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When a complete orthonormal square-integrable real basis set IP„I can be found in
which a model one-dimensional Hamiltonian Ho is represented by an infinite symmetric
tridiagonal matrix, analysis of the spectrum of Ho leads to a close analogy of Weyl's theory
of the Schrodinger equation. With Ho tridiagonal, the Schrodinger equation becomes a
three-term recursion relation in n instead of a differential equation. The Sturm-sequence
polynomials p„(E) form the solution regular at n =0, while a second, Weyl's solution q„(E),
is irregular. Then the resolvent (E—Hp) ' is proportional to p„q„. Furthermore, com-

pleteness implies the orthogonality of the p„, and hence, that truncating to a fi-
nite basis generates a Gauss quadrature of the spectral density with abscissas at the eigen-
values of the truncated Ho, and just as in Weyl s theory, approximating the spectral density
as a Stieltjes integral. By truncating the representation of any additional potential to a fi-
nite matrix, the theory can be extended in analogy to R-matrix theory to potential and even
multichannel scattering, yielding an explicit construction of the Fredholm determinant,
whose zeros locate the resonances and bound states. In addition, such an analysis reveals,
at least in the basis sets in which Ho is tridiagonal, how other L -function methods such as
stabilization, Stieltjes imaging, and coordinate rotation work and how accurate they are.

I. INTRODUCTION

The usual approach to solving for the lowest few
bound states of an atomic system entails transform-
ing the Schrodinger differential equation into a
linear-algebra eigenvalue problem by introducing a
set of square-integrable (L ) basis functions. Re-
cently, several methods' have been developed
which extract such information as resonance ener-

gies and widths and scattering cross sections from
the same L -basis matrix representation of the
Hamiltonian. While it is evident how a well-chosen
L basis can approximate a bound state, it is less
clear how to obtain properties of the scattering con-
tinuum from a set of functions which vanish ex-
ponentially at large distances. In the first paper in
this series (hereinafter referred to as I), we showed
that diagonalizing certain Hamiltonians having no
bound states in certain L bases in which the Ham-
iltonian matrix is tridiagonal generates a Gaussian
quadrature ' of the continuum having abscissas at
the eigenvalues and weights related to the correctly
normalized continuum wave functions. Here, we
extend these results to any real symmetric tridiago-
nal Hamiltonian matrix, and in so doing illuminate
connections with and thereby provide a particular
justification of other L methods.

Restricting the Hamiltonian to tridiagonal form
means that the second-order differential
Schrodinger equation is transformed into its direct
discrete analogy —a three-term recursion relation.
Since an understanding of scattering as a perturba-
tion of the continuum requires both of the linearly
independent solutions, the careful analysis intro-
duced by Weyl" provides the best path for develop-
ing the analogy. Atkinson' has already followed
this path to display the full parallelism of the two
Sturm-Liouville boundary-value problems. Here,
we apply his results where the continuous Sturm-
Liouville differential equation is transformed into
the discrete Sturm sequence by introducing an L
basis and concentrate on what happens to the
scattering physics.

In Sec. II, we examine the representation of the
spectrum in a finite L basis to produce the
Stieltjes-integral approximation to the spectral den-

sity on which Langhoff based his Stieltjes imaging
approach. In a finite basis, incidentally, limiting
the Hamiltonian to tridiagonal form is no great re-
striction, for the standard method of diagonalizing
an Hermitian matrix employs a Householder' tridi-
agonalization as its first step. Here the analogy be-
tween the finite-basis results and Weyl's theory on
the finite interval could not be more complete.
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The payoff comes, however, in Sec. III, where we
consider the limit as the number of basis functions
becomes infinite and the basis becomes complete.
Since finding such a basis which renders the Hamil-
tonian tridiagonal is tantamount to solving the ori-
ginal differential equation exactly, the restriction to
tridiagonal form is severe, but is warranted by the
insight which it affords into how a finite portion of
the basis can interpolate properties of the continu-
um. To no great surprise, the Stieltjes limit of the
spectral density produces a weight function which
rises abruptly at each bound state and smoothly in
the continuum and with respect to which the
Sturm-sequence polynomials are orthogonal, and

suggests a direct analogy to Weyl's function. "
Furthermore, the results justify the stabilization
method, ' I.anghoff's Stieltjes imaging, ' and Heller's

derivative rule ' as interpolation schemes for the
finite bases and indicate how the rotated-coordinate
method circumvents satisfying the scattering boun-

dary conditions. In addition to the radial kinetic

energy in oscillator and Slater basis sets already dis-

cussed in I, we present, as further examples, an

analysis of the harmonic and Morse' oscillators in

the Appendix. The Coulomb Hamiltonian and its
special properties will be treated in a subsequent pa-

per.
As was shown in I, the restriction of H to tridiag-

onal form can fruitfully be relaxed by adding a po-
tential V of finite rank —i.e., represented in a finite
basis —to any infinitely tridiagonal H. A House-
holder reduction, ' carried out in reverse order, then
folds H+ V into an infinite tridiagonal form H for
which all the results of Sec. III hold. Following
this idea in Sec. IV, we study the perturbation of
the spectrum of H by the potential to yield the J-
matrix method of approximating the phase shift as
well as an explicit expression for the Fredholm
determinant as the ratio of the weight functions
with respect to which the respective Sturm-sequence
polynomials of H and H are orthogonal. The paral-
lel with the R-matrix theory of fitting the logarith-
mic derivative at the boundary of the space in
which the potential is represented is then evident.

Finally, in Sec. V, we discuss extensions to
Coulomb and multichannel scattering as well as
possible application in conjunction with the
Schwinger method and to the calculation of reso-
nance phenomena and three-body scattering.

