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Accurate static structure factors, which take into account short-ranged (diffraction and

symmetry) quantum effects in a strongly magnetized electron-ion plasma, are introduced in

a guiding-center formulation. Quantum and classical analytic expressions are, respectively,

obtained for the hydrodynamic (Bohm) (P,&+Pq„-1/B)and the kinetic (a,~+a„„-1/B2)
contributions to the complete hybrid diffusion. (8 denotes the magnetic fields strength. ) In

a certain range of (B,T) parameters, one obtains Ilq„-a,~. Large B values are shown to ex-

tend the validity of a classical calculation.

I. INTRODUCTION

We are currently reviving the problem of the par-
ticle transport in a strongly magnetized and fully
ionized plasma. The experimental demands arise
mostly from three distinct and very important
areas: electron-positron plasmas in the pulsar mag-
netosphere, ' electron-hole plasmas in strongly mag-
netized and heavily doped semiconductors, and
transport in the vicinity of hot spots in laser-

produced plasmas.
The density and temperature domains thus con-

sidered are enormous: n, ranges from 10' to 10 '

cm, while T„the electron temperature, is located
between 10 and 10 K. Nevertheless, these systems
share in common a plasma parameter
A =Pe /A, n ( I and the ratio of the cyclotron to the
plasma frequency co, /co& & 1, where A,n is the Debye
screening length. Therefore, the thermal and parti-
cle transport across a steady magnetic field 8 are
expected to be driven by hydrodynamic modes at
long wavelengths and low frequencies (convec-
tive cells, for instance). The corresponding highly
nonlinear dynamics is now rather well understood

by making use of the two-dimensional Coulomb gas
as a starting point, which provides a rational for the
8 ' (Bohm-like) dependence of the observed trans-
verse diffusion coefficient Dz-eke T/eB. Dj is

completely explained in terms of the equilibrium

structure factors, when one introduces the guiding-
center approximation (GCA) for the motion of
charged particles. The time dependence of binary
electric-field correlations thus get drastically simpli-

fied. The main purpose of the present work is two-

fold:
Inclusion of the right amount of classical and ki-

netic contributions (-8 ) to the particle trans-

port, bg retaining the free streaming of the charges

along B. This goal is essentially achieved by adapt-

ing a hybrid formalism proposed by Vahala a few

years ago.
Introduction of the nonzero A corrections in the

hydrodynamic transport, through a detailed evalua-

tion of the equilibrium properties for a multicom-

ponent plasma where the bare Coulomb interaction
is replaced by the effective one which takes into ac-

count the diffraction (Heisenberg) and the symme-

try (Pauli) effects. The basic formalism remains

classical in any case. Actually, these small, albeit

significant, corrections are expected to improve
both the hydrodynamic and the kinetic contribu-
tions to D~. In this respect, we feel that the theory

developed here bears a particular concern to laser-

driven plasma, where huge magnetic fields are like-

ly to be produced near hot spots where noncolinear

density and temperature gradients may develop

megagauss-sized V n )& V T magnetic fields B during
a time interval of several tens of picoseconds.

From the practical theoretic point of view, the
most important transport coefficient, in relation
with the above-mentioned huge B values, is the
thermal conductivity, across the magnetic lines of
force, which is expected to control a deleterious out-

ward heat flow. The thermal conductivity is known

to be a many-body problem which is far more in-

volved than the particle diffusion coefficient D& it-
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self. We may conjecture, however, that in a large-
field limit pL, &A,z, or equivalently, 0; &co&, , the
two lie on an almost equivalent footing. Moreover,
in a case where Q; &co~;, Dz appears as an upper
limit to the thermal conductivity. In fact, a few
available pieces of numerical and experimental data
tend to support a heat flow intermediate between a
Bohm-like and a classical regime. We may thereby
expect to be capable of drawing useful information
from this more accessible quantity D&. For a CO2
laser with a wavelength of 10.6 pm, the critical den-

sity is'roughly of the order of 10' /cm . The latter
domain could become important in relation with re-
cent speculations about the possibility that a self-
generated intense magnetic field may penetrate,
frozen, into the denser region because of a high con-
ductivity prevailing there.

Section II is essentially a review of the hydro-
dynamic formalism, discussed in detail by
Montgomery et al. ' and by Vahala, of the dif-
fusion coefficient D) for the three-dimensional (3D}
guiding-center plasma. Upon evaluating the auto-
correlation function between the transverse com-
ponents of fluctuating electric fields, the electron-
electron, electron-ion, and ion-ion structure factors
intervene automatically, accounting for the above-
mentioned two quantum effects. They are derived
in Sec. III and are used subsequently in Sec. IV in
order to evaluate the quantum-corrected diffusion
coefficient. The last section is devoted to conclud-
ing remarks.

