 «(A) .
2pR

(2.20)

The interaction Hamiltonian matrix (H,'„') is diagonal with respect to A, but nondiagonal in the manifold of
states with the same A. In the limit R ~0 the electronic functions P, (A) become eigenfunctions of L, and
the matrix (2.19) becomes diagonal even in the manifold of states with the same A:

(p, (iAi) ~L ~p, (jA2)) ~ L;(L;+1)515(Ai,A2) .
8~0

(2.21)

The set of states [4+(A ),4 (X)j can thus be di-
vided into two classes, namely, [4+(A),4 (X)j
and t4 (A)j, which have no connection to each
other. The dynamical states are defined as the

ej.genfunctions of
(&) (2)

~dyn =+el +~rot +~cor +~cor ~

to satisfy

(2.22)
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H& „4„(y,R:R)=E„(R)%„(r,R:R) . (2.23)

The functions 4'„(r,R:R) can be obtained by an ex-

pansion in terms of the functions I@&+(A ) I,

' 1/2
1c, ~'=+ ~ 1+

K

where

(2.29)

or

q, (r,R:R)=gC, (R)4+(A), (2.24) De=ex(AI) —ex(Ap}, (2.30)

ex(A)= E(A)+
~ [K(K+1)—2A ]

2pR

%„(r,R:R)= g D„(R)C (A), (2.25)
A+0

where 4+(A=O) implies 4' (X) defined by Eq.
(2.13).

In order to see a more detailed structure of this
representation let us take the simplest two-state ap-
proximation: and

+
2pR

b,E~ Ej ——Ep —[(he——) +4V~]'~~,

Vx =
q

A, +(K,Ap) Vo,
2pR

(2.31)
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V„=c„'4~ (A ) )+C„'4+(Ap), (2.26)

E, ~ =—ex(AI ) ~ex(Ap)K 1

+ (b E)'+, , A, +(K,A, ) V',
p2R4

' 1/2

(2.27)

where AI is assumed, for simplicity, to equal
A2+1. Following the conventional procedure of
diagonalization of a 2)& 2 matrix, one has

V.=(y.(A,'}~L, ~y, (A+)) .

The total wave function %„„which satisfies
r

'6 8 p 3&+tot= ~dy. —
2pR2 ()R ()R

K=E+tot ~

is expanded in terms of the dynamical states as

'pt, t= FI (R)+I +—Fp(R)+, —.

(2.34)

(2.35)

(2.36)
1/2

1 ke
1,2 ~~ —

QE
(2.28) Insertion of this expansion into Eq. (2.35) leads to

the following coupled equations:

+ [E EI (R)]+ 0'5— Ff(R)= — 2I 'Iif I +I %i Fp (R) (2.37)

and an equation with suffixes 1 and 2 interchanged, where

rex, xw, , xw, rex, , (&& )' Vx (&e )&~—
=C) '(Cp ' }'+CI '(Cp ')'=

(~Ere}'
(2.38)

2 AI Ai „ KA~ KA~ „ A] A]
K

), KA2 KA2'I/
p

——c) (cp )"+CI (cp ) +CI cp (y (AI)
~ y, (AI))+CI cp (y (Ag)

~
Ip (Ap)) .

BR

(2.39)

Here a prime means a differentiation with respect to R.
Let us next consider how the semiclassical theory employed in previous papers' is related to the quantum-

mechanical formulation described above. Since in atomic collisions a contribution of collisions with large an-
gular momenta of relative motion L~ (therefore with large total angular momenta K) is dominant, the quan-
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turn number A can be neglected compared to K which is replaced by (cpu/A')'i, where p is the impact param-
eter, and U is the collision velocity. Since 9'(EA+)=8'(KA ) in this approximation, the electronic wave

functions are separated out from Eqs. (2.12) and (2.26) to be

and

P;+(A) = [P,(A+)+P, (A )],
2

P„"(r:R)=C„'P,+(A i )+C„'P,+(Ap) .