II. FINITE BASIS SET

Consider a set of real functions [X„(r):
n =0, 1,2, . . . , N —I] which are square integrable

P+(r,E)= g X„(r)g„+(E)
n=0

(3)

transforms the differential equation into a three-
term recursion relation:

H...+)Q„++)(E)+(H„,„E)g+(E)—+H„„)P+,(E)

=0 . (4a)

If the X„are chosen to mimic the regular
behavior of the wave function dictated by the
behavior of H at the left-hand boundary, the recur-
sion will start with the boundary condition

Hp i P+ i (E)=0 . (4b)

%hile, as depicted by Hazi and Taylor, the expan-
sion ansatz [Eq. (3)] should perform well for r not
too large, the convergence behavior for representing
a function which oscillates more or less rapidly de-

pending on E at large r in terms of an L basis will

be highly nonuniform in n and E.
Now, just as with the differential equation, the

boundary condition [Eq. (4b)] selects one of the two
possible basic solutions which is propagated by Eq.
(4a) in n, one more condition is needed to fix the
normalization. Since the normalization of the
scattering solution depends on the behavior at the
other end of the interval —a concept rather difficult
to define in terms of the formal expansion

[Eq. (3)]—we follow the usual practice with the dif-
ferential equation to define a regular solution p„(E),
by setting

pp(E)=1 and Hp &p &

——0,
and defer the normalization to Sec. III. From the
recursion equation (4a) and these bounday condi-
tions, ' p„(E) is clearly a polynomial of degree n in

on the interval (0, co ),
' and, indeed, form a basis of

L (0, 00 ) as the number of functions N goes to in-

finity. Assume, in addition, that the functions are
orthonormal':

f dr X„(r)X„(r)=5„„,
0

and most importantly, that the basis transforms the
Hamiltonian operator into a real symmetric tridiag-
onal matrix:

H„„=J dr X„(r)HX„(r)=0,
unless n'=n, or n+1 .

Expanding a solution of the Schrodinger equation,
for example, the scattering solution, in the basis for-
mally as
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E, known up to a factor dependent on n as the
Sturm-sequence' polynomial.

Applying a boundary condition at some finite
n =E defines, just as for the finite interval in r for
the differential equation, an eigenvalue problem in
E. To keep the development parallel with %'eyl's

theory, we follow Atkinson' and examine the
boundary condition

p„(E)+ tanp HN N —lpN —1(E)=0

where p is some fixed angle in [—w/2, ~/2l. 's

Green's identity then relates the values at the boun-
daries with the integral —here, sum —of the squares
of the values in between; examining gp„(E)p„(E')
yields the Christoffel identity

N —1

(E E ) g Pn(E)Pn(E ) HN, N —1[PN(E)PN —1(E ) PN(E )PN —l(E)l
n=0

with the on-shell limit,

(7a)

N —1

Q Pn( ) HN, N —1(PNPN —1 PNPN —1 )
n=0

and the complex-energy case

(7b)

N —1

~
p„(E)

~

(2i ImE) =HN N 1[pN(E)pN 1(E*) pN(E*)pN—1(E)],
n=0

(7c)

where E*is the complex conjugate of E and p„(E*)ofp„(E).
The fact that the right-hand side of Eq. (7a) plays the role the Wronskian plays in the theory of the dif-

ferential equation becomes still more clear when we introduce a second polynomial solution of the recurrence
relation q„(E) which obeys the boundary conditions

qo(E)=0 and Ho, —lq —1=—l .

Then, Green's theory gives

N —1

(E E') g Pn(E'—)e.(E)=HN N 1 [gN(E)PN 1(E—) 9N l(E—)PN(E )1— (9a)

while for E'=E,

Hn, n —1(9npn —1 Vn —1Pn )'

To be sure, the parallel with the Wronskian of the two solutions of a Sturm-I-iouville differential equation is
not quite in the traditional form; what we have called the regular solution p„starts in Eq. (5) with what corre-
sponds to unit value and zero derivative, while the second solution q„starts in the opposite way.

Extracting the consequences of imposing the boundary value of Eq. (6) at finite N on the Christoffel identi-
ties, Eq. (7a), then completes the analogy with Weyl s theory of the finite interval. In addition to establishing
various separation properties of the eigenvalues EJ (P), depending on X and P, including what is known as the
Hylleraas-Undheim theorem, ' Atkinson' derives two types of orthogonality closely related to the orthonor-
mality and completeness of the solutions of the Schrodinger equation. These are most readily understood
when the recursion equation (4) is combined with the initial boundary conditions (5) into the truncated matrix
equation,
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Hoo —E Ho 1

H1,0 H1, 1
—E H1, 2

0 H» H22 —E

pp(E)

pp(E)

0

HN —2N —2 E

HN —1,N —2

N —2,N —1 jj~ 2(E)-

HN —1,iv —1 tanp HN, N —1

0
Hiv, ~—P~(E)+tanP Hiv iv iPiv i(E)

(10)

Hence, the values of Ej (p) fulfilling the boundary
condition in Eq. (6) are the eigenvalues of the trun-
cated Hamiltonian matrix, H (p) on the left-hand
side, while the jjn(Ej ) clearly form the components
of the eigenvector. Setting E to one eigenvalue and
E' to another in Eq. (7a) and using the separation of
the eigenvalues leads in the usual way, to the ortho-
gonality of the eigenvectors and allows the defini-
tion of orthornormal eigenvector components,

P„,(P ) =p„(E,")(~,")'~',

obeying

N —1
N N

4ni 4nj ~ij

N N

g P„"jg„,= g w, p„(E)")p„(E, ) =5„n. .

(14)

This is nothing more than a Gaussian quadra-
ture' ' of the resolution of the identity.

