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This paper derives a number of sum rules for nonrelativistic three-body scattering.
These rules are valid for any finite region X in the six-dimensional coordinate space. They
relate energy moments of the trace of the on-shell time-delay operator to the energy-
weighted probability for finding the three-body bound-state wave functions in the region X.
If X is all of the six-dimensional space, the global form of the sum rules is obtained. In this
form the rules constitute higher-order Levinson's theorems for the three-body problem. Fi-
nally, the sum rules are extended to allow the energy moments to have complex powers.

I. INTRODUCTION

This paper derives a set of sum rules for the non-

relativistic three-body scattering problem. The type
of rule we obtain is a statement of spectral stability.
The addition of pairwise potentials to the three-
particle free Hamiltonian changes the spectrum in
two ways. First, the continuous spectrum, associat-
ed with scattering phenomena, is shifted by a finite
amount along the energy axis. The free-particle
continuum begins at zero energy whereas the per-
turbed continuum has its threshold at the energy of
the most tightly bound two-body eigenstate.
Secondly, the perturbation may cause a point spec-
trum to appear. The sum rules we derive in this pa-
per relate the change in the shifted continuum-state
density to the point spectrum.

In the simpler two-body collision problem these
spectral sum rules have been extensively studied,
e.g., Refs. 1 —15. The earliest version of these rules

is that found by Levinson. ' This rule states that for
a given partial wave I, the value of the phase shift at
the threshold energy is proportional to the number
of distinct bound states having total angular
momentum l. Extensions of these results include
the study of arbitrary energy moments of the con-
tinuum state density shift induced by the perturbing
potential. The partial-wave case for central poten-
tials was analyzed by Percival and Percival and
Roberts and the noncentral global problem solved

by Buslaev ' and Bolle. ' Recently, much of the
work on these sum rules has emphasized the role
played by time-delay theory. "' ' This was a na-
tural development since the trace of the time-delay

operator for scattering at energy E is equal to the
shift of the two-body continuum-state density at E.
For a recent review of time-delay theory and its ap-
plications we refer to Ref. 16. The understanding
of the higher-order Levinson's theorems as a mo-
ment relation involving time delay has led to the
discovery of their analogs in classical scatter-
ing 17 19

In spite of the extensive literature on the single-
channel two-body spectral sum rules there is no cor-
responding effort for the few-body multichannel
scattering problem. The one exception we know of
is the paper by Wright on the generalization of
Levinson's theorem to the three-body problem hav-
ing fixed total angular momentum J. In the present
study we shall describe a variety of three-body spec-
tral sum rules. These rules are stated for both local
regions in coordinate space and in their global form
for all of space. In this global form, they constitute
higher-order Levinson's theorems. The sum rules
are given for both integer and complex powers of
the total energy variable. Throughout this discus-
sion the two-body interactions are assumed to be lo-
cal potentials that are smooth and decay at large
distances, but are not necessarily central.

Our general approach is to employ the recently
developed high-energy asymptotic expansion of the
coordinate space N-body Green's function, ' togeth-
er with known analyticity properties of these
Green's functions in the complex energy variable.
Time-delay theory is then used in the description of
the local version of the sum rules.

Section II summarizes the aspects of three-body
scattering theory needed in our subsequent analyses.
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Section III obtains the sum rules for integer powers
of the energy. Finally, Sec. IV extends the rules to
complex power moments of the connected Green's-
function discontinuity across the real energy axis.
The Appendix contains the definition of time-delay
suitable for the three-body problem in finite space
regions.

II. THREE-BODY THEORY

In this section we summarize the known results
from three-body scattering theory that are required
in our derivation. In the center-of-mass coordinate
frame the positions of the three spinless particles
are given by the Jacobi variables x, y . The vari-
able x is the vector separation of the particle u
from the center of mass of the cluster (P,y). The
remaining independent coordinate variable y~ gives
the vector separation of the constituents P and y of
the a cluster. The canonically conjugate momenta
related to x and y are denoted by p and k .

