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Feedback oscillations of stimulated Brillouin scattering in plasmas with supersonic flow
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Long-time stimulated Brillouin scattering oscillations may occur in subcritical plasmas with su-

personic flow against the incident wave owing to a feedback of the scattered radiation. They are
studied in the frame of both the parametric approximation and the mode-coupling theory.

In the present paper stimulated Brillouin scattering
(SBS) in an underdense plasma is investigated under
the condition of a supersonic plasma flow against the
direction of the incident wave. The buildup of an
underdense plasma plateau with supersonic flow velo-
city has been suggested by several theoretical models
of laser-plasma interaction. ' Although no direct ex-
perimental evidence has been given, the observation
of blue-shifted SBS signals may be interpreted as
an indication of supersonic flow.

Treating SBS as resonant three-wave interaction
between the electromagnetic (em) pump wave, the
back-scattered em wave, and an ion-acoustic wave,
supersonic plasma flow against the pump causes a
change in the sign of the ion-wave group velocity. In
terms of the parametric approximation this means
that SBS changes from an absolute to a convective
instability.

In this paper we show that a feedback, produced by
a low-level double reflection of the scattered wave at
the boundaries, changes the character of the instabili-

ty to become absolute again. Moreover, for certain
phase-jump conditions the feedback gives rise to
long-time oscillations (compared with the ion-acoustic
period) of the reflected signal. These oscillations are
studied in terms of both the parametric approxima-
tion and the three-wave interaction model. Calculat-
ed periods for typical parameters cover the range of
both SBS6 7 and higher-harmonic intensity oscilla-
tions ' observed at time-resolved measurements at
laser-plasma interaction.

As shown in Fig. 1, we consider a uniform plasma
region of length L and density nu & n, (n, critical

density with respect to the pump frequency tup). A
supersonic plasma flow against the incident wave
(velocity va & —v„v, ion-sound velocity) is assumed
to be present.

The mode-coupling equations are

~E+ ~E++ v+ — = —y+qE
Bt QX

9E 9E—v =y q'E+,

+ vq = yqE+E"
6t ' Bx

where v+= v = cd, vq = vo+ v, are the group velo-
cities and y+ ——y =0.25tuono/n„yq = 0.25tu, are the
coupling constants. E+, E are normalized by
m tuovr/e; co, is the ion-sound frequency belonging
to kq =2koJe, where ko is the pump vacuum wave
number, vq is the electron thermal velocity, and
q = 1 —n u/n, . In deriving this system, the electric
fields of the pump wave, the back-scattered wave,
and the density perturbation Sn/no of the lovq-

frequency wave have been assumed to vary as
Re{E+(x,t) exp[i(k+x —tu+t)]], Re{ iE (x,t)—
x exp[i(k x —cu t)]], Re{q(x t) exp[i(kqx —quqt)]],
respectively. The frequency and wave-number
matching relations are

0)+= 0)p = QJ + QJ&

k+ kode k +kq k

with co& = co, +keep.

PARAMETRIC APPROXIMATION
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FIG. 1. One-dimensional plasma model.

First, we consider the initial development of the
instability, where the pump amplitude is much larger
than that of the two other waves. In this approxima-
tion the system (1) is reduced to the pair of linear
equations

BE BE
gt 9X

q'Ep ~

Bq Bq+vq =yqE Ep,'Bx
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where E0 is the constant pump amplitude and v~ is
negative (supersonic flow). For the boundary condi-
tions E(L,t) =Ez and q (L,t) = qL, system (2)
describes a convective instability ~here the stationary
states are determined by the noise levels EL, and qL, .

Taking into account partial reflection of the back-
scattered wave at the boundaries leads to a feedback
condition in the following way, . Reflection at the
left-hand boundary generates a wave with amplitude
RpE (O, t) that propagates without interaction (no
resonance) parallel to the pump. Another reflection
of this wave at x =L creates a nonzero boundary
value
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FIG. 2. Solutions F =f(Q) of Eq. (4) with Rf as parame-
ter (ReF—solid line, ImF—dashed line). (a) Rf & 0, (b)

Rf & 0; in this case ReF is zero.

E (L,t) =R pRzE (O, t) = RE (O, t) (3)

of the scattered wave at the right-hand boundary; in
this way a feedback is established. [Rp(Rz) is the
left-hand side (right-hand side) amplitude reflection
coefficient. ] For nonabsorbing plasmas the feedback
factor Rr =RpRz is real (—I ~ Rt ~ I). When a

plasma of lower density is adjacent to the left-hand
boundary, the sign of Af only depends on whether
the density at the opposite side jumps to a lower

(Rg & 0) or a higher (R~ & 0) value. The latter case
(Fig. 1) simulates a density configuration with lower
(subcritical) and upper (supercritical) density shelves
self-consistently coexisting with the incident radia-
tion. ' 4

To solve system (2) we use the ansatz E, q'
~ exp[i (ECx —Qt) ]. Together with the feedback re-
lation (3) and the boundary condition q (L,t) =0 we

get from Eqs. (2) a linear homogeneous algebraic
system which has a nontrivial solution only if the re-
lation"

Rr cosp+ i—sinp =exp(ictF). F .
(4)

is fulfilled. Here, the following notations are used:

(F2 Q2) t/2 F QL — . I Ig I

2

E2L2

v-+ lv, I

Because the ion-sound velocity is much less than cue
for fairly underdense plasmas, we have I v, I « v,
e.g. , o, = 1. Introducing the expressions for the
group velocities and coupling constants we get finally

the instability. Whereas for R& & 0 (and Q
& In2/Rt ) a purely growing mode (ReQ =0) dom-

inates [Fig. 2(b)], the most unstable mode in the
case Af ( 0 is accompanied by a nonzero real part
IReQ I

& ImQ [Fig. 2(a)]. That is, the intensity of
the scattered radiation oscillates for Af ( 0 with a
period T given by T = n/ReQ.