II. SURVEY OF THE
HYDRODYNAMIC FORMALISM

The Green-Kubo formalism for the linear
response theory provides the particle diffusion coef-
ficient Dz across an external magnetic field 8 as

Dj ——
2 f dr(E(r) E(0))

in terms of an equilibrium canonical average of the
two-point autocorrelation function for fluctuating
electric fields. Since detailed calculations of D) for
both the three-dimensional (3D) and the extend-
ed v-dimensional guiding-center (GC} plasma
models have already been thoroughly studied, we
here content ourselves to survey the underlying hy-
drodynamic formalism as concisely as possible. Let
x(r) be the position of a test ion at time r. Ignoring
the spatial correlation between the test ion and the
background plasma particles, we find Dz, in terms
of the Fourier components of E[x(r),r], as

2

L) $ f d $( E ~(7) E ~((}) ) (e i k ~ x (r ) )
k

(2)

Eq. (2) implies the essence of the GC approxima-
tion, in that the two statistical averages in Eq. (2}
can be expressed in terms of the two-time electric
field correlations, such that

and

2 . . 2(4~) e;ej k) 'k [ ( ) (0)l(E -(r)'E -(0)) = e ' & )v'
l,J

(3)

2I 2
(e'" "")k 0

——exp — f dr' f dr"(E~ ), (r') E~ ), (r")) (4)

where g, indicates the sum over all particles of the species i and j and Vis the volume of a system. k, k),
+

and k
~~

are the wave vector, its component perpendicular, and its component parallel to B, respectively. In the
3D case, the GC approach is tantamount to describing the spatial diffusion of the test ion through small in-

crements of x(r) and the velocity-space diffusion along B via the equations of motion

dx) 2 E)(t)XB dvi(=C (5)
dt g2 dt

E(i(t) .
m

The first of these two describes the EXB GC drift which is a good approximation in the limit of a zero Lar-
mour radius, i.e., (0;/(0~;) &&1. Note that the initial position x(0) of the test ion may be set equal to zero
and that its initial velocity obeys the Maxwell-Boltzmann distribution. We also remark that, upon evaluating

exp[i k.x(r)] with the aid of the cumulant expansion, an approximation is required to render tractable an ex-

pression with k~~
——0. When turning our attention to the low-frequency and long-wavelength parts of the elec-

tric field spectra, it is expected that a free streaming of the particles along B acts to destroy the electric field
correlation between two-time points. If we ignore E~ ~, we then obtain
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'(exp[i"'x(&}]~=exp( ~kllVir }, k

where V; [=(k&T/m; )' ] is the ion thermal velocity. Performing now the summation over i and j in Eq. (3),
we have

(E,(t) E,.(0) ) = g H, (k)e
k ~ok

II

1+ g z Hq(k) ) exp
k =OAj.

II

2 2

, f, dt' f, dt"(E,(t').E,(t"))

where n (=n;+n, ) is the total number density. The electron-electron, electron-ion, and ion-ion correlations
come into play through two functions H)(k) and Hz(k), both expressible in terms of the corresponding
structure factors S„(k ), S„(k ), and S;;( k )

r

Z —k2 V2t2/2 k2 V2t2/2
H, (k) e "II " 1+——nS„(k)+nS„(k)+e II

' [1+Z —nS;;(k }+nS„(k)]
(1+Z)'

(Sa)

and

Z2
H, (k, )=Z+, n( —S„—S,, +2S„),(1+Z)' (Sb)

I

the velocity-space diffusion coefficient DI~ is given
by6

00

Dll =
2 f dr(EII(r)EII(0))

where Z is the atomic number. S;J's which appear
in the above expressions are defined, as usual, in
terms of the pair correlation function g,z(r) through
the self-explanatory relation

i [xi(r) xf(o)]—
) g

1 i'd~
( )

ik. x
k, p y J

1—:5-„o——SJ(k), i' .kp y &J

The two quantun1 effects mentioned in the Intro-
duction are incorporated just in three StJ s which we
shall specify in the next section. Dj is then calcu-
lated by virtue of the mean dispersion of the posi-
tion of the test ion which reads as

2

R,(t)=, f dt' f dt"(E,(t"—t') E,(0))

(10)

with R) ( oo )=D) /2. Differentiating Eq. (10) twice
with respect to t and using Eq. (7), we obtain the or-
dinary differential equation

f 2
AD —2k2R~(t)

R) (t) =et, g 2 H2(ki )e
2k'

+eh Z, H((k t)e
—kIIv; t /2 —&IIDIIt

I @p 2k

where es (4n)e nc /B2——Vk~ . Also, in Eq. .(11),

(12)

kll+O

dk.
(2~)'

In view of the subsequent analysis of Eq. (11), we
find it convenient to introduce dimensionless vari-
ables by the transformations

z =8'ir —
2

and r=P cop) t,0; pI/2 Rg I /2

COD) A

(14)

where P =(2m'. D/L) and L (= V.
'

) is an average
size of the GC plasma. The volume-dependent
parameter P, as we shall see below, plays a crucial
role upon evaluating Dz. co&,- and 0; are the ion
plasma and the ion cyclotron frequencies, respec-
tively. Replacing the discrete sum by the integral
then gives the desired nondimensional equation

where &= 1 l(n&D) =4~Ze /ke T&D with

AD ke T/(4n nZ——e ). In the limit of a large
volume, the discrete sum over k can be transformed
into the integral through the identities

y 2/3

, fdk,
t =o (2n)

