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High-temperature free-energy expansion for metal fluids
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The cluster expansion of the Helmholtz free energy is based on two-body interactions
through a central potential P(r). For a fluid at fixed density, it is shown that the cluster ex-

pansion provides a convergent high-temperature expansion of the free energy. Because P(r)
for a liquid metal depends explicitly on the density, the corresponding cluster expansion of
the pressure differs from the ordinary virial series. For a physically realistic interaction,
P(r) is integrable at small r. From this it follows that the two-body-interaction contribu-
tions to thermodynamic functions for realistic fluids are bounded at high temperatures. In
contrast, for potentials such as Lennard-Jones which are not integrable at small r, these
thermodynamic contributions increase without limit as the temperature increases.

I. INTRODUCTION

In computer simulation techniques, e.g., Monte
Carlo and molecular dynamics, it is not possible to
determine directly the entropy S of a dense fluid at
moderate temperatures; it is necessary to begin at
some limiting state, where the constant of integra-
tion is known, and then integrate dS along a ther-
modynamic equilibrium path to the dense-fluid
state. Two such limits have been established, and
have been used to determine the entropy of a dense
fluid. When the interatomic forces are of suffi-
ciently. short range, the cluster expansion of the
Helmholtz free energy F exists, and the expansion
converges at low density. From this result, Hoover
and Ree' calculated I' for a hard-sphere fiuid, by
evaluating F for the dilute gas, and then integrating
dF to the dense-fluid phase. Hansen and Verlet
used the same procedure for the Lennard-Jones sys-
tem. For Coulomb forces, the cluster expansion
does not exist, but a resummation leads to a Debye-
Huckel limit at high temperatures. Brush, Sahlin,
and Teller used the Debye-Hiickel limit to deter-
mine the entropy of the fluid phase of the one-

component plasma.
In the present work we are interested in liquid

metals at moderate temperatures, i.e., at tempera-
tures where thermal excitation of electrons from
their ground state is weak (a perturbation). For this
system, neither of the above methods gives us a
straightforward way to evaluate the entropy con-
stant of integration. If we think of going to the di-
lute gas limit, difficulties arise because of the
volume-dependent term in the total energy of the
metal, and the volume dependence of the effective
ion-ion potential [see, e.g., Eq. (1)]. On the other

hand, the ion-ion interactions in a metal at
moderate temperatures are of shorter range than
Coulomb, due to electronic screening, so the metal
is not a plasma, and the Debye-Huckel limit is not
the correct high-temperature limit. In fact, the
cluster expansion provides a suitable high-
temperature limit for liquid metals, as shown in
Secs. II and III below. Some unusual properties of
the cluster expansion are found from its application
to metals; specifically, the pressure expansion is dif-
ferent from the ordinary virial series, and the
potential-energy contribution to any thermodynam-
ic function is bounded in the high-temperature lim-
it. The qualitative temperature dependence of the
heat capacity from melting to the high-temperature
limit, due to motion of the ions but neglecting elec-
tronic excitations, is discussed in Sec. IV, and our
calculations for liquid Na are found to display the
expected behavior.

II. THE CLUSTER EXPANSION

We consider a neutral system of N ions plus their
associated electrons, representing a monatomic
liquid metal, in a volume V at a temperature T. In
first approximation the electrons are in their ground
state, and the total system energy is the kinetic en-
ergy of the ions plus the total adiabatic potential 4,
where

4=0(V)+ gP(r;V) .

Here P(r; V) is a central potential between two ions
separated by a distance r, and the sum is over all
distinct pairs of ions. The dependence of P on Var-
ises through the electrons. Thermal excitation of
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(2)

where k = Boltzmann's constant, p=X/V= the
atomic density, and A is the thermal de Broglie
wavelength, given in terms of the ion mass M by
A =2M/MkT. The first B„coefficient is

B2 2m. ——(1 e+'"' ')r—dr (3)
0

where P=1/kT. In general, B„=B„(T;V).Equa-
tions for the internal energy U and the pressure P
follow from (2):

I

n —1

U=Q+NkT ——g2 „2 BlnT &n —1

P = —- +kTp
dQ
dV

BB„
+kT g B„—

n —1 8lnV

III. CONVERGENCE AS A HIGH-T EXPANSION

If P(r) is a constant potential, in particular if P(r)
does not depend on V, then B„are the usual virial
coefficients, and B„=B„(T).The virial expansion
of P is, from (5),

dQP= — +kT g B„p",
dV

(6)

where B1——1. This is generally considered as an ex-
pansion in p at a fixed T. Results on the conver-
gence of (6) are collected by Ruelle. The following

the electrons, as long as it is weak, is accounted for
by an additive term in the free energy', this term
should be kept for accurate thermodynamics, but
we omit it in the following because it is not relevant
to our discussion. At very high temperatures, elec-
tronic excitation becomes a large effect, and the po-
tentials in (1) will change. In the present work, we

simply pretend that this does not happen. The
theory will then be physically correct for tempera-
tures where electronic excitation is weak, and the
liquid-metal entropy constant will be correctly
determined by the high-temperature limit of the
theory.

