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The simplest molecule is treated theoretically using hyperspherical coordinates. It is argued,

and demonstrated semiquantitatively, that the adiabatic body-frame approximation in hyper~-

spherical coordinates is nearly identical to the Born-Oppenheimer approximation.

Significant progress toward an understanding of
two-electron correlations in atoms has resulted from
an adiabatic treatment of the Schrodinger equation in
hyperspherical coordinates. ' This adiabatic approach
begins by replacing the six coordinates of the two
electrons ( r &, r,) by a hyperspherical radius
R =(rt2+r22)' ' and some choice of five angular coor-
dinates Q. This choice of a collective radius R gen-
eralizes readily to any number of particles with arbi-
trary masses ml, as emphasized by Smirnov and Shi-
tikova and by Pano:

R2= xmlr2/M

where r& is the distance between the i th particle and
the center of mass. Here the choice of the propor-
tionality constant M is not crucial, but usually it is
taken to be the total mass of all particles. It is impor-
tant that R2 be proportional to the total moment of
inertia of all particles, as the kinetic energy operator
is separable for this choice only.

The success of Refs. 1—7 in treating adiabatically
the evolution in R of a doubly excited wave function
has been remarkable at low energies, despite the ab-
sence of any obvious physical justification for the ob-
served adiabaticity. In the more familiar context of
diatomic molecules, an adiabatic treatment of the nu-
clear coordinates is justified by the observation that
electron velocities are typically much larger than nu-
clear velocities. ' It should be instructive, therefore,
to compare the adiabatic hyperspherical treatment of
H2+ with the more familiar Born-Oppenheimer treat-
ment. " This comparison is the purpose of this Brief
Report. The main conclusion, to be amplified below,
is that these two approximations are very nearly
identical. A qualitative analysis, coupled with an ex-
ploratory calculation, points to this result. In view of

our relatively fragmentary experience with the
hyperspherical method to date, this agreement is
reassuring and lends credence to the use of adiabatic
hyperspherical treatments in other contexts. '

To begin with, consider an electron in the field of
two protons separated by a distance rrr. (Atomic
units will be used throughout. ) As a simplifying ap-

proximation, the molecular center of mass will be
taken as a purely nuclear center of mass, which is the
midpoint between the nuclei. In this frame the
Schrodinger equation is

T

+ + +V(r, r ~) E$=0. —()2 I g2 1 N

2p BrN 2 Br 2pf 2f

In Ecl. (2), p,=M/2 is the nuclear reduced mass, r is
the distance of the electron from the nuclear center~2 ~2
of mass, while 1N and l are the squared angular
momenta of the nuclei and of the electron, respec-
tively. Moreover, a factor rrN has been extracted
from the wave function to eliminate first-derivative
terms in the kinetic energy operator. It is convenient
to introduce a rescaled radial variable

g=r/y

in which the dimensionless parameter y is defined by

y=(is/m, )' =p, 'i2(a. u. ) .

This brings the H2+ Schrodinger equation into the
form

lN+ — — — +V EQ=O . —
gr2 A/2 r2 g2

The transformation to hyperspherical coordinates can
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now be performed using the usual two-dimensional
transformation from Cartesian coordinates to polar
coordinates. The coordinates to be used in place of
(rN, g) are then

R =fg+g =rg+ r;—&=tan (6)

The Schrodinger equation now takes the form
r

g2
+U(R, 0)—E 4=0,

2p, $R2 8pR2

where the operator U is given by

U(R, 0)=—
2 z

— — +V(R, 0),g2

2p,R 80. cos 0| sin o. ,

(8)V-R'"y .

The qualitative properties of this equation are
readily apparent. Observe that the potential Vis at-
tractive only for r &r~. For larger electronic radii r
the Coulomb repulsion overwhelms the electron-
nuclear attraction. As a result the wave function will

usually be confined to very small values of
n=tan '(r/yr~), namely,

0.&p, ' =0.0330 rad.

Notice also that for this range r & r~, the hyperspheri-
cal radius R is nearly identical to the internuclear dis-
tance r~, to within small terms of order m, /M To
this same level of approximation the electron radius
is r =p, ' 'R 0,. From this discussion alone it is ap-
parent that the Born-Oppenheimer potential curves
(eigenvalues of H, ,„„)should be nearly identical

to the hyperspherical potential curves [eigenvalues of
U(R, 0)=H„.„„].

A more detailed comparison of these two ap-
proaches requires the solution of

U(R, 0)P„(R;0)=U„(R)P„(R;0) .

