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We introduce a method to derive expressions for the distribution p of large fluctuations
about a stable oscillatory steady state and for the transition rate from that state into anoth-

er stable state. Our method is based on a WKB-type expansion of the solution of the
Fokker-Planck equation. The expression for p has a form similar to the Boltzmann distri-

bution with the energy replaced by a function 8', which is the solution of a Hamilton-

Jacobi —type equation. For the case of small dissipation, a simple analytical approximation
to 8' in terms of an action increment, is derived. Our results are employed to predict vari-

ous measurable quantities in physical systems. Specifically we consider the problems of the

physical pendulum, the shunted Josephson junction, and the transport of charge-density-

wave excitations.

I. INTRODUCTION

The effects of thermal noise on the dynamical
behavior of physical systems has been a subject of
continuing interest for many years. ' ' For exam-

ple, the fiuctuations about stable equilibrium states
of physical systems are well known to be described

by the Boltzmann distribution. "' Furthermore,
systems in which multiple stable states can coexist
exhibit transitions between those states. The transi-
tion rate from a stable equilibrium state, which is
inversely proportional to the lifetime of that state,
has also been discussed in the literature. ' '
That rate has been shown to be of the form
0 exp( bE/T), where b—E denotes the activation
energy, i.e., the height of the potential barrier to be
overcome in order to escape the state, and T denotes
temperature. The dependence of the attempt fre-
quency 0 on the parameters of the probelm varies
with the particular problem under consideration.

Of equal interest are the questions of fluctuations
about, and transitions from, stable oscillatory steady
states. Indeed considerable effort has gone into cal-
culating the distribution of fluctuations about such
states. ' The distribution of fluctuations may be
characterized by the contours of constant probabili-
ty density. In Ref. 25 the damped pendulum driven

by constant torque was considered. The contours

were approximated by contours of constant "ener-
gy" E&, where E& was taken to be the periodic part
of the energy, though the potential energy for the
driven pendulum is not periodic. In our earlier
work, the contours were approximated by steady-
state trajectories in phase space corresponding to
different values of the action. In the present paper
we show that at low temperatures, the contours of
constant probability density correspond to the fami-

ly of steady-state phase-space trajectories of the
pendulum, determined by varying the dissipation
coefficient. Our analysis shows the validity of the
results of Refs. 25 and 26 in the limit of small dissi-

pation.
The ability to calculate transition rates is impor-

tant not only in itself, but also for the determination
of the relative stability of different stable states, in-

cluding oscillatory states. Examples of physical
systems of current interest, for which it is impor-
tant to answer the above questions, include various
configurations of Josephson junctions, quantum
paranmtric amplifiers and oscillators in both optical
and microwave frequency ranges, various field-
induced diffusion processes, and systems exhibiting
charge-density-wave transport to name but a few.
With the exception of Ref. 26 results on the transi-
tion rate from stable nonequilibrium steady states
seem to have been limited to numerical simulations.
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This is apparently due to the fact that most discus-
sions of the fluctuations about such states were re-
stricted to small fluctuations.

In this paper we present a method for deriving
explicit analytical formulas for the distribution of
fluctuations about, and transition rates from, stable
oscillatory steady states. Our method is not re-
stricted to small fluctuations, but includes large
fluctuations as well. To illustrate the method, we
consider the problem of a one-dimensional physical
pendulum with friction coefficient 6, constant
external torque I, and a Langevin white-noise term
which represents thermal fluctuations. The pendu-
lum is perhaps the simplest example of a system
which, in the absence of noise, has both equilibrium
states and a nonequilibrium steady state. The latter
corresponds to a continuously whirling motion, and
exists for all values of 6 in the range 0 & 6 & GM(I)
[GM(I) is calculated in Sec. II]. In addition, this
model of the pendulum is directly applicable to oth-
er physical systems, e.g., a Josephson junction
and a model of charge-density-wave transport.
Our aim is to calculate the distribution of fluctua-
tions about the whirling state and the transition rate
from the whirling state to an equilibrium state.