To illustrate the results we chose the following typ-
ical parameters:

Rr= 001, M= —2, np/n =03
Ep=0.25, kpL =25(2n') (6)

10

IRl2

10

This set gives Q = 7.5; from Fig. 2(a) we find theri
ReF = 4.5, ImF = —1.1 which corresponds to a
period and a growth rate of

rp, T = 80, y/ru, = 0.07

respectively. A direct integration of system (2) with
the parameters (6) and q(x, 0) =10 "produces the
temporal evolution of the reflection coefficient
IR (t) I

= IE (O, t)/Epl shown in Fig. 3. After a
transient phase both period and growth rate are in ac-
cordance with (7). Figure 4 shows the spatial ampli-
tude structures of the decay waves at maximum and
minimum reflectivity. At maximum reflectivity the
amplitudes decrease almost exponentially [Fig. 4(a)],

kpL Je 2 np Ep (kpL)
~, II+~I '

n, gII+~l (5)
104

where M = vp/v is the Mach number.
Figure 2 shows solutions of Eq. (4) in the form

F =f(Q) with Rr as parameter. In all cases we
found absolutely growing solutions (ImQ & 0) if the
pump intensity exceeds a threshold. The sign of Rf,
however, has an essential influence on the nature of
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FIG. 3. Temporal evolution of the reflection coefficient
IR (t) I

= IE (0 t) I2/Ep2 obtained by numerical integration

of the parametric equations (2) with the parameters (6),
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FIG. 4. Spatial structure of both the scattered wave am-
plitude E and the density perturbation q at (a) maximum

(~,t =350) and (b) minimum reflectivity (ao, t =394)' A, p is
the pump vacuum wavelength.
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but note the small negative values of both quantities
caused by the feedback condition (3). In the subse-
quent time evolution the negative density perturba-
tion grows simultaneously in space and time owing to
the combined action of negative group velocity and
the instability mechanism, shifting the zero of q with
nearly ion-wave group velocity towards the left-hand
boundary. As a result reflectivity decreases. At the
minimum ( lR l' = 0) the competing contributions of
the density perturbation cause complete phase annihi-
lation of the scattered radiation.

According to the relation

L
R= ) q(x) dx

following from Eq. (2) with BE /Qt =0, lR l2=0 is
equivalent to

r L

q(x)dx =0 .
al 0

For Rf & 0, obviously, phase-reversed density pertur-
bations do not develop and consequently system (2)
admits only purely growing solutions.

RESULTS OF MODE-COUPLING THEORY

If the unstable decay waves become comparable in
amplitude to the pump, the parametric approximation
breaks down and the subsequent evolution must be
described by the full mode-coupling system (1),
which particularly includes pump depletion. Since Q
is proportional to Ep, pump depletion is expected to
produce lower values of Q, that is, larger oscillation
periods. Indeed, a numerical solution of the full sys-
tem (1) for the parameters (6) yields a period of
m, T = 110 after saturation, in contrast to ao, T = 80
during the initial phase. Figure 5 shows calculated

FIG. 5. Saturated oscillation period vs plasma length for
two flow velocities (M =—2, —4); other parameters as in (6).

oscillation periods after saturation as a function of
the plasma length J. (linear dependence). The group
velocity scaling proved to be T ~

l I+M l
'. These

results can well be fitted by the relation

koL Je
(8)

4 II+ml
In terms of (5), this means lReF l

= 4. From Fig.
2(a) (Rf = —0.01) we see that lReE l

= 4 is just
reached near to the threshold (ImE =0). Actually,
with increasing Rf the threshold is shifted to lower
values; ReF at threshold, however, remains nearly
unchanged. Therefore, formula (8) provides an ac-
ceptable estimation of the saturated oscillation
periods independently of the feedback factor Rf.

In addition to the mode-coupling calculations the
fully nonlinear basic system (HF wave equation and
ion fluid equations) has been solved numerically for
various parameter combinations. The results confirm
the main characteristics of the long-time SBS oscilla-
tions discussed above.

DISCUSSION

Values of ao, T = 100 correspond to periods of
T =25 ps for Nd and T =250 ps for CO2 laser light,
respectively, assuming v, /c = 10 '. Such oscillations
have been observed in several laser-target experi-
ments at time-resolved measurements of both SBS '
and harmonic radiation

2 o)p, 2eup, . . . . ' There-
fore, we suggest that SBS feedback oscillations may
be responsible for these burstlike phenomena.
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