From the classical partition function for a fluid,
based on the potential (1), the cluster expansion of
the Helmholtz free energy is

n —1

F=Q(V)+NkT ln(pA )—1+ g
n=2 n —1

pB,--,'P(y),

pC(P)

(10a)

(10b)

From the bounds (8), it follows that for n &3,
TB„—+0 as T~ oo, hence the limiting contribution
of the two-body potential P(r) to each thermo-
dynamic function F, U, and P is a (density-
dependent) constant, arising from the term in B2.
The internal energy, for example, has the high-
temperature limit

U~Q+ , NkT+ —,N (P ) . —

conditions are required of the potential P(r):
g P(r) is bounded below, i.e., g P(r) & N—B,
where B & 0; and C(p) is finite, where

C(P)=4~ J ~e " 1 —~r dr . (7)

Then the radius of convergence of (6) is at least
o.=[e(e ~ +1)C(p)] ', and the virial coefficients
are bounded in magnitude by

iB„ i
(—[ (

'~ +1)]" 'C(P)"1

n

In the general case where P=P(r; V), we consider
a fixed density p„and indicate this condition by

subscripting a on functions which depend on densi-

ty, as P=P, (r). We again require gP, (r) & NB„—
where B, &0; and C, (p) is finite. Then the series
(2) for E has a radius of convergence at least as
large as 0, We have 0, )0, 0, is a monotone in-

creasing function of T, and cr, is not bounded.
Hence for the fixed density p„ there exists a T,
such that the series (2) converges for all T & T„and
T, is not greater than the solution of o, (T, )=p, .
The series (2) is therefore a convergent high-
temperature expansion for the free energy of a
monatomic dense fluid.

Let us drop the subscript a, with the understand-

ing that we are considering high-temperature
behavior at a fixed density. The spatial average of
P(r) is defined by

($)=4~p J P(r)r dr .

There are two classes of potentials, according to
whether or not (p) exists. Since C(p) is assumed
to exist, P(r) is integrable at large r, and we can re-
strict our consideration to a possible singularity in

P(r) at small r.
( i P i ) exists This is tr. ue for any bounded po-

tential. It is also true for any physically realistic
potential. In this case we have the limits, as
T~ 00'
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From the mathematical point of view, conver-
gence of Ii to the high-T limit can be arbitrarily
slow. However, for a real metal, P(r) should be ap-
proximately a screened Coulomb potential at small
r, and in general for any material we expect the lim-

iting singularity in P(r) to be of the form r '. In
this case each

~
8„~ is bounded by a power series in

P, whose lowest order is P" ', and the free energy
series will converge rapidly for sufficiently high
temperature.

(P ) does not exist. We illustrate this case with a
specific form of P(r) at small r, namely, P(r) =r
a) 3. Define b: P(b)=kT. Then in the high-Tlim-
it, the leading term in C(p) is , nb =——,op, and

the leading term in 82 is —,C(p). The leading term

in I' arises from 82 and goes as T' ' ', so this
term is either constant, or else it is monotone in-

creasing with T and unbounded. The same is true
of the corresponding terms in the energy U and the
pressure P.

There is a question as to whether the potentials
that have finite (

~ P ~
) satisfy gP(r) ) itiB. In-

fact, for potentials with a central repulsion like
P(r)-r, a&3, and with an attractive region, if
the attraction is strong enough, not only is there no
virial series, there is no thermodynamics. For the
potentials of interest to us, we have satisfied our-
selves that gP(r)) itiB is true—. In these cases

the attractive well is not strong enough to cause
trouble.