A white-noise term is appropriate to model the
situation when the microscopic interactions that the
pendulum is subject to consist of a large number of
small random kicks, each of which causes a small

change in velocity. Although for ease of presenta-
tion we consider the specific example described
above, our method is applicable to a wide class of
dynamical systems perturbed not only by Langevin
white noise, but by state-dependent noise, such as
shot noise and to higher-dimensional systems such
as the dc SQUiB. The probability density for fluc-
tuations in such a system is the solution of a
Fokker-Planck equation.

In order to calculate p, we derive an asymptotic
solution of the Fokker-Planck equation by the
%KB method. The leading term in this expansion
is of the form poexp( —W/T), where the function
W satisfies a Hamilton-Jacobi- (eikonal-) type equa-
tion and po satisfies a transport equation. The
constant-W contours are shown to be the family of
nonequilibrium steady-state trajectories param-
etrized by G. Furthermore, an approximation to 8',
valid for small G/I, is given by W-=(M) /2,
where M is the increment in the action between the
nonequilibrium steady-state trajectory and the tra-
jectory through the point at which the fluctuation is
computed. Introduring 8' as one of the indepen-
dent variables, we show that the Fokker-Planck

II. THE UNDERDAMPED FORCED PENDULUM

In this section we review the dynamics of the
forced underdamped pendulum in the absence of
thermal fluctuations. In dimensionless variables,
the equation of motion can be written as

8+68+ U'(8) =0, (2.1)

where 8 is the deflection angle of the pendulum, 6
is the friction coefficient, and the potential U(8) is
given by

U(8 ) = —cos8 I8—(2.2)

with I denoting the external torque. A sketch of
the potential is shown in Fig. 1(a). The dynamics of

equation is approximated by a Smoluchowski-
type equation in O'. Solving this equation leads
to an explirit expression for p, and also for
the transition rate ~, '=Q—exp[ —( W~/T)]
-exp[ —(~M )r/2T] from the nonequilibrium
steady state. The quantity M~ represents the in-
crement in the action between the the nonequilibri-
um steady states corresponding to G and to GM(I).
Finally, we remark that the %KB expansion is
valid for T/W~ &&1.

Some of the results in this paper were anticipated
in our previous work, where the Fokker-Planck
equation was also approximated by a
Smoluchowski-type equation, though in the variable
A rather than W. The results of that paper are here
shown to be the leading term in an asymptotic ex-
pansion of the present results in powers of G/I.
Moreover, the results of this article close a gap in
the argument developed in Ref. 26, where the size
of the fluctuations considered was somewhat limit-
ed. In the present paper the limitation is removed.

In Sec. II we review the deterministic dynamics
of the forced pendulum with friction. In Sec. III
we compute the distribution p and describe a corn-
parison of our results with numerical simulations of
the Langevin equation, which exhibits remarkable
agreement. In Sec. IV, we compute the mean life-
time F, In Sec. .V we present applications of the
theory to the specific examples of a shunted Joseph-
son junction and to a model of charge-density-wave
transport. We also describe a comparison of our re-
sults for r„with numerical simulations of the
Langevin equation, which also exhibits excellent
agreement. Finally, in Sec. VI, we summarize our
results and discuss their relationship with other
works on the subject.
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the pendulum depend on the values of the coeffi-
cients 6 and I. Thus, for example, for
G & 6, =m /4 (see Appendix A), the asymptotically
stable solution of (2.1) is an equilibrium solution lo-
cated at one of the minima of U(8) if I &1, or a
nonequilibrium steady-state solution corresponding
to motion down the potential with a periodically
varying velocity whose time average (8 ) is
nonzero, if I& 1.

In contrast, for G&G„and I in the range

I~;„(6)&I & 1 [Im;„(6) is calculated in Appendix
A], stable equilibrium solutions and the stable none-
quilibrium solution can coexist, and the system can
exhibit hysteresis. A typical phase-space picture for
6 &6, and I;„(G)&I&1 is shown in Fig. 1(b).
Finally a typical plot of torque versus average velo-

city is shown in Fig. 1(c). In this parameter regime,
phase space is divided into a basin of attraction D,
of the stable nonequilibrium steady state S and a
basin of attraction for each of the stable equilibrium
states E, denoted generically by DE. The basins are
separated from each other by separatrices, which
correapond to solutions of (2.1) that converge
asymptotically to the unstable equilibrium points at
8=0 and at the local maxima of U(8) [cf. Fig.