II

(13)
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r

d z (1+Z) ' " dx H (x)e ~+ 1 dy &d x H ( ) ((z+I )/2z+b&]H&/P
d7 2Z p x 2p'/ p vy p (x +y)2

(15)

where

2

1
Aln

A
b=

8 3/2p1/2

x =(klan, D), y =(ki(A,D)

For typical values of the total density n, and an
average size L, e.g., for the toroidal magnetized re-

gion of a laser-driven plasma spot, numerical values
of B-independent parameters A, P, Q, and b as a
function of T are given in Table I. Their order-of-
magnitude estimate suggests to us an approximation
to use in subsequent analyses. As for Eq. (15), two

I

remarks are in order: (1) Vahala's reasoning of
splitting into two parts of the second integral in the
right-hand side of Eq. (15), according to whether

y &[Aln(1/A)] or not, that is, whether the free
streaming along B is dominant over the velocity-
space diffusion or not, had the objective of em-

phasizing an important contribution from small but
nonzero y values in the competition between these
two processes. His rather forced argument can be
remedied in quite a natural way by a purely
mathematical requirement as will be discussed in
Sec. IV. (2) The upper limit Q or 1 in the first in-

tegral indicates that the original kz integration is
cut either kt,„ksT/e——(kinetic limit) or at
kt ——kD (fluid limit). Finally, by multiplying
both sides of Eq. (15) by 2dz/dr and integrating
once over ~ from 0 to oo with the boundary condi-
tions z (0)=z(0)=0 and z ( ao ) = ao, we obtain

1+Z 2 '"& dx
[z(ao )] =

2
—f 2 H2(x)+ l/2 f f dx f diaz(r)Hl(x, y, r)e

2Z g p 1/2 p y P (X +y)2 0

with g2 ——(1+Z)/2Z. Setting

1 (1+Z)' » & dx
(2 Z P x

and
(1+Z)' 1 & xf(yr) = dx Hl(xy r)

Z &y P (x+y)
we can write Eq. (17) formally as

(17)

(18b)

i(ao) &d "d 1
z(r) f (g2+br) ylp-

2P 1/2 P 0 '( )

=P+(a —y)z( ao ),

TABLE I. B-independent parameters A, Q, and b as a function of P [and of T through A, 2D, see the definition of p,
below Eq. (14)]. Also, parameters L = 10 pm and n = 102' cm 3. (n) denotes 10"in Tables I to III.

P
T

b

1.0 (—5)
4.584( 2)

7.844( —3)
1.027( 7)
2.700(—6)

50 (—5)
2.292( 3)

7.016(—4)
1.283( 9)
1.618(—2)

1.0 (—4)
4.584( 3)

2.481(—4)
1.027(10)
4.623(—3)

5.0 (—4)
2.292( 4)

2.219(—5)
1.283(12)
2.387(—4)

1.0 (—3)
4.584( 4)

7.844( —6)
1.027{13)
6.546(—5)

5.0 {—3)
2.292( 5)

7.016(—7)
1.283(15)
3.156(—6)

1.0 (—2)
4.584( 5)

2.481(—7)
1.027(16)
8.469(—7)



26 HYBRID BOHM AND CLASSICAL DIFFUSION IN A STRONGLY. . . 2917

where a and y are the coefficients of i( oo ) in the
second and the third terms of the right-hand side,
respectively. The above derivation implies that, un-

less exact values of i( oo } are known from a solution
of Eq. (15), correct evaluation of y is impossible.
Referring to the exact numerical results that we
shall discuss briefly in Sec. V, it is expected that
neglecting y compared to a gives an upper bound
for z( oo ) and that the parameter dependence of the
latter will not be seriously affected by this pro-
cedure. This is nothing else but Vahala's approxi-
mation. Thus, once K2(x) and Ki(x,y, r) are
known explicitly in terms of SJ's, we can evaluate a
and P approximately and obtain Di as

2

, Az(m)=aP'~z(oo) . (20)
o)~; A,ii (2m ) II;

III. QUANTUM-CORRECTED STRUCTURE
FACTORS

For more than a decade, much effort " has
been devoted to incorporating such quantum effects
as the diffraction correction and the symmetry ef-
fect through a temperature-dependent interaction
potential. These yield the quantum corrections to
the equilibrium properties of the classical one-

component plasma with a neutralizing background
of opposite charge. For the three-dimensional two-
component plasma it has been conjectured that the
quantum treatment was required to secure the sta-
bility of a plus-minus pair. Though this leads to an
appearance of bound states with negative discrete
levels, a mean thermal energy high enough to break
up most of bound states is responsible for a degree
of ionization close to unity. The two-body stability
will then be secured by the long-range Coulomb po-
tential, interpolated with the r —+0 limit of the wave
function of the plus-minus pair, which is restricted
to the interaction between ions and those electrons
in the continuum. An additional quantum-
mechanical requirement is that the Landau length
e Iks T becomes comparable to or smaller than the
electron thermal wavelength
[=iri/(2am, k&T)'~ ], which in turn should be
smaller than A,~. The importance of these effects,
shown earlier by de Witt through an exact quantum
many-body calculation, ' may well be transcribed
by replacing the classical Coulomb potential by the
effective temperature-dependent pseudopoten-
tia18, 13—15