(2.40)

(2.41)

The relative nuclear motion is solved separately. The coupling Hamiltonian H,",,' can thus be approximated as

H,",,'- —[K(K+1)]' (L++L ),
2pR

and one has

(2.42)

&4.'(Ai) IH"'lb.'(Az)&= —,pU[&4, (Ai+) IL- IN. (Az )&&(Ai Az —1)

(2.43)

O'=A&(t)1( &'(r:R)+A&(t)gz'(r:R),

and inserting this into the time-dependent Schrodinger equation, one has the coupled equations (13) of Ref. 2,

+&/, (Ai+) iL i P, (Ap+)&5(Ai, Ay+1)] .

The term H,'„' does not appear in the semiclassical approximation. Expanding the total wave function in

terms of f„",

E„(R)A„——g„' A„, v, v'= 1,2 (vQv') (2.44)

where

Ei z
———,(e(A|)+e(Az)+[[@(Al)—e(Aq)] +4V J'

V= Vo,
pU

2R

Vo=&P, (Aq++l)iL+ ig, (Ap+)& (when Ai ——Ay+1),

/ „al(", h ~ A A ~ A [E(A i)—6(Ap)] V'—[E(A, ) —E(Ap)] V
=Ci 'Cq '+Ci 'Cp

at (AE)

and

AE =Ei Eg ——j [e(A i )——e(A p)] +4V J
'i

Equation (2.45) tells us that the effective potential with a centrifugal potential, i.e.,
2 2

pp U

2R

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

which corresponds to Eq of Eq. (2.27), is proportional to —1/R in the limit R ~0 when pu ((2/p) Vo. This
should not be a reality, because the fall of a particle to the center may become possible in such a potential. '

Since this could occur only at very low impact parameters or low velocities, this would not present a serious
problem practically. It can be shown, however, that this does not occur in the quantum-mechanical formula-
tion. Taking as an example a two-state (X and II ) case, one has from Eq. (2.27)

o 2pR 2

2

1+
2

+2K(%+1)Vo

1/2 '

(2.50)



3130 HIROKI NAKAMURA 26

When the two (X and II) states are degenerate at
the united-atom limit, one has

(L )x n~L(L+1) (R~O)

and

Vo~ [L (L + I )]'~ (R —+0) .

Therefore the expression in the curly brackets in

Eq. (2.50) cannot be negative, since E)L ) 1.
When the two states correlate to different energy
levels in the united-atom hmit, Vo is generally very
small (zero in the one-electron approximation) in
that limit and again Eq does not become propor-
tional to —I/R .

III. PATH-INTEGRAL FORMULATION
OF A MULTISTATE CURVE-CROSSING

PROBLEM

The most important point of the dynamical-state
representation consists in the analytical structures
of the energy difference (2.32) or (2.49) and the cou-
pling term (2.38) or (2.48) as a function of the com-
plex variable R. Because of the radical sign in Eqs.
(2.32) and (2.49) AEz and b,E have zeros of order
—,. The coupling terms (2.38) and (2.48) have a pole
of order unity at the position of the zeros, since
these terms are inversely proportional to the square
of the energy difference. These analytical structures
are the same as those of the radial-coupling prob-
lems in the ordinary adiabatic representation. On
the other hand, the dynamical-state representation
does not alter the analytical structure of the radial-
coupling problems. This means that one can apply
the formulas developed in the radial-coupling prob-
lems to a more general multistate curve-crossing
problem involving both radial and rotational cou-
plings (if necessary, the spin-orbit interaction can be
included in the beginning to define adiabatic states),
since all the transitions are made to occur locally at
avoided crossings of the dynamical-state potential-
energy curves.

E (R)

E (R)

T) T

I NTERNUCL EAR DI STA NCE R

FIG. 1. Schematic potential-energy diagram of two
dynamical states.