',C

/
/

/
/

/

G&e&

FIG. 1. (a) Sketch of potential U(0) of underdamped
forced pendulum for I & 1. (b) Typical phase-space plot
of underdamped forced pendulum for G g G, and
I;„(G)&I & 1. The curve S is the phase-space trajectory
of the nonequilibrium steady state, the curves y are
separatrices, and the points E and C are, respectively,
stable and unstable equilibria. Curves were calculated for
I=0.5 and G =0.1. Dashed lines extend to infinity. (c)
Plot of torque I vs average velocity (8) for various
values of G.
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rr
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FIG. 2. (a) Phase-space plot of the underdamped
forced pendulum when the trajectory S and the separa-
trices y coalesce at I=I;„(G). (b) Plot of I;„(6)vs G.



2808 BEN-JACOB, BERGMAN, MATKOWSKY, AND SCHUSS 26

1(a)]
For a given value of G&6„as I( &1} is de-

creased towards I;„,the separatrices and the none-
quilibrium steady state S approach each other.
When I=I;„(6),these curves coalesce, leading to
the phase-space picture shown in Fig. 2(a). The
dependence of I;„on 6 is shown in Fig. 2(b). For
small 6, I;„(6) is given approximately by (see
Appendix A)

I;„(G)= 46
(2.3)

For a given I &1, there is a corresponding value
of 6, denotixl by GM(I), for which

I;„(GM)=I (2.4)

[note that GM(1)=G, =n. /4]. Thus for 6&6M(I)
there is hysteresis, while for 6 =6M(I), the phase-
space picture is again as shown in Fig. 2(a). For a
given value of I & 1, when G increases towards GM,
the separatrices and S approach each other as be-
fore. However, in this case the unstable equilibria,
which lie on the separatrices, do not move.

The phase-space trajectory S can be characterized
as the only periodic solution of the differential
equation

d8
G

I—ssn8
(2.5)

d8 8

which is equivalent to (2.1). Expanding that solu-
tion in powers of G/I we get the following expres-
sion, valid for I)I;„(6),

state until it undergoes a transition to one of the
equilibrium states.

III. DISTRIBUTION OF FLUCTUATIONS
ABOUT THE NONEQUILIBRIUM

STEADY STATE

We now consider the effects of thermal noise on
the dynamics of the pendulum described in the pre-
vious section. We calculate the probability density
of noise-induced fluctuations about the non-

equilibrium steady state S. In contrast to previous
results, our results are not restricted to a description
of small fluctuations about the nonequilibrium

steady state.
We assume a Langevin white-noise model, i.e.,

Eq. (2.1) is replaced by

8+68+U'(8) =L(t), (3.1)

where the white noise L (t) satisfies

(,L(t+r)L(t)) =2GT5(r) (3.2)

Bp+G . pe+a. p
a~ ai

(3.3)

We seek a stationary distribution p„such that

and T is the temperature in the dimensionless units
of (2.1). Under these conditions, the probability
density of fluctuations in phase space p(8, 8, t} satis-
fies the Fokker-Planck equation, '

BP L 8 BP Ug(8) BP

Bt ' Bg ae

I 6 62
8(8)=—+—cos 8+6 I I

I.p, =O .