Let ma (a = 1,2,3) be the masses of the three par-
ticles, then

n = ma(mal+mr )/(m +my+mr )

represents the reduced mass of particle a and clus-
ter u. The kinetic energy of this relative motion is

p /2n The . cluster a has reduced mass

iLl a =my mr /(my +mr) and an internal kinetic-2 r
energy given by k /2p, where k is the internal
momentum of the fragments of cluster a. With this
notation the free three-particle kinetic-energy Ham-
iltonian Hp is

2 k2 2 ~2 ~2

Zn 2p 2m~ 2m2 2m3

The position of the three particles can be stated in
terms of any one of the three Jacobi systems
(a =1,2,3). Clearly Hp is invariant with respect to
the choice of a. Associated with the invariant Hp
is the coordinate space metric invariant

a 2 Ia 2 1
p = x + g = (mlrl+ mzr2m+p 3)3,

mp mp mp

(2.2)

where r &, r2, r3 are the individual position vectors of
particles 1,2,3 in the center-of-mass system, and

mp ——mlmlm3/(m]+m2+m3)2

The six-dimensional vector (x, y ) is denoted by

P

The dynamical behavior of the three-body prob-
lem is governed by the various Hamiltonians the
system admits. Let V represent the local potential
acting between particles f3 and y. So in coordinate
space we have

V (x„y )=u (y ), (2.3)

where it is assumed that va( y ) vanishes as

~ y ~

~op. More specifically, we suppose that u

belongs to the class of short-ranged interactions
that Faddeev used in his proof of asymptotic com-
pleteness. In terms of Va we may define the fol-
lowing Hamiltonians:

H =Hp+V, a=1,2, 3

H=Hp+U, U= g Va .

(2.4)

(2.5)

These Hamiltonians are linear operators on the Hil-
bert space 4 of square-integrable functions over
the six coordinate degrees of freedom x,y . Since
the potentials vp and vr are decaying, H~ will ap-
proximately govern the time evolution of the three-
particle system if particle n and cluster a are far
apart.

Consider the Inultichannel M@11er operators that
define two-Hilbert-space scattering theory. We
begin with the two-particle subsystems contained
within the three-particle problem. Let h be the
two-particle Hamiltonian for particles P and y, and
let Pa; be a unit normalized eigenfunction of ha
having binding energy —X~,;, i.e.,

1
hara, i ka + pa iI a, i

2pa

co'+'= s-lim e e
ih t —ih t

t~ —oo

(2.7)

where ha =k /2p . In formula (2.7) e and
—ih 0

e ' are the unitary time evolution operators for
the Hamiltonians h and h, respectively. The
symbol s-lim denotes the strong limit in the two-
particle Hilbert space. The operator co~+' is an
isometry on the space L (y ) having a range that is
the orthogonal complement of the linear subspace
spanned by the bound-state wave functions I iI); j.

The three-body Mufller operators are defined in a
way similar to the co~+', except that the channel

2
&a, isa, i &—= I» 3

The index i labels the distinct eigenfunctions of ha.
The scattering solutions defined by h are given in
terms of the Mufller wave operator
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structure is introduced via a channel identification
operator J;. For each stable two-particle cluster

we define a channel Hilbert space by
A ~;=L (x~). The identification operator J~;
then maps each f~; EA ~; into an element of 4
by

pendix. At this point we furthermore introduce the
connected resolvent difference. For complex energy
Z we define the resolvents R(Z) and R (Z) by
(H —Z) ' and (H~ —Z) '. We then decompose
R (Z) into a point spectrum part and an absolutely
continuous spectrum part, viz. ,

(~,;f,;)(x,y )=P;(y )f;(x ) .

In terms of the J; the wave operators are

,
'+'= s-lim e' 'e Ja, l&~—oo

(2 &)

(2.9)

R (Z)=Rp(Z)+R„(Z),

where

R„(Z)=g 0 +'0'+ R(Z)
a,i

(2.13)

(2.14)

In both (2.7) and (2.9) it is understood that the argu-
ment of the exponential function is divided by the
rationalized value of Planck's constant fi. The mul-
tichannel wave operators 0'+ map functions from
an incident channel space 4; into the full space

Next, we recall the form asymptotic completeness
takes in terms of the wave operators. Denote the
normalized eigenfunctions of H by