To prepare the passage to the large-N limit, it is
useful to cast these properties of the solutions in the
language of Stieltjes integrals. Atkinson' defines
the spectral function pj3(E) as a nondecreasing
right-continuous function with jumps at each eigen-
value equal to the corresponding Christoffel weight:

n=0

where the normalization factor is simply the Chris-
toffel weight, '

(E)=.
wj (P), E)0

0&E &E

w (P) E &0.
E&E )0

(15)

N —1

wj (P)=1 g P„(Ej (P)} .
0

The second type of orthogonality, which corre-
sponds to the completeness of the eigenvectors in
the truncated function space, follows from the
first, ' giving

Then, the completeness orthogonality in Eq. (14)
can be cast as the Stieltjes integral:

f dpjj(E}pn(E)pn (E)=5nn .

Moreover, it is now straightforward to construct the
spectral resolution of the resolvent of K (p) as

Gnn'(E&p) = g 4nj'itin j i'(E Ej )= f dpp(E')pn'(E')p„(E')l(E E) . —
j (17)

The spectral resolution of the Green s matrix is often hard to compute and, hence, rarely of practical in-
terest, however. What is needed is an analogy to the greater-lesser product of a regular solution and an irregu-
lar solution which fulfills a condition at the right-hand boundary. To this purpose, we introduce what corre-
sponds to Weyl's solution" in terms of its spectral resolution as
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N

q,'"'(E;I3)= I&ping'(E')p„(E') l(E' E—) = g u)J'"'(P)p„(EJ' '(P))l(EJ' ' E—) .

Using the orthogonality property in Eq. (16) in conjunction with the second solution q„yields further rela-
tions suggesting the correct behavior as N goes to infinity. First, q„can.be expressed as the Stieltjes integral

q, (E)= f &ping'(E')[p, (E') p„(—E)]l(&' E)—, (19)

since both sides satisfy the recursion equation (4) with the initial conditions of Eq. (8). Thus, comparing Eqs.
(18) and (19),

q'"'(E &)=q.«)+q'o"'«;P~p. (E), (20)

which displays that this Weyl's solution obeys the recursion equation (4) starting with Weyl's function, "
qo(E, P), and with

—Ho )q' IlE;p)=1 . (21)

From the integral representation in Eq. (18), on the other hand, it follows that at the other end of the interval
in n, Weyl's solution obeys

qN«(E'&)+tan&H)v, x )qN «-'P) =-o

at least whenever E is not an eigenvalue, whereas Eqs. (20) and (9a) can be used at the eigenvalues to extract
the correct nonzero limit at each eigenvalue. This allows Weyl s function to be expressed with the help of
Fqs. (20) and (22) as

q() '(E;13)= —[qN(E)+tan13H)v )v )q)v )(E)]l[p~(E)+tani3H~~ )p)v )(E)] . (23)

Equation (23) suggests that as the spectrum
grows dense in the large-X limit, the zeros and poles
of q„(E;P) will coalesce into a cut along the con-
tinuous spectrum with one branch in each half k
plane going to zero with increasing n. This is best
seen by examining the circle in the complex plane
conformally mapped by Eq. (23) for qo(E;P) for
fixed complex energy as beta varies from —~/2 to
m. /2. Because the boundary condition in Eq. (22) is
real, q„(E~;P) is the same as [q„(E;))3)]*,which
causes the Wronsklan ln the form of Eq. (9b) of q)v

and its complex conjugate to vanish. This, with the
help of Green's identity, leads to the radius of the
circle as

remains bounded for complex energy.
Finally, by adding and subtracting p„(E) in the

integrand of Eq. (17) and using the orthogonality
and completeness of the polynomials, the resolvent
matrix can be cast in the form familiar for Green's
functions:

G.'". '(E;P)= —q„'"'(E;P)p„(E), (26)

where n & and n & are the greater and lesser of n
and n', respectively. With the above Stieltjes repre-
sentations of the spectral function p&(E), Weyl's
solution q„(E;I)l), and the Green's matrix
G„„(E;P), the stage is set for passing to the
infinite-X limit.

W —1
—]

j)v)(E) g ~

(E)
~

2

n=0
(24)

III. INFINITE BASIS SET

and an analogous relation for the imaginary part of
Weyl's function:

X —1

lmq,'")(E;P)=1m(E) g ~q„'")(E;P)~'
n=0

Since the radii in Eq. (24) of the circle on which the
values of Weyl's function lie form a nondecreasing
sequence in X, the sum on the right-hand side

Now we let the number of basis functions grow
without bound, but still assume that the Hamiltoni-
an matrix remains tridiagonal. First we follow
Atkinson' to develop the limiting behavior of the
functions introduced in Sec. II and then explore
what this says about the representation of the physi-
cal wave function in the I. basis.

Atkinson' proceeds by using the boundedness of
the spectral function implicit in the orthogonality
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q„(E)= I dp(E')p„(E')/(E' E) . — (27)

This is still a Stieltjes integral, for only where the
spectrum becomes dense will the step function

pg(E) coalesce into a smoothly increasing function.
Let us now examine these results in the light of

what is known about the physical wave function.
Since its expansion coefficients in Eq. (3) obey the
same recursion Eq. (4a) with the same vanishing of
the —1 term in Eq. (4b) as the polynomials, they
can only differ by an energy-dependent, but n-

independent factor. Indeed, to fulfill the initial
condition of the polynomials in Eq. (5) requires

p„+(E)=p 0+ (E)p„(E), (28)

where 1/$0 plays the role of the Jost function'
connecting the regular with the physical solution
and proscribing the initial condition of the physical
wave function in n, rather than r. Moreover, taking
matrix elements of the completeness relation and
assuming an energy 5-function normalization of the
scattering wave function reveals the orthogonality
of the expansion coefficients:

