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Pattern formation: A Landau-type analysis of symmetry breaking
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Instabilities in nonequilibrium systems described by deterministic differential equations
are investigated. Using group-theoretical arguments we find a rule similar to that valid
for the equilibrium case: A spatial pattern appears necessarily through a first-order tran-
sition if a cubic invariant can be constructed from the amplitudes of the slow modes.

I. INTRODUCTION

A number of far-from-equilibrium systems ex-
hibit instabilities leading to the formation of spa-
tial patterns. ' Familiar examples are the hydro-
dynamic instabilities, ' the pattern formation in
chemical reactions, ' the morphogenesis, ' the
Marangoni instability, some aspects of crystal
growth, the buckling of spheres &0 etc. A basic
feature of all the above nonequilibrium phase tran-
sitions is the spontaneous breakdown of symmetry:
as some external control parameter is changed, the
stable steady state of the system, which is invariant
under a symmetry group 6, loses its stability and a
new steady state appears which is invariant only
under a subgroup of G.

The simplest and best-understood examples of
symmetry breaking are found in systems exhibiting
equilibrium phase transitions. Since there is a
great deal of similarity between the equilibrium
and nonequilibrium phase transitions' "the
theory of the latter is largely inspired by the con-
cepts (order parameter, critical slowing down,
universality and the relevance of the symmetry of
the order parameter, etc.} and by the methods
(mean-field approximation, scaling, renormaliza-
tion group}' ' " ' worked out for equilibrium
systems.

An interesting chapter in the theory of equilibri-
um phase transitions is the symmetry analysis by
Landau': with the use of the invariance proper-
ties of the thermodynamic potentials, it is possible
to tell whether, in case of a given symmetry break-
ing, the order parameter could be continuous at the
transition point or, in other words, whether the
phase transition could be of second order. Al-
though Landau's predictions are obtained within
the framework of the mean-field theory, there are

only a few cases' ' when the inclusion of fluctua-
tions invalidates his results.

In case of nonequilibrium phase transitions, the
mean-field theory seems to be an even better
description (the critical region is expected to be ex-
tremely narrow") so it is natural to ask for the
counterpart of Landau's symmetry analysis. The
translation of Landau's results is not straightfor-
ward, however, since the nonequilibrium phase
transitions are described by nonliriear differential
equations and the symmetry breaking appears in
the mathematics as the bifurcation of the stable
stationary solution of those equations. The role of
symmetry in analyzing the pattern formations and
the corresponding bifurcations has already been
recognized. ' ' Near the instability point there
is a separation of characteristic time scales and, as
a consequence, the essential features of the phe-
nomenon can be described by a few relaxing
modes, and the possible forms of the equations of
motion for the amplitudes of the slow modes (or-
der parameter) are severely restricted by the actual
symmetry breaking. For example, special cases of
breakdown of the translational' and of the rota-
tional symmetries have been examined by Sat-
tinger. He constructed the equation for the order
parameter purely from symmetry arguments and
determined whether the order parameter could
change continuously at the transition point. He
also pointed out that the continuity properties of
the transition could also be investigated for more
complicated symmetries provided the equation of
motion for the order parameter possessed a gra-
dient structure, i.e., it was derivable from a poten-
tial.

Our aim with this paper is to carry out a
Landau-type symmetry analysis for nonequilibrium
phase transitions occuring in systems described by
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deterministic differential equations. We derive the
equations of motion for the slow modes making
use of their symmetry properties (Sec. II). Then,
without recourse to the possible gradient structure
of those equations, the stability properties of the
stationary solutions are examined (Sec. III) result-

ing in a necessary condition for the nonequilibrium
phase transition to be of second order. This condi-
tion is similar to that known for the equilibrium
case: the transition cannot be of second order if a
cubic invariant can be constructed from the ampli-
tudes of the slow (unstable and marginal) modes.
Some applications of this result are discussed in
Sec. IV.