+k~T ln2exp
1 r

m. ln2

'2'
, (21a)

Z2
e v2r/—k

) (21b)

2p 2

u;;(r)=
r

(21c)

where 8 is in units of MG and T in eV. The above
inequality limits a region of the TB plane, when we
calculate numerically such parameters as P,i and

Pq„asa function of T and B in Sec. IV.
Equations (21) show that quantum effects operate

upon electrons as well as between electron and ion
components. The first term in u„(r)involves the
factor e " which reflects the diffraction correc-
tion, while the second term stands for the symmetry
property. In view of the definition of SJ(k)'s as
given by Eq. (9), they are related, in the limit of
small A values, to the linearized pair correlation
function g J (r) through the relation

—f dr g,z(r}e '"'-=5k 0+—f dr v;J(r)e

Thus,

1=5- +—v"(k)k,0 y Ij

Sij(k) =v~(k), (22)

where v,j(k) is the Fourier-transformed resummed
pseudopotential. In the case of a multicomponent
plasma, consisting of n species of particles, the
resummed potential is given as an infinite sum of
chain graphs, in which a bond represents the bare
potential u;~ (r):

These expressions provide an excellent approxima-
tion to the effective potential in an intermediate-
and high-temperature regime where the two quan-
tum effects are safely decoupled from each other, so
that the wave function of the interacting electron
gas is given the symmetry of an ideal Fermi gas. A
last quantum-mechanical requirement for an ap-
pearance of the discrete Landau levels to be neglect-
ed is that fiQ, «k~T, where 0, is the electron
gyrofrequency. In a practical expression, this be-
comes

1.1577' 10 8 «T,
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uIJ(r)=c c+ g
are customary. %hen applied to a two-component
plasma (i,j is the electron, one species of ion}, we
first obtain

k, l = &

+ ~ ~

(23)

(24)

The sum over i and j extends over every species.
Fourier transforming Eq. (23) then yields

V(k) =U(k).[1+U(k).C]

4' A,g)u„(K)= +ce
K2( 1+g2K2)

SmZe A,D
uqI(Ic) =uie(K) =-

K (2+ii K )

4+Z e A.

u;;(K) =
K

(25a)

(25b)

(25c)

where U(k) and V(k) are the matrices composed of
the Fourier-transformed bare and resummed pseu-
dopotentials u;1 (k} and u;~ (k), respectively.
C =nCIf}IJ./kII T with C; ( =Xi/gj E~ ) the relative

concentration of the ith species. Other notations

where K=kAn, rl=k/in, a'=(n. ln2/4)i), and
c =kg T(ln2) / (mk) . Substitution of Eqs.
(25a) —(25c) into Eq. (24) then yields, after straight-
forward algebra, V(k), i.e., according to Eq. (12),
SJ(k). The results are

nS„(K)=npV, „(K)= 1

Z
1

r

Z1+K +g K +KI+Z

2
—CE K

(1+Z)(1+K2)
(26a)

nS„(K)= —2 1+q K

Z(2+i) K ) 1+K +g K +K1+Z

Z 2+K2
2(1+Z)(1+K')' 1+Z (26b}

nS;;(K) =Z Z, (1+Z)'(1+K')'
1+K +g K +K1+Z

(26c)

I r

where (=Zvr (ln2) / nX =Zm (ln2) / il A. Redundant as it is, we repeat that the parameter il refiects the
diffraction correction, while the symmetry effect is characterized by g. Since, as was stated in the preceding
section, we are concerned only with an order-of-magnitude estimate of these two effects, it is reasonable to as-
sume il, /&& 1 without worrying about which of the two is larger. We shall then retain terms up to the first
order in il and g in Eqs. (26a) —(26c). This procedure then demands that we should set a'=0, since, other-
wise, we are led to take into account those terms of the order gil and higher, which contradicts the assump-
tion. Bringing Eqs. (26) back into Eqs. (8) and linearizing the resulting expressions for H](K,r) and H2(K), we
then obtain

()ZK(g]yd/pZg2yd/p)
1+Z 1+K

r

Z2 g]yP/P rl K2[Z—+(2+Z)K ] K [Z+(1+Z)K ]
(1+Z)' 2Z (1+K')' Z(1+ Z)(1+K')'

(27a)

g2yr /P 71 K (1——IC )
2 2 2

K
2

+e , , +g(1+K')' (1+Z)(1+K2)'
(27b)

K
H~(K), ]=Z

1+K
2 2

( )
2 Z K ZK" 1~Z (1+K2}2

+
(1+.Z}2(1+K2P '

(28a)

(28b)
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where@ =x+y in Hi(a, r) and a =x in Hz(a). Also,

gi ——(m;/m, )gq ——(m;/m, )(1+Z)/2Z .

Suffixes cl and qu denote classical and quantum, respectively.