'L' dE Q+(E)P„(E)=&n~ (29)

where Jf indicates an integral from 0 to oo over the

integral in Eq. (16) to show that a limiting spectral
function p~(E) exists for each P and that it has the
property of Gaussian quadrature, i.e., the sum using
abscissas and weights of degree N exactly repro-
duces the integral of dpi3(E) times a polynomial of
degree up to 2N —1. Furthermore, if the radius of
the circle in Eq. (24) shrinks to zero because the
sum in the denominator diverges, a unique, P in-

dependent, limit p(E) exists for the spectral func-
tion. We shall see below that this limit-point case is
the one of interest in conjunction with the expan-
sion of the physical wave function. Then Weyl's
function, and hence Eq. (20), q„obtain limiting
values for each energy representable by the in-

tegral

continuous spectrum and a sum over the bound
states,

p(r;nb )= g X„(r)p„(nb)
n=0

in which each term takes the form'

(30)

p„(nb)p„(nb)= 2~—i Res [p„+(E)1(„(E)].
E E„"b

dp/dE =
i
lto+(E)

i
(32a)

which is smooth for positive energies, but at each
bound state has steps

p„= 2mi —Res [$0+(E)$0 (E)] .
nb

(32b)

Note again the analogy between the Jost function
and I/$0, this time in terms of a spectral density. '9

Thus, the equivalent quadrature concept intro-
duced by Rescigno et al. and developed for special
cases without bound states in I is more general; it
merely requires the completeness of the bound and

scattering states and a tridiagonal Hamiltonian in a
complete orthonormal basis. Furthermore, it can
immediately be put to work to explain how other I.
methods work.

Over ten years ago, Hazi and Taylor' discovered
that pseudostate eigenfunctions closely reproduce
the form of the scattering wave function up to an
overall normalization out to quite large radii, even

away from resonance eigenvalues. By comparing
the jth pseudostate,

N —1

'(r;P)= g X„(r)g~~)'(P),
n=0

(33)

to the scattering wave function evaluated at the jth
pseudostate eigenvalue with the help of Eqs. (11)
and (28) we see that

(31)

Yet, comparing Eqs. (28) and (29) with Eq. (16) and
its unique limit implies an explicit relation between

$0(E) and the spectral function:

P+(r;E,'"'(P))=g+(E,'"'(P))[~,'"'(P)] '~'g,'"'(r;P)+ g X„(r)f+(E,' '(P)) .
n=N

(34)

If, as is usually the case, the large values of n only become important with large r, this explicitly demonstrates
the behavior which Hazi and Taylor' experienced and displays the renormalization relating pseudostate and
true continuum wave functions.

Next, we can see that the Stieltjes imaging approach of Langhoff is a natural one. There it is assumed that
the first several energy moments of bound-free oscillator strengths f(E) ~

( (i
~ Od;~ ~ f (E)) (, where i ) is
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the bound state and Od;z, the dipole operator, are correctly given by a sum over pseudostates. This is certainly
true in light of Eq. (34) and the quadrature property of the spectral function, assuming that (i

~ Od;~ is well

approximated by a few basis functions. The fact that the method is completed by gerierating quadrature
abscissas and weights from the moments to construct a Stieltjes histogram representation of the integrated os-
cillator strength as a spectral function is no surprise in light of the argument in Sec. II above.

In I, we discussed the basis for the derivative rule introduced by Heller for forming the renormalization
factor in Eq. (34) more directly than by Stieltjes imaging. We extend that argument here to the more general
boundary condition in Eq. (6). In the limit as E approaches the positive real axis from above, q„(E) in Eq.
(27) splits into a principal-value integral and an imaginary part:

q+(E)=q„(E+i0)=9' f dp(E')p„(E')l(E' E)+—imp„(E)dpldE . (35)

If we then define

kP"'«) =arglq'«)+tanP&NN —1'qN —1«)l
(36)

I

EJ(p)~E„,
Next, we ask about the significance of Weyl's

solution of the recursion relation q„(E), as an ex-
pansion coefficient by defining

and use the separation of the eigenvalues to help pin
down the multivaluedness of this definition, we can
require that g advances by vr from one pseudostate
eigenvalue to another:

g(N1(E(N)(P ) ) (37)

When the derivative of this function of E is evaluat-
ed at the eigenvalues, we obtain, after some algebra
using Eqs. (7b), (13), and (20),

dip
'

dp 1

dE Ez '(p) dE s(»(p1 (c( (p)
(38)

p,,= g p„'(E„,)
n=0

(39)

which is evidently the limiting behavior of the
Christoffel weight ((1J(p), in Eq. (13) as N ~ oo, and

which is just mover the s.quare of the renormaliza-
tion factor, in light of Eq. (32a). This justifies
Heller's conjecture and Yamani's numerical experi-
ence that for moderately large E just about any
smooth interpolation of Eq. (37) allows a good ap-
proximation of the desired derivative. Clearly, the
parameter P could be used to move the pseudostate
eigenvalues between the zeros of pN and pN 1 along
the continuous spectrum to an energy of interest.

For the bound states, on the other hand, the
Hylleraas-Undheim theorem' forbids forcing the
lowest zeros of the Sturm-sequence polynomials
below the lowest true bound states. As the true
eigenvalue is approached, however, the correspond-
ing weight tends towards the step in the spectral
function, for using that the norm of the bound-state
wave function in Eq. (30) is one, in conjunction
with Eqs. (31), (32b), and (28), gives

Q(r;E)= g X„(r)q„(E) .
n=0

(40)

Taking matrix elements of H —E operating on this
function reveals that it does not satisfy the
Schrodinger equation, for the initial condition in
Eq. (8) with the recursion equation (4) implies

(8 E)Q(r;E—) =X0(r) .