One method for solving for U„'Ol (R) starts from the
single-center expansion

P„''(R;0)= X YiA(r)g„'"(R u)
lW

(13)

This leads to an infinite set of coupled differential
equations in 0. for the g„'A, subject to the boundary
conditions that each g„'" vanishes at 0.=0, —m. These

coupled equations can be solved by direct numerical
integration, as described in Refs. 1 and 5.

Figure 1 shows the lowest adiabatic hyperspherical
potential curve obtained numerically by retaining ei-
ther the lowest two even parity terms in (13)
(1=0,2) or the lowest four such terms (1=0,2, 4, 6).
Also shown for comparison is the usual Born-
Oppenheimer potential curve for the H2+ ground
state. '6 The main result to notice is that for R &1 A,
where the truncated single-center expansion is ex-
pected to be realistic, the hypersphericat potential curve
is almost identical to the Born-Oppenheimer potential
curve. As R increases, of course, the single-center
expansion requires a very large number of terms if it
is to be realistic. This is the reason that the single-
center results deviate increasingly from the Born-
Oppenheimer results as R increases. Nonetheless,
these fragmentary calculations support the conclusion
that the hyperspherical and Born-Oppenheimer adia-
batic potential curves are very nearly the same.

It should be pointed out that exploratory calcula-
tions of the H2+ ground-state energy have been previ-
ously attempted by Whitten and Sims, ' without reli-
ance on either an adiabatic or a body-frame approxi-
mation. They experienced convergence difficulties
and reported no results because their basis set was

The nuclear rotation term in Eq. (8) is sufficiently
small at small 0, that it is sensible to exclude it from
the initial calculation of potential curves, with the in-
tention of including it perturbatively at some later
stage. This is accomplished by diagonalizing, instead
of U(R, 0), the operator

U (R, 0)=U(R, 0)—1~/(2pR'cos'a) . (11)

U

~-04—

-0.6

,4,6

1 1V=——
i r ,'uzi i r+—,'r—~zi

(12)

Physically this implies that the eigenvalues U+i (R)- (0)of U can be interpreted as "body-frame" potential
curves. In keeping with this point of view, the inter-
nuclear axis r~ will be adopted as the z axis in the
body frame.

The potential energy then has the form

R (A)

FIG. l. Adiabatic potential curves for the ground state
of H2+. The smooth curve is the Born-Oppenheimer

(BO) potential curve from Ref. 16. The two dashed
curves are the approximate hyperspherical results obtained
using a single-center expansion in the body frame which

retains either the lowest two terms or the lowest four
terms in Eq. (13).
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poorly suited to three-body systems with greatly
differing masses. ' The present coupled differential
equation approach is expected to bypass this problem
to some extent, although it does suffer from slow
convergence at large R The recently developed ap-
proach to three-body systems by Mignaco and Rodi-
ti, '8 using a hyperspherical harmonic expansion,
should suffer from severe convergence difficulties
analogous to those mentioned in Ref. 17, simply be-
cause it takes extremely high-order harmonics to con-
fine the wave function within small o, &p,

'

At very small radii, the two approaches differ con-
siderably. In this range the electronic orbital angular
momentum 1 is a good quantum number, and the
hyperspherical potential curves assume the limiting
form

(a) )
( &+2m„+2)2 c„

2p,R'

in which m„is the number of nodes in o. of
g'"(R o)

The presence of this R ' repulsion at small radii is
typical of hyperspherical studies. It represents a gen-
eralized angular momentum barrier' associated
with the kinetic energy in the radial correlation coor-
dinate 0, and in the angular correlation coordinate r" i.
No analog of this kinetic energy term is present in
the Born-Oppenheimer potential curves, since the .

nuclei are literally frozen in space, and accordingly
the Coulomb repulsion 1/R is the leading term at
small radii. The coefficient c„in Eq. (14) is the
average of the Coulomb potential over 0 (at R=1
a.u.) using the appropriate adiabatic wave function

@„(R;0).It is worth stressing, however, that the
small-R form (14) is applicable only for very small
radii R &p, ', and thus its deviation from the Born-
Oppenheimer potentials is not apparent over the usu-
al range of nuclear vibrations.

At large R instead, each of the hyperspherical po-
tential curves U~to' (R) converges to a hydrogen en-
ergy level,

I/t i (R) ~ I/—n +P(R )
R ~oo

The large-R discrepancy between the hyperspherical
and Born-Oppenheimer potential curves decays as
R 2. This discrepancy is discussed in another context
in the Appendix of Ref. 1, and it is largely canceled
when the nonadiabatic correction term
—($„~t)'$„/t)R') is added to the potential.

Owing to the limited accuracy of the present nu-
merical results, particularly at large R, it is impossible
to compare the hyperspherical and Born-Oppenhei-
mer adiabatic approximations quantitatively. This
task will be left for future studies.
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