IV. EVALUATION OF i(00)

Now, using Eqs. (28) for Hz(x) in Eq. (18a), we obtain

(1+Z)'
Q, l ~ (29)

Q(1+P) Z q 1

(1+Q)P 1+Z 1+P

1 Z q g
1

1

1 g Q(1+P)
1+Q 1+Z (1+Q)P

1/Q, P «1

1 1

1+P 1+ Q

(30a)

1+P Z g 1 1 g 1+P 1 1
i ——Zln

2P 1+Z 1+P 2 1+Z 2P 2 1+Q
'g — + 111

1 Z r) ( 1 1

2P 1+Z 2 1+Z 2P 2
P«1 . (30b)

Pg and Pi, both B-independent, stand for the integral with the upper limit Q and 1, respectively. As is easily

seen from the definition, P depends on B only through the factor 1/a which is quadratic in B. Next, the in-

tegration over x in Eq. (18b), readily carried out, yields
T r

f( )
1+Z i/p

Z
Q +y (1 ) 1

1+Q +y
(

—s)~x&i'+ xi& x&~)—

P+y 1+P+y

—Zy ln +(2+Z+Zy) ln
1

2(1+Z) P +y 1+P+y

—2(1+y) 1 1

1+P+y 1+Q+y

z
—Zy ln +(1+Z+Zy) ln

(1+Z)' P +y 1+P+y

—(1+y) 1 1

1+P+y 1+Q+y

1 Q+y+(1 —)1 1+Q+y
2(1+Z) P +y 1+P+y

—2(1+y)
1 1

1+P+y 1+Q+y

—g &By/P.e

(1+Z)' P+y 1+P+y

1 1 —g~~x~~+(1+y) 1+P+y 1+Q+y
(31)

We then encounter the delicate problem of the r integration associated with the term exp[ —(g +br)r y/P]
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(32)

[see.Eq. (17)], which presumably led Vehala to argue that there must be a time ro at which two terms in the
exponent will be comparable, where, in the present context, we have either g=g1+g2 or g=2g2. This
amounts to stating that, for r &ro, the free streaming term related to exp( gr—y/P) is more important than
the velocity-space diffusion term exp( br—y /P) and vice versa. His ingenuous approach can be remedied, as
was already described in Sec. II, by a purely mathematical reasoning. Let us first observe that the same type
of integral' as ours, namely,

1/2
1 2vdec &' =— — e / &Ki/4(v /2p), Re@)0

0 4 p

e " Ki/4(g u/gb), u—:y/P

can be put, by setting 2v=gu and p =bu, into the form
1/2

d e
—(g+bH)r u g

0 4 b
(33)

which can be expanded either in the power or in the asymptotic series

' 1/4
3/2~ g'

41 ( —') 4bu

g'u
I.(-,') 4b

+ n ~ ~ glg u

gb
(34a)

1 2,~
4 u

3 4b

g2u
g 0
gb

') 1 (34b)

These expressions are easily recovered either by first expanding exp( bur ) in—the Taylor series and then in-
tegrating over r, a procedure which allows us to reach Eq. (34a), or by first expanding exp( —guH) and then
integrating, a procedure which leads to Eq. (34b). Going back to our integral, let us expand first either
exp( bud) o—r exp( —gus ) and then integrate over r. We obtain different expressions for the same I2 as

r

f'
d —(g +be )Hu

Jo

bn

(g 3u )n/2

1
"

( —)" 3n+1I
2(2gu)'/ „0n! 2

1 '"
( —)" 2n+1 (g u)"

)i/3
r

b 2n/3

b2
3-—( 1

g u

b2
3

&1
g Q

(35a)

(35b)

%ith these preparatory observations in mind, we can evaluate the ~ integral in the second term of the right-
hand side of Eq. (19), using Eq. (30). Retaining only two terms in the expansions given by Eqs. (35), we have

' i/2 -1/2-

f dyy i/2h, (y-) 1—

1/3

+—I — — J h2(y) 1—1 1 P ~ dy

3 3 b

1/3
1

I (-,')

+
2 2g2

1/2 ' 1/2
1 R

2i y
i/2 2 ~~ y

R)P

1/2 '1/2
iP&dyh

1
1 P+ ' yi/2 h2y 1— (36)

where R =b P/(2g2) and g =gi+g2-=(m;/m, )g2. Two functions hi(y) and h2(y) are obviously defined as
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the coefficient of exp( —gir y/P) and exp( g—zr y /P) in Eq. (31), respectively. The first line of Eq. (36) gives
the coefficient of exp( g—ir y/P) and exp( gz—r y/P) in Eq. (31), respectively. The first line of Eq. (36)
gives the contribution to a coming from the free streaming of electrons along B, while the remaining part is
related to the ion contribution. In a classical version, the former may be neglected with respect to the second
or the third term, by noting that the free streaming of electrons tends to rapidly destroy the electric field
correlations in this direction, because of the factor g

'~ =(m, /rn;)'~ . Here we have to retain this term, in

that, so small as it is, it could not be ignored with respect to quantum-corrected terms. Remaining elementary

y integrations easily carried out, we finally obtain
' 1/2

l 2me
a = V'n—Z(1.+Z) C +— D (37)4 Z m

where

D= —(Ing)~+ lnQln —— + (2+Z), (lnQ) + lnQln1 m 1 1 ir Q
P 12 2(1+Z) P 12 2P

2

(1+Z) z (lng) + lng ln ——
(1+Z)' P 12 2P (38)