H%;=ET;, i =1, . . . , N3 (2.10)

v(X)= dx dy~(ce .
X

(2.12)

For an incoming scattering state in channel ai,
with energy E and incident plane-wave direction p
there exists an on-shell time-delay operator
q«(E;X). The operator q«(E;X) maps L (p~)
into L (p~ ) and is defined in detail by its
momentum-space kernel representation
q;(E;X;p,p ' ). The definition of multichannel
time delay together with the explicit formulas for
these momentum-space kernels are stated in the Ap-

where N3 is the total number of three-body bound
states. We suppose that the strength of the poten-
tials u do not assume the exceptional values that
lead to the Efimov effect, ' whereby N3 ——oo and
the point spectrum has zero energy as an accumula-
tion point. Take 8 to be the projector onto the sub-

space spanned by (4;j. Then the statement of
asymptotic completeness is

(2.11)
a,i

where t denotes the adjoint between the spaces
4 ~; and A . The completeness statement (2.11) is
that defined by the Hamiltonian pair (H,HD). Re-
lated completeness statements are defined by the
pairs (H,Ho).

Finally, we summarize the spectral property of
multichannel time-delay theory. ' ' . Take X to
be an arbitrary region of the six-dimensional coordi-
nate space having finite Lebesgue measure

and

Rp(Z) =BR(Z) . (2.15)

Let Tr be the trace on the space A, and let tr be
the trace on the space L (p~) (a=0,1,2,3). The
spectral property of time delay relates then the trace
of ImR(Z) to the traces of q; (E;X) in the follow-
ing way: For each energy E and each finite region
X one has

2 TrP(X )ImR (E +io )P(X )

' g trq~;(E;X ), (2. 17)
a,i

where P(X) is the projection operator for the space
region X. If E is less than the threshold in channel
a,i then the term trq;(E;X) is zero. The right-
hand side (rhs) of Eq. (2.17) is, of course, the total
time delay in all channels a,i for scattering states
with energy E. The left-hand side (lhs) is 2' times
the change in the total density of continuum states
having energy E, with support on X. Identity (2.17)
can be derived using the momentum-space
behavior of the kernels of q;(E;X ), or alternative-

ly by using trace-class methods and direct-integral
representations of Hilbert spaces. ' In the limit
X~ 0o, both members of equality (2.17) can be re-
lated to the three-body S matrices.

III. INTEGER MOMENT SUM RULES

We begin with an investigation of the behavior of
the resolvent kernels R(Z), R (Z), and Ro(Z) in
coordinate space. In particular, we want to obtain
the large-Z expansion for these kernels. Let us re-

The orthogonality and completeness properties of p
and O'+ 0'+ justify the decomposition (2.13).
The absolutely continuous connected resolvent
difference R (Z) is then

R(Z)—:R„(Z)—Ro(Z) —g [R~(Z)—Ro(Z)] .

(2.16)
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call that the problem of obtaining the high-
temperature expansion of the heat-equation kernel
is completely solved. ' Given H as defined by Eq.
(2.5), the kernel of the operator e ~ has the fol-
lowing asymptotic expansion in the inverse tem-
perature variable P:

(3.1)

where the free heat kernel is the standard expression

e '(p, p')= exp — (p —p')
(4irqP )

(3.2)

Here, the metric length squared (p —p ') is given

by formula (2.2). The basic quantum scale factor
for the system is

q=
2m 0

The coefficient functions P„(p,p ') are completely
determined in terms of the three-body potential U.
These functions satisfy a simple recursion rela-

tion. i" In Ref. 21 ihe recursion relation has been

solved to provide a parametric integral formula for
all P„(p,p '). The P„(p,p ') are polynomials of or-

der n in the potential and certain coordinate-space
derivatives of the potential. Furthermore, they are
polynomials of order 2(n —1) in Planck's constant
A'. Our final results require only the diagonal value

p=p' of these coefficient functions. We denote
this value by P„(p).

The resolvent R (Z) is obtained from the operator
e ~ by Laplace transforming. Take 0(H) to be
the spectrum of H then R (Z) is given by

R(Z)= f dPe ~e ~, ReZ&info(H) .
0

(3.4)

This operator identity has the following kernel

ofm:

Both Eqs. (3.1) and (3.6) are uniform asymptotic ex-
pansions with respect to p, p' having values in
some finite region of coordinate space.