Using the Green's function expressed as

G(r, r';E) = X(r;E)g„,—s(r&,'E)

(41)

(42)

as a product of Weyl's solution and the regular solu-
tion" indicates that, at large r,

Q(r;E)-X(r;E) f dr'P„,s(r';E)XD(r') (43)

or that Q(r;E) behaves asymptotically like Weyl's
solution. The possibility of adding an additional
term to the solution of the inhomogeneous equation
(41) containing the regular solution is removed by
noting that in the limit-point case only X(r;E) is
square integrable at complex energy" and the norm
of Q(r;E) is bounded then as well, as is evident
from Eq. (25). Thus, p„and q„are the n-space ana-
logs of the regular and Weyl's solutions, but are not
the expansion coefficients of these solutions in the
basis set. Since the spectral density of g«s(r;E)
and p(E), or equivalently, the Jost function and
1/$0, have the same points of increase, however,
they differ very little, while Q(r;E) is modified
only enough from Weyl's solution to be regular in
the origin, and hence expandable in the basis as well
as ideal for use in the Kohn variational principle. '

Finally, we note that in the infinite basis, the
resolvent matrix obtains the limiting form of Eq.
(26);
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G„„(E)= —q„(E)p„(E). (44) +nn' +nn'+ henri' ~ (47)

For n and n' less than N, this can be expressed as
the finite-basis approximation in Eq. (26) and a
correction term following from Eq. (20) and its lim-
iting form as

G„, (E)= G„'„'(E;P)

—p, (E)p„(E)[qp(E)—qp (E;P)] .

(45)

Although the correction term subtracts off the
pseudostate poles in G„„ to restore the correct poles
and residues at the bound states and the branch cut
along the positive real axis, it is clearly much less
important at energies away from these singularities.
This property lies at the basis of the rotated-
coordinate method, where the branch cut is rotated
away from the real axis to make qp(E;f3) closely
approximate qp(E) at physical energies, and, hence,
to allow using the finite-basis Green s matrix
without correction, albeit at the cost of working
with a complex symmetric, rather than Hermitian,
H. We will discuss this in a future paper on the cal-
culation of resonances with L methods.

IV. ADDITION OF A POTENTIAL
OF FINITE RANK: J-MATRIX METHOD

p„=(q„+—q„)/2mi
. dp

(48)

This can be put in a more familiar form in terms of
the physical wave function by introducing a Jost
solution,

where the zeroth-order Hamiltonian H„„ is tridiag-
onal. By performing a Householder' transforma-
tion starting at X —1 and working down to 0, H
can be brought to infinite tridiagonal form and all
the results of Sec. III apply. (We write the func-
tions of interest for H with a tilde to distinguish
them from those corresponding to H )I.n perform-
ing the tridiagonalization, it is important to recall
that the Householder method so applied transforms
the first N —2 basis functions X„, among one
another to effect the tridiagonalization. What is of
interest here, however, is how the solutions for H
are altered by the potential V. The development
brings us to the basis-set analogy of Jost-function'
theory for a potential of finite range, or R-matrix
theory.

By also taking the E—i0 limit in Eq. (35), we
can write the regular solution at scattering energies
in terms of the two branches of Weyl's solution at
scattering energies in terms of the two branches of
Weyl's solution as

+ +/y+ (49)
While the results of Sec. III have merit in the

understanding they lend to how L, scattering
methods work, they require finding a complete basis
in which the Hamiltonian of interest is
tridiagonal —a feat tantamount to solving the
Schrodinger equation directly. Indeed, the known
examples mentioned in the introduction are just
those Hamiltonians for which the analytic solution
can be looked up in textbooks. These cases are very
much of use, however, as zeroth-order solutions to
be perturbed by an additional potential to be ap-
proximated in an appropriate way. In this section,
we study the perturbation of the spectrum of such a
Hamiltonian by a potential of finite rank in the
basis set. This results in the J-matrix method —J
referring to the Jacobi, or tridiagonal, form of the
Harniltonian matrix —introduced by Heller and
Yamani and discussed in I.

We approximate a potential V(r) of interest by

V„„= X„VX„dr=0 for n or n'~N —1,
0

(46)

to give, using Eq. (28),

P„+=i (e„Se„+)/2m,—

where

S=1(p /Qp

(50)

(51)

G„+„(E)=—e„+-(E)1(„--(E) (52)

To connect the solutions with and without the po-
tential, we simply require that the solutions with
boundary conditions for large n, the Jost solutions,
be identical outside the range of the potential:

This all fits eminently well with the usual relation
between Weyl's solutions" and the incoming and

outgoing Jost solutions as well as the interpretation
of I/fp as the Jost function and S having unit
modulus with twice the negative of the argument of
the Jost function. Indeed, using Eqs. (28), (44), and

(49), the resolvent matrix can be written in its usual

form as

and the total Hamiltonian by e„(E)=e„(E) for n & N —1 . (53)



3086 JOHN T. BROAD 26

This means that the physical solution for H takes
the form

g„+(E)=i(e„—Se„+) =g„+ Te—„+

for n &N —1, (54)

where T is the relative transition operator appropri-
ate to the additional potential V. As presented in

the previous J-matrix papers, ' matrix partitioning
then yields the exact solution for the wave function
and for T in terms of the known solutions for H
and the inner-space part of H. We review those re-
sults here with the more general truncation H' '(P)
depicted in Eq. (10). '

For n &X, the Schrodinger equation takes the
form

N —1

g [HI I(p) E6„„—]Q„+5„N IHN I,N[)~N +tanPHN, N IPN—Il =-
n'=0

(55)

while for n & N —1, the three-term recursion in Eq.
(4a) holds and is fulfilled by Eq. (54), and extends
its validity to n =N —l. Equation (55) can be
solved using the truncated resolvent G„'„'(P) to give

Pn GII, N IHN ——I,N(eN +tanPHN, N ieN I )— —

+ ) 40 ~1 0 HN, N —1(qNPN —I qN —IPN) ~

(60)

The fact that this ratio is also the Fredholm deter-
minant, '

(56) D+ (E)=det(1 —G+ V), (61)

Requiring that both Eqs. (54) and (56) hold at the
function-space boundary, equivalently in the spirit
of the R-matrix method, using Eq. (28) to equate
what corresponds to the logarithmic derivatives,

HN, N —1PN —1

PN +tan&4, N IPN i— —

HN, N —I(eN I SeN —I)—
eN SeN +—tanpHN N I(eN I SeN —

i )

follows rigorously after some algebra exploiting the
lower-triangular structure of G+ V outside the inner
space because of Eq. (46) to reduce to the deter-
minant of an N-dimensional matrix.

