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We present a sequence of variational principles for scattering problems consisting of
functionals of fractional form. Schwinger’s variational principle and the functional re-
cently proposed by Takatsuka and McKoy are discussed as special cases. For high
scattering energies a correspondence to the Born series is established.

I. INTRODUCTION

Variational methods are a powerful tool in the
treatment of scattering problems. In general, these
methods can be divided into two groups: one is
based on the Schrodinger equation and contains,
e.g., the classical principles of Hulthén' and
Kohn?; the other is based on the Lippmann-
Schwinger equation and contains the Schwinger
variational principle.® The first group of variation-
al methods, usually referred to as “standard varia-
tional principles,” requires trial functions which
satisfy the standard scattering boundary conditions.
For the second group, the boundary conditions are
taken into account through the Green’s function
and, for this reason, need not be incorporated in
the trial functions. Therefore, these variational
methods allow for L2 approaches. The corre-
sponding functionals can further be cast into a
fractional form which has the advantage that mul-
tiplication of the trial function by a constant does
not change the value of the functional. For these
reasons (and others as well), the second group of
variational principles is intrinsically superior to the
corresponding standard principles. However, their
applicability is limited by numerical problems:

The matrix elements involving the Green’s func-
tion are extremely tedious to compute.

In two recent publications,*> Takatsuka and
McKoy have proposed a functional of the second
group which does not contain the Green’s function.
This functional thus combines the merits of the
variational principles based on the Lippmann-
Schwinger equation with the advantage of compu-
tational simplicity.

The method of Takatsuka and McKoy has been
formulated as a variational principle for the phase
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shifts. In Sec. II of this paper we will formulate a
generalization of the method for the scattering am-
plitude which contains no partial-wave expansion.
On the basis of this formulation we will then dis-
cuss the behavior of the functional for high
scattering energies. It will be shown explicitly that
the functional reproduces at least the third Born
approximation if plane waves are inserted as trial
functions.

Finally, in Sec. III, we will discuss a hierarchy
of variational functionals which contains the
Schwinger principle and the method of Takatsuka
and McKoy as special cases.

This paper is concerned only with potential
scattering, i.e., the simplest situation in scattering
theory. Extension to more general cases is possi-
ble, e.g., following the application of Schwinger’s
variational principle to multichannel scattering.®
As usual, exact quantities are denoted by a bar
throughout this paper; wave functions without a
bar are always variational trial functions. Thus,
the Lippmann-Schwinger equation which deter-
mines the exact wave functions reads

|G = 1K) +GHV |9 (1)
for “outgoing wave” boundary conditions, and
W =K | +4B7 | V6l 2)

for “incoming wave” boundary conditions. The
Green’s operator is defined by

G lim 1

e—0+ E—H0+i€ (3)

with the kinetic energy operator H, and the
scattering energy E. The “normalization” of plane

waves is chosen such that (7| k)=e*'T,
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II. VARIATIONAL PRINCIPLE OF TAKATSUKA AND MCKOY

We first consider the functional
FLoy i 1= (7 VGV | K + (K | VGV [ 9))
— (N VGV VG T VG Y |yt . @)

For small variations around the exact wave functions we find F to be stationary, i.e., 8F =0. By inserting
the exact wave functions in the functional F we can establish a relation to the exact scattering amplitude; us-
ing the Lippmann-Schwinger equations (1) and (2) we find

— -y = - - - - 2t - — -
F=FUg7 0 1=K, |V ) —(Kp |V | K == =5 F (K | V| KD
Thus we can formulate a bilinear variational principle for the scattering amplitude by

1= =5 P 14Ky | VK ()

Transition to a variational principle of fractional form is easily made by replacing |#{*’)— a|¢{*’),
(z,b}" | —B{ 1/;}“) | and subsequently inserting the variationally optimized parameters a and 8. This yields

m [ (K VGTWV 9w | VGV | K))
2 | (Y | VGIT Y VG VG Y | i)

[f]=— +(K |V k) |- (6)
If a partial-wave decomposition of |¢{*’), (¢(f‘) |, and f is carried through, then the functional (6) reduces
to the expression for the phase shifts given in Ref. 4.

In actual computations it is most convenient to construct trial functions not for the functions | i) and
(1/;}“) | but, instead, for the functions

|¢:):=G PV ), (7a)

(Br:=C | VG, ™. (7b)
By use of the identity

W VGV —VG TGV |9y =7 [(Gy) '~V | ¢;) = (s |E—H | §;) (8)

(which is correct provided |¢;) and (@ | are not plane waves on the energy shell), we finally obtain the
following expression:

m <Ef|V'¢i>(¢f|V|1—{i>
h <¢f|E—H|¢i>

[f1=—7 —(Kp |V |k |- )

This variational principle does not require the trial functions |¢;) and (¢, | to satisfy any particular
boundary conditions even though the functional does not contain the Green’s function. Besides this advan-
tage, Takatsuka and McKoy have been able to show that anomalous singularities can be avoided in a simple
way and that a minimum principle can be formulated under certain conditions.* First applications of the
functional (9) have yielded extremely encouraging results.’