1/6

C= —(Ing)~+ lnQ ln —— lnQ+ I ( —, )1 2 4
2 R 17

lng — +4~~R '"
12

—,(lng)z+ lnQ ln ——21n
1 Q

2(1+Z) ' R 2R
&, l. Q, R)P

12 (1+Z)' 2R
(39a)

=—(lng) + lng ln —— lnQ — +4~irP1 1 2 7T' 1/2
2 v~

—,(lng)z+ lnQln ——2ln — + z ln, R &P .1 Q m. g Q

2(1+Z) ' P 2P 12 (1+Z)z

Equations (37) and (38) are accurate up to the order
P' and/or R' which is smaller than unity and
such higher-order terms as 1/Q, P, P lnP, etc., have
been systematically neglected. This follows directly
from the definition of R, i.e.,

& P Z 1R= Aln-
(2gz)3 64m (1+Z)

=6.82)& 10
64m e

when

and that of P, i.e., P=(2vrA, ~/L) . Notice that a,
thus calculated, depends on three 8-independent
parameters Q, P, and/or R. Therefore, z(oo), as
given by the formal solution of Eq. (19), namely,

z(m )= —,[a+(a'+4P}'~']

depends on 8 only through P. By inspection of Eq.

1

(18a) for p and Eq. (16) for a, p is proportional to

(Q, /~, )z, that is, to 8 . This implies that, when-

ever 4p))az, z( ~ }-Vp and that, in the opposite

limit, z( oo ) -a. Correspondingly, Di is proportion-

al to 1/8 (Bohm-type) in the former case and turns

out to be of the classical type in the latter. Between

the two, i.e., when a -4P, a hybrid diffusion takes

place. In order to examine quantitatively these situ-

ations, extensive numerical analysis has been carried

out. For fixed values of L (characteristic plasma
size) and n (total number density), we have varied p,
which amounts to varying T (temperature). In
Table II, numerical values of i), i)/A, a,i (classical
part of a), and a~„(quantum part of a) as a func-
tion of P are tabulated. Since we are interested in
the parameter range where A «1, we first recog-
nize that the inequality aq„«o.d always holds. In
Table III, such 8-dependent quantities as a, P,i

(classical part of P), and P~„(quantum part of P)
are also shown as a function of P (horizontal) and
of 8 (vertical). On the left margin of this table the
upper number indicates 0;/co~; and the lower one
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TABLE II. 8-independent parameters q, g/A, a,&, and a„„asa function of P. g measures the diffraction correc-
tion and g/A the ratio of the symmetry effect to the diffraction one. For the definition of q and a, see the definitions
below Eqs. (25) and (19). Also, parameters I.=10pm and n =10 ' cm

P
T

g/A

1.0 (—5)
4.584( 2)

1.045(—6)
1.303{—1)
2.023{ 2)
4.959(—5)

50 (—5)
2.292( 3)

4.178(—8)
2.913(—1)
2.737( 2)
2.844( —6)

1.0 (—4)
4.584( 3)

1.045(—8)
4.120(—1)
3.601( 2)
8.137(—7)

5.0 (—4)
2.292 ( 4)

, 4.178(—10)
9.213 (—1)
3.847 ( 2)
4.304 (—8)

1.0 (—3)
4.584 { 4)

1.045(—10)
1.303 ( 0)
4.203 ( 2)
1.196 (—8)

5.0 (—3)
2.292 { 5)

4.178{—12)
2.913 ( 0)
5.060 ( 2)
5.825(—10)

1.0 (—2)
4.584 ( 5)

1.045(—12)
4.120 ( 0)
5.446 { 2)
1.527(—10)

the corresponding B values in gauss. We should re-
mark that there exists a domain where Pq„becomes
comparable to or larger than a,~. In view of check-
ing this rather surprising result, the ratio of Pq„/a,i
is calculated by virtue of Eqs. (37)—(39), (29), and
(30a). It is given by

1/2 ' 2
P,„~n, ao=16
CXd 2 Q)~.

k, r '"'
1+0.139 ln ——1

6'O P
(41)

lnQ lnQ+2ln—1

P
where ao (=iri /m, e =5.29X10 pm) is the Bohr
radius and eo (=m, e /2' =1 Ry) the ionization
energy of the hydrogen atom. Even if Q and 1/P
are much larger than unity, their logarithms are at
most of the order of several tens. Since ao/L is a
very small number (of the order of 10 5), the in-
equality Pq„/a,i & 1 may hold only if (0;/co~;)2 &&1
and AT/eo»1, that is, for extremely high tem-
peratures and very intense magnetic fields. On the
other hand, zigzag lines in the table divide the
parameter space spanned by B and T into two re-
gions; at their right side, degenerate Landau levels
need not be considered as a first approximation.
These lines are traced according to the inequality al-
ready discussed in Sec. III, namely, 0.0116B
(MG) && T (eV).