The integrals in expression (3.6) can be explicitly
evaluated. Representing Z by the polar variables
Z =

~

Z
~

e', where OE- [0,2m. ), and setting
(5, =

~ p —p
' ~, these integrals can be written as

[recall Eq. (3.2)]

I„=f dPe ~P" exp( —b, /4qP)
r

2
- n —2 Z 1/2 —1/2g

E ( i(Z—' ' 6))Z"-' 2
"-' ' q

It (Z~)
~( eve/2H())(ein/2Zr)
2

—a &argZ &—
2

(3.&)

the analytically continued form of integral I„ is

vari ( —1)" Z'/ qIn=
ZPl —2 2

~H(i) (Zi/2 —1/2g) (3.9)

for all Z &II. In this way the expansion (3.6) now
reads

R (Z;p, p ')

Z 'q
P P

n=0

(3.7)

where E„2 is the modified Bessel function of the
third kind. Formula (3.7) is valid for
8&(n. /2, 3ir/2), or equivalently for ReZ &0. Let
II = Iz:ZFA'+[ be the Z plane with a cut along
the positive real axis. The result (3.7) can then be
extended to the domain H by analytic continuation
in the following way. Introducing the Hankel func-
tion H"', connected to E by

(3.5)R (Z. i) d13 zP PH( ~ ~r)—
0

XH()) (Zi/2 —)/2g) (3.10)

Inserting the asymptotic expansion (3.1) into the
transform (3.5) gives us an asymptotic expansion
for the resolvent kernel

R(Z;p, p')- g P„(p,p')( —1)"

.=0 n!

)& f dPez~)(3"e '(p, p') .

(3.6)

where the constant a is given by (4')
To proceed further it is useful to understand the

behavior of the first few terms in the series (3.10).
Consider the exact and free resolvant kernels
R(Z;p, p') and RQ(Z;p, p') [the latter is exactly
given by the n=0 term in the expansion (3.10)] as
functions of p and p

' for fixed Z. By using well-

known properties of the Hankel functions we see
that the n=O term in expression (3.10) is propor-
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tional to
i p —p

'
~

for p '~p. The second term
n=1 is also singular in that limit and behaves like

i p —p'
~

. Finally, the n=2 term goes then as

lni p —p'i. In fact, all this singular behavior is
confined to the real part of the functions
R (Z;p, p ') and R0(Z;p, p '). Their imaginary part
is always nonsingular as p~p'. For n &3 the
terms in the series (3.10) are no longer singular.
Thus by subtracting the n =0,1,2 terms from
R (Z;p, p ) in (3.10), it is possible to define a regu-
larized Green's function that has a smooth, well-
defined diagonal value.

Since the spectral sum rules involve the change in
the total continuum-state density, we need to ex-

pand the connected resolvant difference given by

R, (Z)=R(Z) R—()(Z) —g [R (Z) —R()(Z)] .
a&0

(3.11)

For the resolvent R (Z) we employ the expansion
(3.10). In the case of the resolvent R~(Z) (a )0),
defined for the Hamiltonian H, this expansion is
just Eq. (3.10) with P„(p,p ') replaced by P„(p, p ').
The notation P„(p,p') means that the potential
entering the expressions for P„(p, p ') is V~ ( x~, y ~ ).
So the connected resolvent difference (3.11) allows
the expansion

R, (Z;p, p ') am-i g, P„'(p,p')—
7l =2

1/2 —1/2
H(1) (Zl/2 1/2g)

2 n —2 (3.12)

where I'„' denotes the connected coefficient function

P„'(p,p ') =P„!p, p ') QP„(p—,p') .
a&0

(3.13)

Here we have used the fact that the n =0 term for R, (Z) clearly vanishes. Furthermore, the n = 1 term is also
zero because of the linearity of P1(p, p ') in the potential, viz. [see Ref. 21, Eq. (2.23)],

1 1

P;(p, p')= J 4 UNp+(I —k)p'] —g I 4 V. [kp +(1—g)p']=0. (3.14)

This last result is a consequence of the assumption that the total three-body potential U is a sum of pairwise
forces. If U has a true three-body force then P(+0.