It should be noted that the exact solutions |@;) and (@, | are given by

18) =GPV |97 )= 18— | k)
and

(| =(B57 | —(kp | .

This means that the functional (9) essentially represents a variational principle for only the scattered wave.
Let us now investigate the behavior of the functional for high scattering energies. By inserting plane
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waves as trial functions
[ = 1K), (7| =Ky |
ie., |
|80 =GV | Ki), (9] (k| VG, (10

we obtain for the scattering amplitude
—1

[f1P = — (kr| VGt vGity | k;)

(kp | VGV | k;)

_m_

20

(Kp [ VGPV [ K;)- [1— +(Kp | V| &)

If the quantity
(K | VGSPVGT WV | K) /(K | VGV K ) |

is considered to be small (this should be the case for high scattering energies), the term in the inner brackets
can be expanded, yielding

1P == S (K | VKD + Ky | VGV KD+ Ky [ VG VGV [ Kid - - ) s - (an
The series agrees with the Born series up to third order. This result promises a high reliability of the varia-
tional principle (9) for high scattering energies as well.

III. HIERARCHY OF VARIATIONAL PRINCIPLES

In this section we investigate the sequence of functionals

F 95 i 1= (7 | (VG | k) + (k| (VG |9 H))

— (U | VGV — VG P [ ¢ t)), nEN . (12)
Following the arguments of Sec. II, we find
8F, =0
and
- - n—1 bud . —
Fn=—2—,’;ﬁ2—f— S (k| (VG k) .
j=0

Thus we can formulate a sequence of bilinear variational principles by

~. n—1 — N —
[Fla=—5 [Fl7 014 3 (K 6 VY K | (13)
2 j=0
The corresponding variational principles of fractional form are given by
m (K[ (PGS | i) | (VG | k) mgt iy

=_ + 3 (k| (VGIPYY | k) | . (14)
== W VGV —v6{H vy [ ¢t) zo 717G, .
For n=0 we obtain the Schwinger variational principle

(K |V |97y | V[ K;)
e m SV IO WY, 5

ot (Y |V —vet Y [ 9)

For n=1, Eq. (14) yields the variational principle discussed in Sec. II.
For practical purposes it may be advantageous to express the functionals [f], in terms of the trial func-
tions | ;) and (¢, | [see Eq. (7)]. This yields the following sequence of variational principles:
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m [ (K (VG =V | 9,) (¢, | (VG 1V | k;)
20r#? (¢7 | (VG P\~ UE —H) | ;)

n—1

[fl.= + 3 (K| (VGSHVY K | (16)

j =0
All these functionals are of fractional form, and no specific asymptotic form is required for the trial func-
tions. For higher values of n, these variational principles are clearly of little practical value. However, it is
interesting to note that each [f], contains the Born series to nth order in the interaction potential. There-
fore, the remaining fractional part can be interpreted as a variational estimate for the higher orders of the
Born series (at least in the case of high scattering energies). In fact, if plane waves are inserted as trial func-
tions, the fractional expression yields two more orders of the Born series so that the variational estimate for
the scattering amplitude agrees with the Born series up to order (n +2) in the interaction potential:

. . 1_(' |(VG(+))n+1V|E> -1
(pw)=__m__ (k (VG(+))nV k)' 1_< £ [ _'1
1= =5 | (K GV |, Ky VG5V X))
n—1 _ . —
+ 3 (k| (VGIHYY | k;)
j=0
z__m_nil(Ef|(VG(+))jV|Ei>=fB(n+2)' an
211'ﬁ2 j=0

In conclusion, we note that the functional [f]; proposed by Takatsuka and McKoy is distinguished from
all other functionals [f], by the absence of the Green’s function. Therefore, it permits the use of more
elaborate trial functions. If the particular trial functions (and the available computer storage) allow the cal-
culation of matrix elements containing one Green’s function, then either Schwinger’s functional [f], or the
new functional

[l (K| VGV | 8) (s | VGSTV | X))
2 2 (67 | VGHUE —H) | ;)
may be used. For low-energy scattering it is difficult to decide which functional should be preferred. In the
case of high scattering energies, [f], is definitely superior to Schwinger’s functional since it reproduces the

Born series to fourth order in the limit of plane-wave trial functions while the Schwinger principle yields
only the second Born approximation.

HCES |V KD +(Kf [ VGV KD (18)
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