II. SYMMETRIES AND THE CONCEPT
OF ORDER PARAMETER

Instabilities leading to the formation of spatial
patterns are usually described by an equation of
the following form:

where p(x, t) is a space- and time-dependent field
(e.g., the concentration of a chemical reactant, or a
temperature field) and I' stand for a nonlinear
functional of both p and its spatial derivatives.
The parameter A, is externally controlled; it charac-
terizes the reservoirs surrounding the system. In
most cases, p has several components but, for sim-

plicity, we start with the one-component case and
extend the results to many-component fields later.

Generally, Eq. (1) together with the given boun-

dary conditions is covariant with respect to the
symmetry operations of a group G'. It is supposed
that, for A, smaller than a critical value A,„the
steady state of the system, described by the stable
stationary solution po(x), is invariant under, gen-
erally speaking, a different group G CO'. At A,,
this state and the corresponding solution lose their
stability against infinitesimal perturbations. For
A. ~ A,„anew steady state is stable which is invari-
ant under a subgroup of G and the problem is to
determine whether the new symmetry could appear
through a second-order transition.

Since the order of the transition is connected
with the continuity of the order parameter, first
the concept of how the order parameter arises as a
consequence of the loss of stability of the sym-
metric solution, po(x), should be discussed. The
reasoning starts with steps analogous to those of
Landau's symmetry analysis: consider a solution

p(x, t) of Eq. (1). (Although the main interest is in
the steady states of the system, i.e., in the station-
ary solutions, the time dependence of p will be
needed to investigate the stability properties. ) One
expands p(x, t) into a complete orthonormal set of
functions. Under the transformations of G, these
functions transform linearly among each other, i.e.,
they form a basis for a representation of G. After
this representation is reduced, p(x, t) can be written
as

C(n) ( )(gn)C( )+nf( )(
I
nC(m)

I (3)

where the term linear in C "' is separated for con-
venience; thus, f "' is a sum of forms quadratic,
cubic, etc., in the variables C&

The transformation properties of C "' follow
from the fact that under the transformations of
group G the functions I 4,'"', i =1, . . . , m„ I
transform among each other according to the ir-
reducible representation I'"'. As is obvious from
Eq. (2), these transformations can be regarded as if
not the functions 4I"' but the coefficients C "'
were transformed. Taking this view, one concludes
that I C "', i = 1, . . . , m„ I transform according
to I'"'. Furthermore, the way Eq. (3) is construct-
ed implies that the transformation properties of

p(x, t) =po(x)+ g C "'(t)4I"'(x),
n, i

where I 4I"'(x), i =1, . . . , m„ I are the basis func-
tions of the irreducible representation I'"' of G.
Examples of 4,'"' for two illustrative cases of sym-
metry breaking, discussed throughout the paper,
are as follows.

Example A: Rotational symmetry is broken on
the surface of a sphere; 4 "' are the spherical har-
monics Ft (8,(p) with the correspondence l~n and
N1~l.

Example 8: Breakdown of translational and ro-
tational symmetries; plane waves of fixed wave-

length form the basis of an irreducible representa-
tion; 4~~"' correspond to e' " ' " with n~

~

k
~

and
i~k// k /.

It should be noted that the physical quantity
p(x, t) is real so if 4,'"' are complex, which is the
general case, there are constraints among the com-
plex coefficients C "' in Eq. (2).

Having introduced the expansion of p(x, t), the
system is described by the variables t C "'

I and
their equations of motion can be obtained by sub-

stituting Eq. (2) into Eq. (1) and re-expanding the
right-hand side into I 4,'"' I. The result is an in-
finite set of ordinary differential equations:
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f ' and C,""' are the same.
Since Eq. (1) and consequently Eq. (3) are co-.