The Boltzmann distribution

(3.4)

1 6 65
4 I cos20+0 I5 (2.6)

For I=I;„(G),a first approximation to the critical
stable periodic trajectory S„ i.e., the steady state
that has just coalesced with the separatrix, is given

by

0 —68=2 cos
2

where 6=—sin 'I;„(6)[cf. Fig. 2(a)].
In this paper we consider a parameter regime for

which a stable nonequilibrium steady state exists,
and calculate thermal fluctuations due to noise
about that state. If, in addition, stable equilibrium
states coexist with the stable nonequilibrium state,
we also calculate the lifetime of the nonequilibrium

—E/T
pg e (3.5)

where E denotes energy, satisfies (3 4) and in fact
represents the distribution of fluctuations about an
equilibrium state. It does not however, represent
the distribution of fluctuations about nonequilibri-
um steady states, since the density (3.5) is unbound-

ed on S, and is not periodic in 8. Finally, the pro-
bability current

g=(8p, —U'(8)p 68p GT dp/d8—)—
in phase space corresponding to pz vanishes,
whereas in the nonequilibrium steady state we ex-
pect a nonzero probability current flowing in the
direction of decreasing U(8). Therefore, instead of
(3.5), we seek a solution of (3.4) that is bounded,
periodic in 8 with the same period as U(8), and
produces a nonzero current in the appropriate direc-
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tion.
To this end, we adopt the %KB approximation

for small T, writing

—8'/T
ps =poe (3.6)

where the functions W(8, 8) and po(8, 8,T) remain
to be determined. Thus 8' plays a role similar to
that of energy in (3.5). Both W and po must be
periodic on S, and po is assumed to be a regular
function of T at T=O. Substituting (3.6) into (3.4)
and expanding in powers of T, we find that W satis-
fies the Hamilton-Jacobi- (eikonal-) ty'pe equation

G . +8 —[G8+U'(8)] . =0.
Be B6

'
Bo

(3.7)

At the same time to leading order in T, po is the
2n-periodic (in 8) solution of the transport equa-
tion

X=/,

y = —Gy —U'(x)+2GW»,

Sy ———8'~+ GSy,

W„=U"(x)W»,

8'=GR'y .

(3.11)

First we observe that 8'=const and VW=O on
S. Indeed from (3.9) and (3.7), it follows that on S,
%is given by

8'= —G8'y &0 . (3.12)

Hence, in order for 8' to be periodic on S, the
right-hand side of (3.12) must vanish identically, so
that W=const on S. Moreover, from (3.7) it fol-
lows that 8'„=0on S, and hence that VS'=0 on S.

Next we find 8~ on the 8' contours. To this
end, we consider the function

2 X

H(x,y)=— +U(x)+G I (y —W»)dx,

2G . —G8 —U'(8) . +8
a8 a8

B 8'
+G . —1 pp ——0. (38)

BO

This approximation is valid throughout D„as long
as T« 1, i.e., as long as the usual Boltzmann
thermal energy k&T is much less than the energy
scale of the problem.

We first show that the contours of constant W in

phase space correspond to the deterministic non-

equilibrium steady-state trajectories of Eq. (2.1) for
0&G&Gsr(I). This property will enable us to
evaluate the function W(8, 8 }.

To do so we will need to consider the following
equations in the phase space (8,8) which we now
denote by (x,y}.

(1) The equations of motion in the absence of
noise, given by

(3.9)

(3.13)

As shown in (3.24), W»» =1+0(G) for small G, so
that

H'(W)= +O(G )= +O(G ) .1

W» K( W)

Using this result, we can rewrite (3.10) for small

Gas

(3.15)

where the integral is a line integral along the W
contour that passes through the point (x,y). From
(3.10), it is easy to see that H =const on any W con-
tour. Using (3.11) we can now calculate the rate of
change of H( W) on a characteristic curve, given by

H=GyW»+G f W»(1 —W»»)dx . (3.14)

Hence, we obtain

H'(W) =
d8'

W»(1 —W»»}dx .H y G
P7 ~2 ~0 3 N

y =—Gy —U'(x) .