S =P+„AOAPATAIAP (3.1)

where PA~ and PATA are diagonal propagation ma-
trices, and I~ (Oz) is the transition matrix corre-
sponding to the incoming (outgoing) segment of the
trajectory. These matrices are defined by

In the previous paper the straight-line trajectory
approximation is used for simplicity to study a
three-state model problem. From the arguments
mentioned above it is clear that a multistate curve-
crossing problem can be formulated in the general
path-integral approach based on the assumption of
localized transitions. The scattering matrix can be
expressed as a product of matrices of two kinds in a
similar way to Ref. 17. Proper phase corrections
are included in the formulation here. The first kind
of matrix is a diagonal propagation matrix which
represents an evolution of the system from one
avoided crossing point to the other without any
transition. The second kind is a transition matrix
which represents a distribution of probability ampli-
tude between the two relevant states at the avoided
crossing point. The most basic scattering matrix
for the two-state problem shown in Fig. 1 can be
obtained by using the comparison equation
method' as foHows:

~ K[p&&]„=[P&&]„=expi J k„(R)dR 5„
L

(3.2)

A K
exp 2i J k, (R)dR+ir

I

exp 2i I k2(R)dR ir-
T2

(3.3)

—&&0

—vpe

vpe' '

v'1 —pe ' (3.4)
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[Oa ]nm [Ia ]mn ~

k„(R)=[(2plk )[E—E„(R)]]'

g= —,tan +y ln
1 ] 1 y

(y2+ 1 y4)1/2

pp ——y —yln(y + —,)+argI'(1+iy) ——+ —,tan4 4 ' 2y
R~

o0+'i5 = f [kf(R)—kp (R)]dR,

p =exp( —25},
5 =m.y,
A =R,(R, ),
E) (R, )=E~ (R, ),

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.1 1)

(3.12)

(3.13)

I (x) is the gamma function, E„(R) is the dynamical-state energy, and T„ is the turning point in the n&h po-
tential. The S-matrix elements are explicitly given by (see also Ref. 13)

Sf ~

——Sf~ ——exp 2i f kf(R)dR ir—
1

X, (1 p)e —'+pexp 2i o—+ f kg(R)dR —f kz(R)dR
Tg T2

(3.14)

Sf q
——Sq~ ——2i[p(1 —p)]' exp i f k f(R)dR +i f kz (R)dR

1 2

r

X sin f k~ (R)dR —f kq (R)dR +oa+p,
1 2

K K K
Sp )

——S)p ——Sp),

S, &
——S» ——exp 2i fT k, (R)dR+ir

2

X ) ( 1 —p)e '+p exp 2i oa+ f k ] (R)dR —f kp (R)dR
—2ig A K A K

l
TJ T2

(3.15)

(3.16}

(3.17)

where P, is the so-called Stokes phase and is given by

P, =r Po=y lny y —arg—I (1—+iy)+ —.
4

(3.18)

In the case of Rosen-Zener-type transitions the phase corrections r and Pe are not necessary, and the transi-
tion probability p for one passage of the avoided crossing point is given by

P =pRz= 1+e" (3.19)

The matrix element I„m (O„m ) represents a transition from state m to state n (state 2 is the higher of the two).
The matrix formulation given above can easily be generalized to a multistate problem. Taking as an exam-

ple the three-state problem shown in Fig. 2, one has

S =P ~gOgPggOgPgTgIgPg gIgP

where

(3.20)
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~ATA

A

exp Zi k~ (R)dR +i~A+is.q

0

0

0
A

exp 2l k& {R)dR —l~A+l~g

0
A

exp 2i k3 (R)dR —iv&
3

(3.21)

pA
V l pae—

—~p„e
0,

(3.22) 3

(a)

and

0, 0

2

)
1

IX)
Ie ——0, V l —pee ~ ~brae

pse ', gl —pee' '
(3.23)

a(3&)

'Na

The suffixes A and B indicate the e quantities corre-
sponding to the avoided crossings A and 8 r
tively.

an, respec-

Figures 3(b) and 3(c) demonstrate the usefulness
of he semiclassical theory based on the dynamical-
state representation. A comparison is d's ma e with

e quantum-mechanical calculations. The two-
state collision s ssystem employed is a system of the
second-lowest X state and the lowest H state of the
LiNa+ molecule which correlate Li+ + Na(3

p a, respectively, at the separated- t
limit. Adiab

e -aom
iabatic potential energies are taken from

Wijnaendts van Resandt et al. ' h fw o itted analyti-
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FIG. 2. Schematic potential-energy diagram of thre
dynamical states.

o ree

low
FIG. 3. (a) Adiabatic'c potential-energy curves of the

owest three states of (Liwa)+. (b) Transition
ties (from 2X to 1H ) vs im act

eV. --, quantum-mechanical close coupling;
———-, semiclassical theory [Eq. (3.15)]. (c) The
(b) at E=10eV.