IV. HIGH-TEMPERATURE HEAT CAPACITY

We consider the heat capacity Cr ——(aUit)T),
for classical fluids at high temperatures, and we ex-
clude specifically the contribution from critical phe-
nomena, so that Cz is well behaved at the critical
temperature T, . Experimental evidence suggests
that Cv decreases from around 3k per atom at melt-

ing, to about 2k at T, . Grimvall' has shown that
the data for liquid Na, K, and Hg, which are avail-
able for T up to about , T„are consisten—t with this
decrease. To explain this behavior, Brillouin" sug-
gested that as T increases, potential energy is gradu-
ally lost from the transverse motions of the atoms,
until at the critical point, the motional energy is
only 2kT per atom. Following Brillouin's sugges-
tion, %annier and Piroue' constructed a model in
which the fiuid has a Debye distribution of atomic
vibrations of frequencies co, and potential energy is
attributed only to those modes for which ~~&1,
where ~ is approximately the macroscopic shear re-
laxation time. Actually, Brillouin s picture should

be corrected by noting that transverse potential en-

ergy is not lost, but saturates, so the motional ener-

gy near the critical point is 2kT + const; the pres-
ence of the constant affects the shape of the entire
U(T) curve. A description of our picture of the
mean potential energy of dense fluids follows.

I.et us fix the positions of all the ions but one, the
probe ion, and consider its potential, due only to the
two-body interactions P(r), as a function of position
throughout the volume V. To visualize the poten-
tial surface, let the volume be a horizontal plane,
with energy measured vertically. The potential sur-

face is characterized by valleys in the open spaces
between ions, and by ridges between the valleys, and
positive poles at the ion positions. The mean poten-
tial of the probe ion is a statistically weighted aver-

age over this surface, and it qualitatively reflects the
mean potential per ion of the entire system. First
take a fixed volume. At temperatures near melting,
the probe ion is statistically confined to the valleys,
and its mean potential contributes —,k to the heat

capacity. As the temperature increases, the probe
ion steadily climbs (in the mean) the potential sur-

face. When the probe ion moves freely over the
ridges, its potential contributes only about —,k to
the heat capacity, and finally when the probe ion
moves freely over the entire plane, except for arbi-
trarily small excluded areas at the locations of the
fixed ions, its mean potential no longer increases
with T. Hence at a fixed volume, the mean poten-
tial of the system continually increases with T, and
approaches the limit —,(P ) per ion.

If we fix T instead, and increase the volume, the
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FIG. 1. The circles show molecular-dynamics calcula-
tions of the mean potential per atom for fluid sodium at a
fixed volume. The high-temperature limit —(Il) ) is also

shown. Temperature-induced ionization has been
neglected, as explained in the text.
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potential surface of the probe ion diminishes, and
the mean potential decreases in trend (if not in de-

tail) and approaches zero as p —+0. This property
is explicitly apparent in the high-T value of the
mean potential, —,(P), which according to (9) is

proportional to p.
Molecular-dynamics calculations of the thermo-

dynamic properties of solid sodium, based on a
pseudopotential model for the potentials in 4, were
reported recently. We have evaluated the mean po-
tential energy for this same model in the fluid phase
at high temperatures, for the volume of 256ao per
atom. The mean potential is ( gP(r; V)), and is

precisely the contribution to U from the cluster ex-

pansion, the sum for n )2 in Eq. (4). As shown in

Fig. 1, the mean potential per atom increases with T
and approaches the limit —,(P), in agreement with

Eq. (11) and with the description sketched above.

ACKNOWLEDGMENTS

The high-temperature molecular-dynamics calcu-
lations for fluid sodium were carried out by Sheila
Schiferl. This work was supported by the United
States Department of Energy.

W. J. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609
(1968).

J.-P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969).
3F. J. Rogers and H. E. DeWitt, Phys. Rev. A 8, 1061

(1973).
4S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. Phys.

45, 2102 (1966).
sD. C. Wallace, Thermodynamics of Crystals (Wiley, New

York, 1972), Secs. 24 and 25.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molec-

ular Theory of Gases and Liquids {Wiley, New York,
1954).

D. Ruelle, Statistica/ Mechanics (Benjamin, New York,
1969), Sec. 4.3.

D. Ruelle, Statistical Mechanics (Benjamin, New York,
1969), Sec. 3.2.

R. E. Swanson, G. K. Straub, B. L. Holian, and D. C.
Wallace, Phys. Rev. B 25, 7807 (1982).
G. Grimvall, Phys. Scr. 11, 381 (1975).
L. Brillouin, I.es Tenseurs en Mecanique et en Elasticite
(Masson, Paris, 1938), pp. 346—349.

' G. H. Wannier and P. A. Piroue, Helv. Phys. Acta 29,
221 (1956).