(2) The parametric equations for the constant-W
contours

x=y,
y = —I ( W)y —U'(x),

(3.16)

y =—Gy —U'(x)+GW» .
(3.10)

(3) The parametric equations for the characteris-
tic curves of W (see, e.g., Ref. 36)

where I (W)=6[1—K(W)]. The system (3.16) has
the same form as (3.9), except that G has been re-

placed by 1. Thus the 8' contours are nothing but
the family of steady-state trajectories of (3.16) for
0(1'(W) &GM(I), and they are given by the ap-
proximate expression (2.6) with G replaced by I . In
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/=G

Integrating by parts we obtain

W(r)= — 1 ——y (r,x)1 I
2 6

I J

+ —' f y'(r, x)dl.
6 (3.19)

Gsl(S

We observe that although y depends on both I and

x, the right-hand side of (3.19) is independent of x
on a W contour. Finally, employing the asymptotic
expression (2.6) for y(G, x) in (3.19), we obtain

'2

W(I )=————,G&I &GM (320)1 I I
2 I' 6

0
24

I I

E 30
I l
'(

1

l \

/
r~~r

E

I
I
i
I
1
i
i
I
i
i
l

344

2~
A(I )—= f ydx=- —.

2~ o I

Thus Eq. (3.20) can be written in the form

(3.21)

This equation can be understood in the following

way. The generalized action A(I') of each of the
trajectories is given by

FIG. 3. Plot of 8' contours in phase space for I=O. 5

and G=0.1.

W(l )-=—,[A(I') —Ao]

where

(3.22)

(1—I'/G )y

Iy

Hence, to leading order in 6,

(3.17)

W(l ) =—f 1 ——(y')~r .
G 6

(3.18)

Fig. 3, we show some of these W contours for vari-

ous values of I', up to I =Ger(I). We will show in
Sec. IV, that I'=6~(I) corresponds to the first W
contour that touches the separatrix. The determina-
tion of this critical contour will enable us to deter-

inine the transition rate out of S. We observe that
(3.15) is actually valid only for values of E which
are O(1). For large E, e.g., X corresponding to the
critical contour, the O(G ) estimate of the integral
in (3.14) which leads to (3.15) is no longer valid.
However, the contribution of the integral to (3.16) is
O(1) only on short time intervals, since most of the
time on the critical contour is spent near the un-
stable equilibrium point. The influence of the in-

tegral on the solution of (3.16) is therefore negligi-
ble.

In order to evaluate W(x,y), we must first deter-

mine its relation to I. As coordinates in the x,y
plane, we choose 8' and x. Employing the relation

R~=Xy+O(G ) and I'=G(1 —K), we obtain to
leading order in 6,

I

1
\

I I

-0.3 0 dA
I

FIG. 4. Comparison of the stationary distribution ac-
cording to Eq. (3.26) with that of numerical simulation of
the Langevin equation (3.1) for G=0.5 and T=0.1, and
various values of I between 0.6 and 0.9. A Runge-Kutta
scheme was employed to solve Eq. (3.1), with the noise
term L(t; )dt replaced by n;(dt/2GT)', where

n; =N(0, 1) is a Gaussian random number. The phase
space around the steady-state trajectory for each pair of
values of (G,I) was divided into bins corresponding to
equal intervals of the action A. (This was done with the
help of an array of steady-state trajectories for different
values of G.) The number of times N(Af) that the solu-
tion spent in each bin was then counted. What appears
as a jagged dotted line in the graph is actually a discrete
plot of these numbers versus the deviation of A from the
steady-state value M; =A; —A, . The smooth curve
through the points is that predicted by Eq. (3.26).
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po
———G( Wyy

—1)po (3.23)

By differentiating (3.20) and employing (2.6) dif-
ferentiated with respect toy =8, we show that

Wyy ——1+O(G) .

Consequently, (3.23) implies that

po ——1+O(G ) .

(3.24)

(3.25)

It follows that the stationary probability density of
fluctuations about S is given by

(M)
p, -exp

2T
(3.26)

Ao ——A(I'=G) .