variant with respect to the transformations of
group G C G', the coefficient of the linear term,
co"(A,), in Eq (3. ) is independent of i (Schur's lem-

ma). This means that in the particular case of
spherical symmetry (example A) co is independent
of the "magnetic index" m, while in example B co

depends only on
~

k
~

.
Additional information about co'"'(A, ) follows

from the stability properties of po(x). For A, & A,„
po(x) is stable against infinitesimal perturbations,
i.e., a perturbation 5p( xt) =g C,""'4,'"' will die out

provided the C "'s are sufficiently small, implying
Reco'"'(A, & A,, ) &0 for all n Th. e loss of stability of
po(x) means that Reco'"' changes sign at A,, for
some n =s and so Reco"Q, & A,, ) & 0. The corres-
ponding C "s trandforming according to I"grow
in a general perturbation, 5p, and a new stationary
state with nonzero C;"' appears. Of course, to have

a symmetry breaking instabi/ity, I"should not be

the identity representation.
Expanding co"(A, ) near A,„we have

erties of the stationary states, the amplitudes of the
slow modes I C," '

I
= u are together called the or-

der parameter of the system. The number of com-

ponents of the order parameter is given by the di-

mension m, of I"provided I"is real. If it is
complex then, due to the constraint of p(x, t) being

real, the dimension of the physically irreducible

representation is 2m, and so the order parameter is
specified by 2m, real parameters. For example, if
the spherical symmetry is broken (example A) and

the unstable mode is associated with the irreducible

representation I' ', the order parameter has 2l + 1

real components. The breakdown of rotational and
translational symmetries (example 8) is exotic in

the sense that the number of components of the or-

der parameter is infinite although the unstable

modes are associated with one irreducible represen-

tation. ' '

Having reduced the original problem [Eq. (1)] to
the equation of motion for the order parameter

[Eq. (5)], it is now possible to connect the symme-

try and stability properties of the stationary solu-

tions.

co"'(A, ) =a "(A,—A,,), (4)

where Rea" & 0 and the vanishing of Imco"(A, , ) is

the consequence of considering the formation of
time-independent patterns only (soft-mode instabil-

ities).
In special cases, it might happen that

Reco ~'~(A, & A,,) & 0 for several s =n i, . . . , nq

If none of I"is the identity representation, all of
our forthcoming conclusions apply to those cases
as well.

The modes described by C ' exhibit critical
slowing down. This leads to an enormous reduc-

tion in the effective degrees of freedom since the
slow modes govern the time evolution of the rapid-

ly relaxing variables C "', res, thus making possi-

ble the adiabatic elimination of the fast modes near

the instability point. The amplitudes of the slow

modes obey an equation similar to Eq. (3) but with

new nonlinear terms containing only the slow vari-
ables.

u =co(A, )u+ g(u), (5)

where the notation u = I C'i', Ci', . . . , C" I,S

co(A, ) =co"'(A, ) has been introduced. The nonlinear
terms, g(u), are generally smooth functions of A,,
therefore their A, dependence has been neglected.

Since Eq. (5) completely specifies the behavior of
the system near A,„including the symmetry prop-

III. SYMMETRIES AND THE STABILITY
OF STEADY STATES

At the instability point, the symmetric solution

(u =0) bifurcates into stationary solutions of lower

symmetry (u+0). For the corresponding transi-

tion to be of second order, the order parameter
must be continuous in the stationary state realized

by the system. Then, sufficiently close to A,„the
order parameter can be made arbitrarily small and

it is enough to consider Eq. (5) and keep the
lowest-order nonlinear term. Doing so, one finds

stationary solutions with continuously varying or-

der parameter but the conclusion about the order
of the transition does not follow yet. The stability

properties are to be investigated: if all the station-

ary solutions are found to be unstable then the

transition cannot be of second order since the fluc-

tuations, always present in reality, drive the system

out of the unstable state into a stable state and a

jump in the order parameter occurs (i.e., the transi-

tion is of first order).
One would expect that the actual physical situa-

tion (coupling constants) play an important role in

determining the stability of the stationary solu-

tions. There is an exception, however, when gen-

eral conclusions can be drawn about the stability

properties without recourse to the physical parame-

ters. This case is the simplest in the sense that the
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where B(u, u) is a set of forms quadratic in the
components of the order parameter. Of course, B
transforms according to the same representation as
u. We shall find a first-order transition in this
case, i.e., we conclude that a transition can be of
second order only if the symmetry of the order
parameter excludes the existence of a quadratic
term in the equation of motion, Eq. (S).