The last stage of the derivation is to use Cauchy's theorem to extract the sum rules from the analyticity of
R, (Z;p, p '). Let N be a non-negative integer. (It will be the order of the sum rule. ) For a fixed value of p
and a given N we consider the analytic function

P„'(p)
F~(Z;p)=Z r(Z;p) ag-3nn —1 n —2 Z" —2

where the term r (Z;p ) is the diagonal value of the regularized connected resolvent difference, viz. ,
r

r(Z p)= lim R (Z p p') — P'(p p')H"'(Z'/q '/ b, )

(3.15)

(3.16)

The terms n =3-N +3 are the diagonal values of the corresponding terms in Eq. (3.12), namely,

N+3 1/2 —1/2 N+3
pc( ~ ~i) I Z q ~ H(1) (Z 1/2 —(/2g) y (& ). Pc( ~)

(3.17)

where we have used the standard small argument
series expansion for the Hankel functions.

The function F~ (Z;p) is analytic in-the domain
II —= IZ:ZEo.(H)I. Since Fz(Z;p) contains the
first X+ 3 terms in the asymptotic expansion of
R, (Z;p, p'), the order of the next term will be
Z . This means that the large-Z behavior of

I

F~(Z, p) will be

F~(Z;p)=O( iZ i
2) . (3.18)

fdZ F~(Z;p ) =0 . (3.19)

Cauchy's theorem then states that for each closed
contour whose interior is within II,
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Decompose the closed contour into two segments

C& and C„, as indicated in Fig. 1. First we infer
from Eq. (3.18) that the total contribution around

Cz vanishes in the limit I ~ 00. Secondly, we cal-
culate. the contribution from the point spectrum
part of r(Z; p) by using Eqs. (2.13)—(2.15) to write

CQMPLEX ENERGY PLANE

(3.20)

In that way we obtain

f dZZ Rp(Z)(p, p)

N3

=2@i g (E;) ! 4;(p)! . (3.21)
FIG. 1. Contour in the complex energy plane around

the spectrum of H.

Note that there is no restriction about the location
of the point spectrum. It may coincide with the
continuous spectrum. Next we discuss the subtrac-
tion terms in Eq. (3.15). Their contribution to C& is
finite and is straightforward to evaluate as a line in-

tegral from I io to—I +io Only . the n =N+3
term is nonzero, so

diaz~

P 1
p'(-)

3 n (n —1)(n —2) Z"—

=2ni P~+3(—p }, (3.22)+

where b =(N+3)(N+ 2}(N+1). Finally, we
determine the contribution from the rest of r(Z;p)
Utilizing Eq. (2.16) we set

r(Z;p) Rz(Z;p, p)—= lim [R(Z;p,p') 2miaPz(—p, p')IIU"(Z' q
' 5)] .

h, —+0
(3.23)

(3.24)

we arrive at

Take —X~ ~ to be the threshold energy for three-body scattering. Then, with the use of the refiection property

R(Z~; p, p ') =R~(Z; p, p '),

f dZZ [r(Z;p) Rz(Z;p, p)]= f—, dEE 2i[I Rm(E+io;p, p) ——,naPz(p)] .

Adding all these results we get

N3f, dEE 2[ImR(E+io;p, p} —,naP2(p)]= —2n. g (E;) !%—';(p)! — P~+3(p) .
a, 1 i=1

(3.25)

(3.26)

This identity holds for each value of p. Consider the precise form of the function Pz(p). From Ref. 21, the
formula for Pp(p) is

P2(p )= U(p ) —, qb pU(p), —

where 6& is the six-dimensional Laplacian. Because the Laplacian term is linear in the potential we have

Pz(p)=2+ g u (x )u~(x&) .
a p&a

The PN+3(p ) on the rhs of Eq. (3.26) can be obtained in a similar way, e.g. , formally

(3.27)

(3.28)