While it is evident that the phase shift 5(E) is the
phase of D (E) (Ref. 19) in consonance with Eq.
(58), it is even more illuminating to use the phase of
the Fredholm determinant in conjunction with
Weyl's solutions for H and H. Using Eqs. (49), (53),
and (60),

to give, using Eqs. (49) and (51),
(57)

(qNPN —I qN IPN ) ~(qN PN ——I qN IPN)—
q„(E)=q„+(E)/-D+(E) -for n &N;

hence, using Eq. (36),

Pp (E)=gp '(E)+5(E) .

(62)

(63)
(58)

or

(40 ) (PNPN —I PN —IPN)~(qNPN —I qN IPN) . —

(59)

Putting the results for S back into Eq. (54) for

This suggests extracting the phase shift solely from
a finite basis by comparing the spacing of the pseu-
dostate eigenvalues of H and H using Heller's
derivative rule, Eqs. (37) and (38).

In the same spirit, we can define a finite-basis-set
approximation to the Fredholm determinant using
Eq. (29) and its limit in Eq. (60) as

IN+tan&HN, N IItN i—-
and using Eq. (28) then gives the ratio of the Jost
functions for H and H, in a mixed basis notation in-

corporating the Householder transformation as

D' '«;P)=HN, N 1[qN (E i3)PN —I—
qN -'i(E;13)PN l—

to give

(64)

D (E)=D' '(E;~)+[qo (E) qo (E'P)l~pNPN —
I PNPN I) ~— (65)

Not surprisingly, Eq. (64) can be simplified using the boundary condition in Eq. (22) to give the finite-basis
approximation to the Fredholm determinant as the ratio of the determinant of the truncated E —H to that of
E —H, or
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Similar to the finite-basis representation of the
resolvent, D' '(E;P) has zeros and poles as pseudo-
states instead of the correct multivalued structure of
D(E), but, vide Eq. (65) and the discussion after
Eq. (45), if the singularities are rotated away from
the real axis into the complex plane, it should give a
rapidly convergent approximation.

N —1 N —1

V„'P= g g V„(V'"')-'.V..„, (67)V. DISCUSSION

D' '(E;P)=(Px+tanPHx, iv iP—x &)—l(PN+tanPHN N P—x i)—~ (66)

McKoy et al. , the Schwinger method in an L
basis uses matrix elements of the potential between
the inner and outer spaces in addition to the inner-

inner terms included in the J-matrix approximation.
Indeed, the Schwinger method follows directly from
approximating the potential matrix by

We have now exploited the analogy which Atkin-
son' displayed between a Sturm-Liouville differen-
tial equation and a Sturm-I. iouville three-term re-
cursion to develop a Weyl's theory of the recursion
and follow the consequence of introducing an 1.
basis to transform the Schrodinger differential
equation into a three-term recursion. The results il-

lustrate directly in terms of basis sets the discovery
of Hazi and Taylor, ' and how the equivalent quad-
rature and Stieltjes imaging methods work, and
shed some light on how rotating the coordinates
into the complex plane allows an entirely L ap-
proximation of continuum properties. While this
has been demonstrated explicitly for a number of
physically interesting model Hamiltonians, includ-

ing the radial kinetic and Coulomb operators previ-
ously and the harmonic and Morse oscillators in
the Appendix here, it seems reasonable to postulate
that the relations between the solutions for H and H
developed in Sec. IV should provide a good approxi-
mation scheme for other cases for which a basis
making H infinitely tridiagonal is difficult to con-
struct. Work on an extension to block-tridiagonal
Hamiltonian matrices is in progress.

So far, the discussion has been limited to poten-
tial scattering. The extension to multichannel
scattering in the close-coupling formalism with a
finite number of discrete target pseudostates has
been carried out for the J-matrix theory and ap-
plied with success to the photodetachment of H
While truncating the potential to an N gN matrix
in the J-matrix method falsifies the high-energy
behavior, and hence the Born approximation, the
exact representation of the resolvent of the model H
can be used in another way with the variationally
stable Schwinger procedure. As explicated by

where V' ' is the N gN truncation of the potential,
to give an expression for the T matrix which de-

pends on the inverse of the N )&N matrix

D„„(E)= V„„—( VGV),„

An examination of that dependence reveals that the
Fredholm determinant for V' " is, in close analogy
to Eq. (61), just the ratio of N-dimensional deter-
minants det~(D)/det~( V). If the basis set and po-
tential allow a stable recursive calculation of the
inner-outer matrix elements needed in addition to
6» (E) to converge the construction of D« in Eq.
(68), this provides a feasible computational method
of adding an approximation to the potential to the
known tridiagonal model H which is both variation-
ally stable and gives the correct Born behavior.