In view of visualizing all these features, several
figures are also presented. In Fig. 1, a is plotted as
a function of T, for different sets of parameters n
and I.. In Fig. 2, the variation of P vs P (abscissa)
and 0;/co~; (ordinate) is illustrated, where P is the
sum of P,i and Pq„.Note that in Figs. 2—4, the two
axes are scaled by the natural logarithms. Values of
P are normalized to unity by its value at P =10
and 0;/co&, ——10 . We see that, since P is propor-
tional to T through A,D, P increases rapidly in the
domain of high temperatures and strong magnetic

fields. When we turn our attention to P „,we
recognize in Fig. 3 that, though always smaller than

its classical part P,i (see Table III), it may compete
with, or become even larger than, the classical part
of a, simply due to a rapid decrease, with increasing
8, of the factor a, which is inversely proportional to
B . In Fig. 4, we show the variation of Di vs P and
0;/co&, Its values are normalized to unity as for P.
It is observed that Di behaves like P. Finally, in
Fig. 5, Di is plotted as a function of 0;/cg; for
fixed values of n and L. The Bohm regime is easily
distinguished from the classical regime.

V. CONCLUDING REMARKS

+ P
(2 ln2+ 1+n ), (42)

The validity of discussions, given at the end of
Sec. II, concerning the complete neglect of y with
respect to a in Eq. (19) should now be carefully ex-
amined with recourse to a numerical evaluation of
y, which requires the knowledge of z(r) as a func-
tion of r. To this end, the nonlinear differential
equation (15) was solved by means of the Runge-
Kutta method on the one hand and of the Milne
method with variable steps on the other hand. In
order to start iteration, we first need the values of
z(r) and z(r) for small values of r, since the initial
conditions z(0) =z(0)=0 are of no use for the nu-
merical solution of Eq. (15). The meaning of
"small ~ values" will be clarified in the subsequent
discussion. Since the first integral on the right-
hand side of Eq. (15) is straightforward, it is reason-
able to set ~=0 for the second integral involving
Hi(x, y, r). Restricting ourselves to the classical
limit, in which case all quantum terms are neglect-
ed, an approximation that is valid for almost all of
the parameter space spanned by n, T, and B, we
first obtain

z(r) -=2e [Ei(az) —Ei(azQ)]
' 1/2



26 HYBRID BOHM AND CLASSICAL DIFFUSION IN A STRONGLY. . . 2923

O

cd

c$
oo

~I

U'

V

05

8
~ Q

0
0

~ M
~ &

4
V

V

0

Qo Qo

I I I

m Oo m
Qo

Q W Ch

O
I

fH

I

Qo
O

O ~ M v)
I I

Oo

Qo

~ OO ~
(VAN

'4) + rh eh
I I I

Qo ao
I I I I

Qo ~ Qo
oo ChQ %~V)n

Qo ~ OO
O ooe H~O

I I I I I I

O t Ch
Qo

Q n&cVW
~Ot

Qo

I

O

t t rhR~ CAN~
I I I I I I

@VS~
I ——

Oo
Qo

Ch

O Q

I ——
Qo

OO Ch W

Q

ÃQt
Qo

O a
Ch M

I ——
eh ao
Oo

'45 ~ M

I ——
Qo
Ch Ch

Q

%H

I ——
~Qt

Qo

I

I

Oo

W OO W m ~

I ——
Oo

Oo
Ch

I ——

WOOW

I—
ao

Qo

VO

I ——
Qo

t
Oo

Q
OO

4

0
0

~ ~
0

I

cn

evQ

R
0 I

05 !

g Q

& O
a

~~ II

„8
8
8

S4

gq 0

W

V

5

I I

Qo

R R
I

'4) Xc

eV ~

eV cV rt
I I

eh Yc

Oo

R R
I

oo
Qo

O O

I I

Qo Ã
Qo W Q Ch

ao

I I

OoOO&Q
Oo

dmt

Qo

CV

I

O ao
oo

rt rf CV

I I

Q

O O

oo ~ m O m
W eh ~ M t

OO OO Q
I

Qo
oo N O~ OO M

Qo Qsf R
I I

Ch

O
I

Oo

vj
I

O W
Qo

Qo

O O

0 CLCLYqg

OQR
I ——

Oo
Oo ~ Q
CV Qo

~OR

Qo

oo ao Art
I I

Ch C t Ch
Ch

M t

O O

I ——
OO

Qo & Q
Oo

I ——
Oo

O O
I—

Qo
m Q OO

t eh

O Q



2924

8qu

I

$2
I

103
I

&04
4I

)O5
T~ (ev)

FIG. a (=a, a
dL

cm, L =10
pm; and D, n =10~'

() ~

pl.

where, to e so sstnplify the s' '
wo e s&tuation w

of 1M

s i g theni ord Eq. (42) reads

Z 7 =2COZ —C Z2Z

FIG. 3. V

P

ariatio o~ qp as a function o
dinate~ vnth ues of n and

with

eo ——21nQ+(21n2e = ln2+1+n. )(Q/P '

= (2 ln22+1+~)(QiP '"
and

n= j.O
2

cm

L= lO pm

cq—=2aQ .

0
4

-3

FIG. 2. V
' '

o

P

-5

Variation of
(abscissa) and 0;/m .

axes are scaled be y the natural la ogarithm.

5

FIG. 4. V

P

. Variation of DV
'

o g vsPand Q. /g COpg .