P3 =6u~upur+ 3 g g U~up —q g g U~kpup —q g g Vpu~'Vpup .
a p+a a pea a p&a

In order to introduce time delay into the sum rules we integrate Eq. (3.26) with respect to p in an arbitrary,
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but finite, region X. If P (X ) is the projection operator for this region [see Eq. (A2)] then

f dp ImR(E+io;p, p)=TrP(X)ImR(E+io)P(X) . (3.30)

The rhs of equality (3.30) may be replaced with the trace of the three-body time-delay operators by the spec-
tral property (2.17). Thus Eq. (3.26) implies the spectral sum rule

f, dEE A' 'gtrq;(E;X) — f P2(p)dp

N3

(4n q) (N +3 )(N +2)(N + 1)

I'J(p}= f dp, (a)e' (3.32)

Statement (3.31) is the principal result of this pa-

pei. For every space region X having finite Lebes-

gue measure and all integers N)0, the sum rule

(3.31) gives the precise inter-relationship between

the ¹henergy moment of the time-delays of all

open channels and the energy-weighted probability
for finding the bound-state wave functions in the

region X. A spresented in formula (3.31) the form
of the sum rule has several features found earlier in

the study of sum rules for classical scattering. The

validity of expression (3.31) in arbitrary regions of
space was first observed in the classical rules. ' The
presence of the surface term Pz+&(p) is also a
characteristic of the classical rules in even-

dimensional spaces. ' '
The derivation just outlined for identity (3.31) is

clearly heuristic. The step that is most difficult to
make rigorous is the demonstration of the fact that
the estimate (3.18) is uniform in argZ. Assume that
the potential interaction can be written as the
Fourier transform of a signed measure p(c7), having
finite bounded variation, i.e.,

where

(3.33)

For potentials of this class it is not difficult to
prove the following. Let Zo be a point on the neg-
ative real axis to the left of the spectrum of H.
From the Laplace transform (3.5) one can establish
that the statement (3.18) is valid if
arg(Z Zp) E—(m /2, 3n/2) F. urt.hermore, this re-
sult may be extended by analytic continuation [us-
ing integral (3.5)], if the real parameter P is rotated
in the complex plane. Thus, for every 5 )0 one can
obtain that (3.18) is valid in the domain
arg(Z —Zp) E(5,2~ —5). Our derivation, however,
assumes the stronger result that (3.18) is also valid
for 5=0.

The global sum rules follow from (3.31) if the
limit P(X)—+I is taken. Since this limit, for trace
quantities, has not yet been rigorously characterized
in three-body time-delay theory for all possible
channels (see the Appendix), we state the result in
terms of TrImR(E+io) Thus the r. ule (3.31) has
the global form

f, dEE 2TrImR(E+io) —f dpP2(p)
X ] (4mq)'

dp PN+, (p) . (3.34)
(4n q) (N + 1)(N +2)(N +3)

Note that TrImR(E+io) on the lhs of (3.34) can also be written in terms of the three-body S matrices. In
this form (3.34} the sum rules constitute higher-order three-body Levinson's theorems.

IV. FRACTIONAL MOMENT SUM RULES
Fp(Z; p) =r(Z; p } —,P3(p)——(4.1)

Let us derive the forms for the complex power
moment sum rules. Starting from the formulas
(3.15) and (3.16), we obtain by setting N =0

Next, we recall that the function Fp(Z;p ) is analyt-
ic for all Z EII, i.e., for all Z away from the spec-
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trum of H. So for the contour shown in Fig. 1, we
have that

fdZZ +'I'Fo(Z;p)=0, (4.2)

where 0&A, &1 and pEA'. Using these constraints
and the fact that Fo(Z; p ) behaves as Z for large
Z, one obtains that the C& hne-integral contribution
to (4.2) is zero in the limit I ~ ao. In this way we
see that all the nontrivial contributions to the in-

tegral (4.2) are associated with the Cz line integral.
Consider first the point spectrum contribution to

C„. Clearly, this is

dZ Z +'"R~(Z)(p, p )

3

=2ni g (Ei)~+'&
~
VJ(p)

~

2 . (4.3)

Secondly, the continuous spectrum contribution
to C„ is defined as the sum

I II= f dE(E+ig)~+'~F0(E+iri;p) —f, dE(E ig)—+'"Fo(E iq—;p),
Xa 1 X~

(4 4)

where Fo denotes Eo minus the po1nt spectrum component of the Green's function. In terms of the notation
of Sec. II it reads