The above discussion of treating the many-
channel problem in terms of an infinite tridiagonal
H for one degree of freedom combined with a pseu-
dostate representation of the target suggests going
one step further, however. Evidently the unbound
pseudostates represent the three-body breakup'
continuum in the same way as the one-dimensional
pseudostates represent the two-body continuum in
this way. Perhaps some basis-set analogy of the
Fadeev formalism will be necessary, as well as mul-

tidimensional generalizations along the lines dis-
cussed by Atkinson. '
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APPENDIX: NEW EXAMPLES OF EQUIVALENT QUADRATURE

As we mentioned in the Introduction, basis sets in which the Hamiltonian is tridiagonal to infinite order are
known for several special cases. In I, we discussed the radial kinetic energy in both an oscillator and a Slater
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basis, as well as the radial Coulomb Hamiltonian. We leave a further discussion of the Coulomb case to a
later paper, and give, as two new examples, the radial harmonic oscillator and the Morse potential.

1. Radial harmonic oscillator

In appropriate units where A' and the effective mass are chosen equal to 1, the three-dimensional harmonic
oscillator has the Hamiltonian

H = , d—/—dr +L(L+1)12r +Kr /2,

with rE(0, 0o). In the Laguerre-polynomial basis

g„(r)=[2AI (n+1)/I'(n+L+3/2)]'~ e "~ (Ar) +'L„+' (A~r ), n =0, 1, . . .
which is orthonormal with respect r E(0, oo ), H is symmetric tridiagonal with nonzero elements,

&

—[n(n +L+1/2)] ~ (A, —K)/2A, , H„„=(2n +L +3/2)(A, +K)/2&

(Al)

(A2)

(A3)

Taking a hint from the Pollaczek polynomials '" and verifying with the known Gaussian relations between
continuous hypergeometric functions, the solution of the three-term recursion equation (4) obeying the regular
boundary condition in Eq. (5) can be expressed as the polynomial in E,

p„(E)=[I'(n +L +3/2)/I (n + 1)I (L +3/2)]'~ ( —g)+"2F&( —n, (L +312+E)12L +3/2; —g+- ),
(A4)

where

g=(X —K' )/(A, +K' )

and

e =E/K'
(A5)

A second solution, obeying Ho &q ~
———1, can be obtained from the analytic continuation of the hyper-

geometric function in p„(E) as

q„(E)= [I'(n +L +3/2) I (n + 1)II'(L +3/2)K] ' [I ((L +3/2 e)12—)12n n + 1+(L +3/2 —e )12}]
&((1—g ) + ~

( —g)"qF~(n+L+312, (L+312—e)/2;n+1+(L+3/2 —e)/2;g }, (A6)

which is a meromorphic function of E with its poles at the singularities of the I' function in the numerator at

E„=(2n+L +3/2)K'~, n =0, 1,2, . . . . (A7)

These energies are, of course, the exact eigenvalues of the radial harmonic oscillator.
There is a single second solution just because the completely discrete spectrum does not create a branch cut.

Indeed, by using the series expansion for the 2F& for qo in Eq. (A6) as well as the three-term recursion equa-
tion (4), the second solution can be expressed in the spectral representation,

q„(E)= g p„p„(E„)l(E„-E),-- —
n=0

where

p„=(1 g') +'~'-g'"I'(n+—L +3/2)/I (L +3/2)I (n+1)

(Ag)

(A9)

is the step at each bound state which defines the spectral function. Fu~he~ore, by examining the integral of
the Green's matrix given by Eq. (4a) along a very large circle in the complex energy plane centered at the ori-
gin, we obtain the orthogonality with respect to the spectral function:

f dEG„„(E)=g p„p„(E,)p„(E„)=5„„-.
n=O

(Alo)
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The only physical states are the bound states P„(r), which can be expanded in the basis set as

g„-(r)= g X„(r)g„„-,
n=o

where, as expected,

P„„-=(p„-)' 'p„(E„-) .

(Al 1)

(A12)

At the special choice of A, =K, H becomes diagonal, and all the formulas collapse correctly to their limiting
values (with $« =5«), so that Q„=X„and G« 5„„l——(E„E)—

On the other hand, in the limit as E~O, which means e~ oo and g~ 1, the spectrum becomes dense, and
the continuum of the radial kinetic energy described in I is reconstructed. The singularities in the hyper-
geometric functions in Eqs. (A4) and (A6) then flow together to form confluent hypergeometric functions9:
for p„, the Laguerre polynomial,

where x =2E/iL, and for q„(E) either of two branches:
1/2

2 I (n +L +3/2)1 (n +1)
I (L+ 3/2)

( —1)"(x+ )
+'i f(n +L +3/2;L +3/2;x+ ),

p„(E)=(—1)"[I'(n + 1)I (L +3/2)/I'(n +L +3/2)]'i2L„+' (x), (A13)

(A14)

where x+ ———(x+0), while the steps of the spectral
function coalesce into the positive weight function,

dpldE =2e x +'r /AI'(L+ ,I/2), (A15)

with respect to which the p„are orthonormal. The
physical solution is then

p(x, E)=z ' 8'b gk(z), (B4)

which dies rapidly as x~ —ao and two irregular
solutions,

I

The solutions can be expressed in terms of Whittak-
er functions of z and depend on the parameters
b =B/(2A)' and k, from E=k /2. There is one
regular solution,

g(r;E) = g X„(r)(dp/dE)'rzp„(E)
n=0 f+(x,E)=z 'i Mb, k(z), (B5)

=r' Ji +,g2(kr) =(2/hark)'i uL (kr),

(A16)

which behave as exp[+i (px —5 ) ], where
5 =in[(SA)'i ], as x~ oo. The energy —5-
function —normalized, physical scattering solution
can then be written in the usual way as

the energy 5-function normalized Riccati-Bessel
function. '9

P+(x,E)=(2k/m)'i y(x, E)/L+(.E), (B6)

2. Morse oscillator

As is well known, ' the one-dimensional
[x E ( —oo, oo ) ] Morse potential,

where the Jost function L+(E) is defined as the
Wronskian between the regular solution and the
plus or minus irregular solution and has the value
here:

V(x) =Ae "—Be (B1) L (E)=I (1+2ik)/I (1/2 —b+ik) . (B7)

z =(SA)'i e (B3)

admits exact solution of the Schrodinger equation,

[—, d Idx + V(x)]g(x—,E)=Eg(x,E), (B2)

by transforming to the new variable

In the usual way,
' the zeros of L+(E) in the

upper-half k plane locate solutions regular at —oo

which also die exponentially at op, i.e., bound states.
From Eq. (B7), it is clear that the bound states are
located where the argument of the j. function in the
denominator is a negative integer, or,
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k„=i(b+1/2 N—+n), (88)

where the number of bound states N is the largest
integer still less than b+ 1/2, so that k„lie-s on the

positive imaginary axis. The E„-=k„-/2 are num-

bered in order of increasing binding energy ( E—~).
The unit normalized bound states are then obtained
from the residue of the scattering solutions' at E„
in terms of Laguerre polynomials as

P„-(x)=[—2mi lim g+(x,E)P (x,E)(E E„)—]'~-
E~E~

(2b 2—N+2n+1)l (N+n)
I (2b N+—1 n—)

1/2
—z/2 b + 1/2 —N + pg r 2b + 1 —2N +2nge z LN (89)

Having this complete description of the solutions as functions of x and E, we ask if there is an L -basis set
in which the Hamiltonian operator in Eq. (82) is tridiagonal. Such a basis indeed exists, in the form of nor-
malized Laguerre polynomials multiplied with the square root of their weight function as

X„( x)=[1(n+I)/I ( n+2P+I)]'~ e ' z~+'~L„~(z), n =0, 1,. . . . (810)

The only nonzero elements of H in this basis are
then

H„„=—[ n +(P+ I/2)

+ (b P n —1—)(2n—+2P+ 1)]/2 (811)

and

H„„&——H„& „(b—13—n——)[n (n +2P)]' /2 .

(812)

Together with the completeness of the bound and
scattering states, this infinite tridiagonal form for 0
means that all the results of Sec. III hold about the
Gaussian quadrature of the spectrum generated by
introducing the basis set.

As noted by Knapp and Diestler, ' the Hamil-
tonian matrix separates further into two blocks with
the special choice of P=b —NE( ——,, —, ), which
causes H~& &

in Eq. (812) to vanish. Comparing
Eqs. (89) and (810) for this choice of beta reveals
that the first N basis functions,
n =0, 1, . . . , N —1, span exactly the same space as

Qn+(E) =Qy+(E)p„(E), (815)

where v =n —N and

the N bound states. The remainder of the basis
functions, P„, n=N, N+1, . . . , then span solely
the space of the scattering states P(x,E). This
behavior is borne out in the explicit calculation of
the expansion coefficients of the bound states,

=I -dx X„(x)g„-(x), (813)

and of the scattering states,

g,+(E)= f dx X„( )Px(x+,E),
where it is found that g„„-=0 for n &N and

g„(E)=0 for n & N and E not a bound-state energy.
Since when there is a bound state (b &1/2,

N &0), l(|p vanishes, the formulas in Sec. III must
now be modified somewhat. For the continuum,

gz plays the role of l(tp with the higher coefficients
given in analogy to Eq. (28) by

p„(E)= I (n + 1)I (n +2P+I)
3F2( v,p+N+ I/2+i—k, p+N+ 1/2 —ik;2p+N+ I; I ) (816)I (N+1)1 (N+2P+1)

is a polynomial of degree v in E, and

+(E)= [2vrk /I (N+—1)I (N+2P + 1)]'~ I (P +N+ 1/2 —ik)/I (1 2t k) cos(13+i—k)m'. .(817)

Taking matrix elements of the completeness relation of the bound and scattering states in the basis set then
yields two separate orthogonality relations. First, the expansion coefficients of the bound states are orthonor-
mal, with
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(818)

second, the polynomials p„(E) are orthogonal, with

I, dp(E;N, P)p (E)p„(E)=o

with respect to the spectral function,
2

dp(E;N, I3) + 2+sinh(2m'k) I (P+1/2+ik)
dE I (N+1)l (N+2p+1) cos[(p+t k}n ]'

where II&(E) is the determinant of the bound block of E H:—
N —1

Ilp(E)= P (E E„)=—
~

I (-P+N+ I/2+ik)/I (P+I/2+ik)
~

/2
n=O

Weyl's solution is then defined as in Eq. (27} as

q, (E)= J dp(E', N, 13)p„(E')l(E' E), —

(819)

(820)

(821)

(822)

and has a branch cut along the positive real energy axis with discontinuity 2nip„(E)dpldE as in Eq. (35). The
resolvent matrix for the continuum block of H is then G' =—q„p, as in Eq. (44).

For the actual computation of the resolvent, it seems best to use Eq. (4a) to recur down to qp(E) and then to
recur in the strength b of the attractive potential down in unit steps to a potential with no bound states, but
the same value of beta. This can be implemented in terms of Eqs. (820) and (821) by

dp(E;N, p) =2(E E )dp(—E;N— I;p) N(—N+213),
dE "-' dz

so that, using Eqs. (819) and (822),

qp(E N P)=2[(E—Eg ~)qp(E'N 1'P)+ I]/N—(N+2P)

(823)

(824)

The integral to be evaluated numerically in Eq.
(822) for qp at N=O then has the somewhat
simpler integrand containing p(E;O, P). Indeed, in
the case when b is an integer, i.e., b =N and P =0,
the recursion ends at b =0, corresponding to the
repulsive potential alone. The spectral function for
this special case then has the simple form: qp(E;0, 0) = —2G"'(1/2 ik) . — (826)

dp(E;0, 0) ldE =2nsinh(km )./cosh (kn ),
(825)

and Weyl's function is the known polygamma func-
tion,
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