In order to prove that Eq. (6) leads to a first-
order transition, consider an arbitrary stationary
solution w:

0=co(A)w+B(w, w) .

To investigate the stability of this solution, one
must linearize Eq. (6) around w and calculate the
eigenfrequencies of the system. If at least one of
them has a positive real part, the solution is un-

stable.
The eigenfrequencies are determined as the

eigenvalues of the Jacobian matrix J formed from
the partial derivatives of the right-hand side of Eq.
(6) taken at w. The action of J on an arbitrary
vector v = ( v~, v2, . . . , v~ I, having the same

transformation properties as u, is easily shown to
be

Jv =co(A, ) v+2B(w, v) .

The instability of w for k~ k, follows immediately

from Eq. (8). Since the trace of J is invariant

under the transformations of group 6, it can be

written as

TrJ=m, co(A, ) . (9)

The contribution of 8 into TrJ vanishes because

the possible terms would be linear in w and it is

well known that no linear invariant can be formed

from quantities which transform according to an

irreducible representation of a group.
Since Reco(A, ) & 0 for A, & A.„the eigenvalues, q;,

of J satisfy the following inequality

Re TrJ= g Req; & 0 . (10)

Thus at least one of the eigenvalues of J has a pos-
itive real part, i.e., we have shown that all station-

ary solutions w are unstable for A, & A,
For completeness we also prove that all the non-

lowest-order nonvanishing nonlinear term is quad-
ratic, i.e., the equation of motion to leading order
is given by

u=co(A)u+B(u, u),

with the eigenvalue q~ ———co(A, ). For A, &A.„we
have Req& ———Reco(A, ) & 0 hence the above state-
ment follows.

As it has been discussed, the order parameter
might be more complicated; several modes belong-
ing to different representations might become un-

stable at A,,[Reco"(A,)A,,) &0 for s=n~, . . . , nz]
If none of the modes transform according to the
identity representation, the trace of the correspond-
ing Jacobian matrix can again be calculated easily
since the terms linear in the components of the or-
der parameter vanish:

s=n&
(12)

Then the inequality Re TrJ &0 follows for k & A,,
thus implying that all stationary states are unstable
above A, This conclusion does not change if one
of the slow modes is marginal [co' '(A, )

—=0] since
its contribution to TrJ is zero and the positivity of
Re TrJ is ensured by the unstable modes.

Thus the above Landau-type symmetry analysis
is summarized in the following rule. A transition
with unstable and marginal modes transforming
according to a representation I of G can be of
second order only if there is no quadratic form
constructed from the amplitudes of the slow
modes, which would transform according to the
same representation 1".

The group-theoretical formulation of this condi-
tion is that the symmetric square of I should not
contain I itself.

Yet another way of describing this condition fol-
lows from realizing that, if B(u,u) and u trans-
form according to I, then their scalar product
( u,B(u,u) ) is an invariant under the transforma-
tions of group G and, reversely, a quadratic form
transforming like u can always be derived from a
cubic invariant. Thus the transition is necessarily
a first-order one if a cubic invariant can be con-
structed from the components of the slow modes.

The existence of the invariant ( u, B(u,u) ) does
not mean that the equation of motion [Eq. (6)]
possesses a gradient structure. If, however, the tri-

trivial (w+0) stationary solutions of Eq. (6) are
unstable below A,, as well. Setting v = w in Eq. (8)
and using Eq. (7), one can see that w is an eigen-
vector of J,

Jw = —co(A, )w,
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linear form (u, B(u ', u ")) is completely sym-
metric in u, u ', and u ", then Eq. (6) is derivable
from a potential and the above rule is entirely
analogous with that of Landau worked out for the
equilibrium phase transitions. The complete sym-
metry of the trilinear form is ensured if the order
parameter transforms according to an irreducible
representation of a simp/e reducible group. This
case has been investigated in detail by Sattinger.
His results concerning the order of the transitions
are in agreement with the predictions following
from our rule.