Fo(Z;p):—lim [R(Z;p, p ') , avriP2—(p—,p ')H'o" (Z' q
' b, )]— ,

P3(p)—
g~p

Representing Z +'I' in polar variables with the origin at Z =0,
(E+iq) +'"=(E +ri )' +'"' exp[i(A+ip)ar, ctan(g/E)],

and defining

T(E+ig;p ):exp[—i (A, +i@)arctan(ri /E)]FO(E +iri; p ),

(4.5)

(4 6)

(4.7)

we can write the integral I in the form

I= f, dE(E +ri )' +'I'r [T(E+iri;p) exp[2~i—(A+i@)]T(,E+iri;p)*] . (4.8)
Xgg ]

To obtain Eq. (4.8) we have also employed the reflection property (3.24). In terms of the real and imaginary
parts of T(E +iq; p ) the curly bracket part of Eq. (4.8) can be written as

[ [ =—2i( —1) +'"si n(A +ip)vr ReT+2i ( —1) +'"cos(i+i@)vr ImT . (4 9)

The last step in this calculation is to take the limit ri~0 and I —+Do in the definition of I The bound. ary
values of ReT(E+iri;p) and ImT(E+ig;p) are found to be

ReT(E+io; p) =G (E;p) —,P3(p )——
where

G(E;p) —= lim[ReR(E+io;p, p ')+ , arrP2(p, p ')Yo(—E' q
' 6)]

lL—+0

with Fp the Bessel function of the second kind, and

ImT(E+io; p) =ImR(E+io;p, p) ——,avrPz(p) .

(4.10)

(4.11)

(4.12)

Substituting Eqs. (4.9), (4.10), and (4.12) into Eq. (4.8) gives us the value of I for ri =+0 and I = oo. Alto-
gether, expression (4.2) becomes the identity

—2( —1) +'"sin(k +ip)m f, dEE +'" G(E;p) —P3(p)——
+2( —1)~+'"cos(A+i@)nf, dEE. +'"[ImR(E+io;p, p) ——,arrPz(p)]

l X

N3
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The relations (4.13) for all A, E(0,1) and all (M &98 constitute the general complex power sum rules. It is
seen that these rules couple the discontinuity of the imaginary part of the connected resolvent difference with
that of the real part of the regularized resolvent difference. Identity (4.13) holds for each p. The rules for
finite-space regions or the global-trace form can be obtained by integrating (4.13) with respect to p. In addi-
tion the higher-order complex rules can be derived similarly if Fo(Z;p ) is replaced by FN(Z; p ).

In particular, we note that the complex rule (4.13) has no surface term on the right-hand side as does the in-

teger rule [e.g., Eq. (3.26) with N =0]. The mechanism of this discontinuity arises from the imaginary part of
the Z term present in Fo(Z; p ). This term is explicitly the integral

r
dE (E2+~ 2)(i(.+lp}/2

X ]

'?l

E2+~
2

times the constant —a (3!) 'P3(p). This integral may be evaluated and gives

(4.14)

q
~+'" —2F)

'9

2—A, —ip+2 1 3 I
2 '2'2'

x'a, 1 —A, —lp+2 1 3

2 '2'2'

(4.15)

The hypergeometric function 2F&, behaves as [I+(rig) ] '~ for a large argument, thus the rt —+0 limit is
well defined. The result may then be written

1r(-)r ——+——i2 2 2 2

I ——+1—i
2 2

(4.16)

This factor gives zero in the rl —+0 limit if A, &0 and p, E9F But if (Lt.=O and A, =O then this term is exactly
the surface term appearing on the right-hand side of Eq. (3.26).

Returning to the general behavior of the complex rules, one case of special interest of (4.13) is the rule for
]

A, = —, and p=0, viz. ,

N3J,, «&'" «I'P) ——„P3() )E = X l&j I'"Iq'i(PI'
a, l j=1

(4.17)

Since in this case the cos(A+ip)m , fact,or vanishes we see that only the real part of the connected resolvent
difference appears in statement (4.17).
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APPENDIX

In this appendix, the definition of multichannel
time delay appropriate for the three-body problem
is given. A detailed account of time delay, its spec-
tral property and the relation to the logarithmic
derivative of the S matrix can be found in Refs. 16
and 26—32. Here we recount only enough of the
general theory in order to specify the time-delay
operators q;(E;X ).