c e same as
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cal expressions to the calculations of Habitz and
Schwarz [Fig. 3(a)]. The rotational-coupling ma-

trix element is taken from Melius and Goddard.
The quantum-mechanical results are plotted as a
function of p by using the replacement K=ppv/A.
It is interesting to note that there is always a main
peak in such a region of impact parameters that the
turning point and the crossing point (R=5.7ao)
come close to each other. Although the narrow
peaks in Fig. 3(b) are lower and a main peak in Fig.
3(c) is somewhat larger in the semiclassical approxi-
mation, the agreement between the two results is
fairly good. This indicates the usefulness of the
semiclassical theory. The (LiNa)+ collision system
is well investigated experimentally. ' For in-

stance, the differential cross sections are measured
at several collision energies for various processes.
In order to compare with these experiments at least
three-state calculations are necessary by including
the lowest X state. These calculations are now in
progress using the path-integral approach outlined
in this section.

Q =8' f dpp sech (5)sin cr

for the Rosen-Zener case, where

(4.2)

a+i.5= f EEdt=-+ f &Edz,
0 0

(4.3)

b,E(t, ) =0,
R =p+ut =p(1+z),

v
ttl, =Xg .+lgg

p

(4.4)

(4.5)

(4.6)

and bE is the adiabatic (in the case of ordinary
radial-coupling problem) or the dynamical-state (in
the case of rotational-coupling problem) energy
difference. The phase corrections taken into ac-
count in the preceding section are neglected here for
simplicity. If 5~p /u' and o ccv 'p at high p
and u, then one has from Eqs. (4.1) and (4.2)

Q o: u
'~ ' ' ~ ' (when d ~0). In the case of ra-

dial Landau-Zener problem it can be shown that at
large impact parameters

IV. COLLISION-ENERGY DEPENDENCE
OF ROTATIONALLY INDUCED

TRANSITIONS

o. ~1/vp and 5 ~p /v,

and that

(4.7)

As was mentioned before, the dynamical-state
representation transforms the analytical structure of
rotational-coupling problems into the same one as
that of radial-coupling problems, and enables us to
employ the Landau-Zener-Stueckelberg (or Rosen-
Zener) formula. The nature of the rotationally in-

duced transitions is, however, quite different from
that of the radial transitions, because a rotational
coupling depends on the impact parameter p as well

as the velocity v, or on the angular momentum E in

the quantum-mechanical formulation. Total cross
sections for the transitions induced by rotational

coupling increase monotonically as a function of
velocity. This is not the case for radial-coupling
problems. In this section the velocity dependence of
the rotationally induced transitions is investigated
within the framework of the semiclassical approxi-
rnation based on the dynamical-state representation.
For simplicity, the straight-line trajectory approxi-
rnation is used; thus the results obtained below are
correct at relatively high energies.

In the semiclassical approximation the total cross
section can be expressed as

Q =8~ f dppe (1—e s)sin cr (4.1)

for the Landau-Zener case, or

(4.8)

and

V= Vp
pv

R

with p and Vo constant. Then one has

4+4E =Pp'bE=Pp' (1+z')'+
(1+z')'

1/2

(4.9)

Xg

I[(a—1) +a ]' +(a —1)]' ~

vz

(4.10)

for large v. In radial Rosen-Zener case 5 is propor-
tional to p/u at high p [o behaves the same as Eq.
(4.7)]; and Q is shown again to be proportional to
v at high energies. Let us next consider the fol-
lowing cases of rotational coupling.