There are, of course, limits to the validity of the
above results. First, even if the symmetry of the
slow modes would permit its presence, the quadrat-
ic form in Eq. (6) might vanish due to special
physical circumstances (an example is the convec-
tive instability in a Boussinesq fluid '). Secondly,
the starting point of our symmetry analysis, Eq.
(5), was obtained by neglecting all the fluctuations
of the unstable modes. Fluctuations might, in
principle, change a transition first order by sym-

metry, into a second-order one. We believe, how-

ever, that this happens rarely as in the case of
equilibrium phase transitions. ' '

Finally, two remarks are in order.
First, we have tacitly assumed that every irre-

ducible representation appears only once in the ex-
pansion of p(x, t) [Eq. (2)]. If this was not the case,
the linear parts of the equations for C "' and C;",
both transforming according to I'"', would couple
to each other and then an equation similar to Eq.
(3) could be obtained only after a diagonalization
procedure. From that point on, however, the ar-
gumentation and the final result is unchanged.

Second, p(x, t) might have several components,

p (x, t), some of them being scalars while others
transforming like the components of a vector or a
tensor. Then the expansion Eq. (2) must be viewed
as an expansion for every component. The coeffi-
cients C "' acquire a suffix n and the C "'s trans-
form according to I '"' in the suffix i, while they
transform according to some other representation
I of 6 in the suffix a. The reduction of the
direct-product representation I'"'&( I is extra work

but otherwise the reasoning is not changed and our
results apply to the case of many component p(x, t)
as well.

IV. DISCUSSION

As an application of the rule developed above,
we discuss now' the two examples of Sec. II.

A. Broken rotational symmetry
on the surface of a sphere

Cubic invariants can only be constructed from
quantities transforming according to the irreduci-
ble representation I'" with l even. Thus non-

equilibrium phase transitions occuring on spherical
surfaces (morphogenesis, Marangoni effect, buck-
ling of a sphere, chemical reactions, etc.) are al-

ways of first order if there are modes among the
unstable and marginal ones which transform ac-
cording to I' ' with i=2k.

This is a generalization of Sattinger's result
since we allow instabilities with slow modes
transforming according to a reducible representa-
tion. The growth of a spherical crystal provides a
typical example: the first instability is connected
with the 1=2 mode but the marginal l= 1 mode
should be also included in the analysis. As a
consequence, the existence of a potential is not
a priori ensured. Actually, an explicit nonlinear
analysis shows that, treating the l=1 and l=2
modes on equal footing, the equation of motion for
the slow modes does not possess a gradient struc-
ture. Nevertheless, our rule can be applied and the
prediction is that the new shape growing out of a
spherical crystal appears through a first-order tran-
sition.

B. Translational and rotational symmetry

is broken (Ref. 24)

In all known cases, the instabilities are associat-
ed with one critical wave number q, and, conse-

(q, )
quently, with one irreducible representation I
The components of the order parameter C-,

~
q ~

=q, transform among each other like plane waves
of fixed wavelength. Third-order invariants are
easily constructed from such quantities: the only
condition is that the wave vectors q „q2,q3( ~ q '

=q, ) should form an equilateral triangle. Thus
the formation of spatial patterns in a homogeneous
and isotropic system is expected, in general, to be a
first-order transition.

Even the pattern of the new steady state can be
predicted if the transition is only weakly first order
(there is only a small jump in the order parameter).
As it can be easily shown, the equation of motion
for C~ [Eq. (6)] can be derived from a potential.
Then, one repeats the argument by Alexander and
McTague about the minimalization of the third-
order term in the potential to arrive at the result
that the transition is into a body-centered cubic
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structure in three dimensions, while hexagonal pat-
tern is selected in the two-dimensional case. These
results are in agreements with finding obtained for
special systems. ' lt should be added that poten-
tial exists also in example A, provided the order
parameter is associated with one irreducible repre-
sentation I with I even. This case has been in-

vestigated in detail by Busse who found that an
axlsymmetric and a cubic pattern is selected for
1=2 and 1=4, respectively, while for l=6 the sym-
metry of the preferred state is that of an icosa-

hedr on.
As a summary, we can say that although the

nonequilibrium phase transitions are much more
complicated than the equilibrium ones, a Landau-
type analysis is equally useful in both cases.
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