(t) e iHtII (+)f— (Al)

for an incident state fa; EA a;. Take P(X) to be
the projection operator in A on the region X, viz. ,

T

[p(g)f]( )
f(xa ya) tf (xa~ya)E~
0 otherwise .

(A2)

Then the transit time of Ii;(t) through the region
X is given by the integral

I dt
I
IP(x )(I';(t)

I
I' . (A3)

Consider a fixed finite region X, and an exact
time-dependent wave-packet solution of the
Schrodinger equation
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The corresponding "free" transit time for the in-

cident state f, ; is generated by the time evolution
under Ha rather than H and is represented by the
integral

f dtIIP(x)e ' J;f;II'.

Doing the time integration in both the expressions
(A3) and (A4) gives an energy-conserving delta
function and provides us with a time-independent
operator whose matrix elements give us the differ-
ence of the transit times (A3) and (A4). Specifical-

ly„ for al& a g 0,

(f., ; Q. , (x)f.,;)= f «[IIP(x)q'. , ;«)ll' —IIP(x)e J, f, II']

where the momentum-space representation of Q~;(X ) is given by

6 E'
(f, Q, (x)f, )= f f dv dv'f', (p' ) q. , (E»AA)f, (v ) .

naPa
(A6)

In formula (A6), E and E' are given by p /2n —X; and p~ /2n„—I;;fr„,p' are the unit direction vectors

defined by p~, p', and q;(E,X;p',V ) is the kernel

q;(E,X;P',P )=hn v [Q'+ P(X)Q'+ J;P—(X)J~;](p',p ) . (A7)

The right-hand side of Eq. (A7) is the momentum-space kernel defined by the operator

Q~+ P (X )Q~+' —J~;P(X )J~;. The momenta appearing there are those restricted to the on-shell momenta in
channel ni specified by the energy E.

The e =0 case is the three-particle collision initiated from an incoming state of three asymptotically free
particles. An arbitrary incoming wave packet may have a component that leads to the collision of two parti-
cles while the third is a remote noninteracting spectator. This is not a true three-particle scattering and so the
definition of time delay should remove the contribution of these disconnected three-particle collisions. So
from the difference

T(fo)—= f «[IIP(X)e ' 'Qo+'foll' —IIP(X)e 'foll']

we subtract

T.(fo) = g f «[IIP(X)e ~.'+'foll' —IIP(X)e 'foll'1,
a&0

where W'+ ' is the two-body wave operator for the system (P,y) in the three-particle space 4, viz. ,

8'+'=1 ~'+)a —a a

(A8)

(A9)

(A10)

with co~+' defined by Eq. (2.7) and 1~ the identity operator on the space A «. This defines the connected
time delay for a region X and an incoming channel a =0. The time-independent operator Qo(X ) for this pro-
cess is then

(fo Qo(X)fo)=T(fo) —T (fo)

Let po denote the six-dimensional momentum pair ( p, q ) and

+2. ~2 $ 2
P0 pa ka

+
2m 0 2na 2P

With this notation the kernel for Qo(X ) is

5(E E')—
(fo,Qo(X)fo)= f dpodpofo(po), qo(E X'Vo Po)fo(Po)

Pl0P0

(Al 1)

(A13)

where the on-energy shell operator is (E =go/2mo ——Vo /2mo)
(+)~

q (E,X;po po)=hmopo Qo+ P(X)Qo P(X) g [8 + P(X)8 + P(X)] (po, po) .
a&0
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Here (po,po) is the spherical coordinate description
of the point po. Formulas (A7) and (A14) provide
explicit momentum-space kernel representations of
qa;(E;X) and qo(E;X). They are valid for all E
and any finite measurable set X. However, modifi-

cations of these formulas need to be introduced if
one wants to analyze the limit where X becomes all
of the six-dimensional space. For more details we
refer to Refs. 16 and 28 —30.
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