(a) Degeneracy at the united-atom limit. The adi-
abatic energy difference b e and the coupling term V
are approximated as

he =PR
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and

p() z~
o+i5 =P~ f EE dz = f AE dz,

0 u

(4.11)

Q=8~ 2 Vp
be

X f da a sech [2Vp52(a)]

where

I /2
vV0

p'
(4.12)

o=Vpol(a) and 5=Vp5I(a), (4.13)

where o I(X) and 5I(X) are certain functions of X.
Inserting Eq. (4.13) into Eq. (4.1) and transforming
the integration variable from p to a, one has

16 Vov

3

' 2/3

X daa e (1—e )f 7/3 2 VpS
&

(cx ) —2 Vpf I (a )

0

2/3

X sin [Vpo I(a )] cc (4.14)

Since the integral in Eq. (4.11) is a function only of
u, one has

Xsin [2Vpo2(a)) ~
he (4.20)

Unfortunately, we cannot derive a simple velocity
dependence such as Eqs. (4.14) and (4.20) in the
third important case of curve crossing at the finite
internuclear distance. ' The velocity dependences
obtained in Eqs. (4.14) and (4.20) are the rigorous
ones which can be derived from a dimension
analysis of the time-dependent coupled equations.
This fact indicates the appropriateness of the semi-
classical theory. Although 5 goes to zero as the
velocity becomes infinity and the transition becomes
"diabatic" as in the Landau-Zener case, the veloci-
ty dependences of cross sections are qualitatively
different from the radial-coupling case. The transi-
tions at high v are generally less diabatic compared
to those of radial Landau-Zener case, since the ener-

gy difference (2.44) increases with U. Besides the
velocity and impact-parameter dependence of o. are
different from Eq. (4.7).

CKhE =he 1+ (1+z')'

' 1/2

(4.15)

(b) No curve crossing —constant he. Using the
notations of Eqs. (4.3)—(4.6), one has

V. SUMMARY AND DISCUSSION

The quantum-mechanical elucidation was applied
to the semiclassical theory of the dynamical-state
representation proposed previously. The semiclassi-
cal theory is valid at such collision velocities as

and

[(1+ 2)1/2 1]I/21

3'e 2

~0 '* a
CT+l5 =2 f 1+

(1+ ')'

I /2

dz

(4.16)

(4.17)

vmin + v + vmax &

where

Vp(R =0)
v;„=max 2

@pint pplnt

Vmax =
~int

(5.1)

(5.2)

where

v ~o
cx =2

p he

Thus one has, as before,

o =2Vpo2(a) and 5=2Vp52(a),

(4.18)

(4.19)

where o2(X) and 52(X) are again certain functions
of X. From Eq. (4.2) one has

(in atomic units), R;„, is the effective radius of in-
teraction region, and p;n, is the corresponding im-
pact parameter. The first condition in Eq. (5.1) cor-
responds to the negative divergence of the semiclas-
sical dynamical-state energy in the limit R~0 (see
the discussion at the end of Sec. II). This condition
can be easily removed by using the correct
quantum-mechanical energies given by Eq. (2.27).
The second condition in Eq. (5.1) is due to the ap-
proximation K &gA. Because of the large mass of
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atomic nuclei the above-mentioned quantum-
mechanical effects do not become serious as usual,
unless collision energies are much lower than ther-
mal energies. The condition (5.2) originates from
the electron momentum-transfer effect or the ETF
effect, ' ' ' which is neglected throughout this pa-
per and makes the cross sections decrease eventually
in the high-energy limit. The ETF s introduce ad-
ditional coupling terms (matrix A of Ref. 28) in the
close-coupled equations. It would be worthwhile to
try to take the ETF effects into basis states by di-

agonalizing again the Hamiltonian matrix com-
posed not only of the diagonal adiabatic electronic
energies and off-diagonal rotational-coupling terms,
but also of the matrix A. The condition (5.2) could
be removed in the semiclassical approximation
based on that new representation with the ETF ef-
fects incorporated.

The general path-integral formulation was given
in terms of the propagation and the transition ma-
trices to deal with the general multistate atomic col-
lision processes. The formulation enables us to
treat them in a unified way.

It was shown that the velocity dependences of the

cross sections for the rotationally induced transi-
tions can be reproduced by the semiclassical theory.

An analytical problem still left to be solved in re-
lation to rotational coupling is the problem of de-

generacy of three or more molecular states at the
same position, for instance, the problem of transi-
tions among the 0., m, and 5 states degenerate at the
united-atom limit. ' It is also highly desirable to
investigate a role of rotational coupling in chemical
reactions. The dynamical-state representation
makes it easier, since it enables us to apply the
surface-hopping classical-trajectory method.
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