Y. FURUTAN I, Y. ODA C. DEUTSC , ANOM .M. GOMBERT



HYBRID BOHM AND CLASSICAL DIFFUSION IN A STRONGLY. . . 2925

10
L = 10}im

1.0

10
0.5—

-10
10

10

I

10

I

10
P3.

0.i

10

0 I

FIG. 5. Dj vs co~;/Q;, with the same values of n and L
as in Fig. 2. Curve A is for T =22.9 eV and curve 8 for
T =4.58 keV. Though the scaling unit of two axes is dif-

ferent, the Bohm regime is easily distinguished from the
classical regime.

The solution to Eq. (43) is given by

CO . 2 C2
z(r) =—sin

2
(44}

The validity of the condition azQ «1 is a pos-
teriori ensured by r «2/(coc2)' or, more explicit-

ly by

7 ((0.601 50 2 3

I'
a Q

' I/4

(45)

The initial conditions for z(r) and z(r) should be
evaluated for any value of r, say r;, which satisfies
the above constraint. For the numerical solution of
Eq. (15), iteration started at r=r;, so that

aQz(r; ) & 10 . Corresponding initial conditions
z(v;. ) and z(r;) are calculated, using Eq. (44). They
are: r; =1.0X 10 ", z(r; ) =2.0427X10, and

i(r;)=4 8045X10 . . A typical set of data used

are: n =10 ' cm, T=0.5 keV, L =10 pm, and

B= 10 G. Correspondingly, we have:
I' =5.4542X10, Q =1.6657X10, and

a =3.9898&(10 . These parameters inserted into

Eqs. (30a), (37), and (40) yield a=80.753,
p 6.0750X10 6 and thus i(op)= 0.87 3.5The
behavior ofi (r) is illustrated in Fig. 6. The itera-
tion scheme for the solution of Eq. (15) was.

checked, upon evaluating numerically the factor y
by virtue of the z(r) values sampled in the range
'T (1(rf such that, at rf, i (r) practically satu-

rates. The resulting y value is y=40. 13, leading to

0.5 1.0

i( 00)„,„„i——40.30. The approximate analytical
result is thus seen to be twice as large as the numer-
ical value. This is why we have stated in Sec. II
that Vahala's analysis, and thus ours, gives an upper
bound to the exact value of z( Do }.

So far, we have discussed the diffraction and the
symmetry effects on the diffusion coefficient Di
within the framework of the hydrodynamic GC
model. With the aid of nondimensional parameters
introduced in Sec. II and with inclusion of the
quantum-corrected structure factors S„,S„-,and S;;
evaluated in Sec. III, we have obtained explicit ex-
pressions for both the classical and the quantum
parts of a and P, with which to find i(00 } through
Eq. (40) and Di through Eq. (20). Our result gives
an upper bound to the numerically evaluated "ex-
act" Di values. As was argued at the end of Sec.
IV, inspection of Eq. (40} suggest that, whenever

P»a, i(0o)-~P and that, in the opposite limit,
z(0o )-a. Correspondingly, Di becomes propor-
tional to I/8 (Bohm type) in the former case and is
of the classical type ( —1/8 ) in the latter. Between
the two, i.e., when P-a, a hybrid diffusion takes
place. Our main results and comments are
enumerated as follows:

(1) The symmetry effect characterized by the
parameter rt /A is roughly ri/A times the diffrac-
tion parameter ri . The importance of the former
thus crucially depends on the ratio i}/A (see Table
II).

(2) As a result of extensive numerical analysis, in
which n and L are fixed and T and 8 are widely
varied, we have found that the quantum part of P,

FIG. 6. Temporal variation of i(v)/z(00) for a set of
parameters n =10 ' cm ', T =0.5 keV, L = 10 pm, and
8=10 G.
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though always much smaller than its classical part,
competes with, or may become even larger than, the
classical part of a, for high T and extremely large 8
values (see Table III). This corresponds to the
Bohm regime, where the position-space diffusion
dominates the velocity-space diffusion. In other
terms, the role of fluctuating electric fields E~~

(along the magnetic lines of force) is not effective
enough to cause an appreciable velocity-space dif-
fusion, in spite of an extremely strong confining
magnetic field. Increase of Pq„may be simply attri-
buted, as is obvious from Eq. (18a), to a noticeable
decrease, with increasing 8, of the parameter a
which is inversely proportional to 8 .

(3) In connection with this rather surprising re-

sult, we notice that a favorable situation may also
be realized in a strongly magnetized semiconductor
even at room temperature, for which the quantum

part of Di would really compete with its classical
part. Apparently, large 8 values extend the range
of validity of the classical regime. This effect is

especially remarkable in the present GC model
where iona are mostly confined transversally to the
magnetic field, in agreement with recent computa-
tions' on the two-dimensional melting transition in
a strong magnetic field.

(4) The parameter P calculated in the text can be
globally modified to include a finite gyroradius ef-
fect' by multiplying it with the factor
[1+(co&,/0;) ] . However, in the domain where

(0;leo&, ) »1, this factor reduces to unity and thus
the above-mentioned effect hardly comes into play.

(5) Proper account of the degenerate Landau lev-
els for the evaluation of a more elaborate quantum-
corrected Di is left open for a future work.
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