Finally, we show that po is approximately con-
stant for small G. We choose po to have the average
value 1 on S. Employing (3.11) in (3.8) it follows
that along the characteristic curves

stationary diffusion in the space of W contours.
We recall that these contours are the nonequilibri-
um steady-state trajectories of the pendulum for
values of I in the range 0&I &G~. We shall
derive a Smoluchowski-type equation for the proba-
bility distribution in this space. It is natural to in-
troduce 8' and X as coordinates in the Fokker-
Planck equation (3.3), and to average that equation
over a W contour. The average of a function
F(x,y) over such a contour is defined as

F( W) —= I F(x(r),y(r))dr . (4.1)
Tp

Here r is the parameter of Eq. (3.16) which
represents time along the steady-state trajectory cor-
responding to I'(W), while Ty(W) is the period of
that trajectory. Applying this averaging procedure
to the Fokker-Planck equation leads to the one-
dimensional Smoluchowski-type equation in 8'
given by (cf. Appendix B)

where

m =~(r)—~(G) . (3.27)

P=2G TW P +(W+Ty2) .P +&a2 a
Bt gp 2 0'8' 2

The quantity A is the difference between the action
associated with S and the action associated with the
steady-state trajectory through x,y (which corre-
sponds to a different value of the friction constant,
I' instead of G). The approximate result (3.26) was

obtained in our earlier paper.
We have compared this distribution with the re-

sults of numerical solutions of (3.1) (see Fig. 4).
The quality of the agreement evident in that figure
indicates the power of our approach.

IV. MEAN LIFETIME OF
THE NONEQUILIBRIUM STEADY STATE

In addition to fluctuations about the nonequilibri-
um steady state S, thermal noise also causes transi-
tions from the basin of attraction D, of S, into one
of the basins of attraction DE of a stable equilibri-
um state. We now calculate the mean lifetime ~, of
S, i.e., the mean time spent inside D, before under-

going such a transition.
Under the conditions necessary to justify our use

of the WKB approximation, it is also true (as veri-
fied below) that rs is sufficiently large so that the
motion is a stationary diffusion process. This
means that in D„p is very nearly equal to the sta-
tionary distribution p, of (3.6). As seen in Sec. III,
p, is essentially constant on the 8' contours. Thus
the process can be considered as a one-dimensional

Bp 8 Bp
Bt BA

=G [A(I') —Ao]p+ T
BA

(4.3)

Equation (4.3) was obtained in our previous work,
where the action A and x were employed as coordi-
nates. Here we see that it represents the leading-
order term in an asymptotic expansion in powers of
G. A more accurate expression than (4.3) can be ob-
tained by employing more terms of the expansion
(2.6) in (4.2). Equation (4.3) is similar in form to
the Smoluchowski equation for motion in a poten-
tial well in the case of large dissipation, with an ef-
fective friction coefficient 1/G. Kramers' also ob-
tained a similar equation in action-angle variables
to describe the transition from a stable equilibrium
state in the case of small dissipation. We emphasize
that although similar in form, our Eq. (4.3) de-

scribes a totally different process —the transition
from a stable nonequilibrium steady state. Such a
description has not been given before. Following
the method employed by Kramers for the transition
rate from an equilibrium state, we assume a quasi-
stationary distribution for A (I ) &A(GM ) and a con-
stant diffusion current J across the separatrix. That

(4.2)

We recall that by employing the approximation
(2.6) in (3.19), we showed that W(l )

= 2 [&(I')—Ao]—:—,(M ), so that Eq. (4.2) can be

approximated by (cf. Appendix B)
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[A(I ) —Ap]p+T ap (4 4)

Then, employing the stationary distribution

p, =exp[ —[A(I') —Ao] /2T] in (4.4), we solve for
J. Using the relation r, =J/N, where X is the to-
tal number of particles, we obtain an expression for
the lifetime 7, of the nonequilibrium steady state as

' 1/2
A8'

exp (4.5)

where

1 I I 1 I 4A8'=—
2 6 GM(I) 2 6

V. APPLICATIONS

is the increment in 8'between S and the W contour
that touches the separatrix. We observe that ~, is
exponentially large, for T/b, W«1, so that both
the stationary diffusion assumption and the WKB
approximation are justified. Finally, we remind the
reader that these results only apply for G &6, and

I;„(6)&I &1, since only then do both types of
steady states S and E coexist.

We show in Appendix B that the 8'contour that
first touches the separatrix does so at the unstable
equilibrium point C [see Fig. 2(a)], that it has a cusp
at that point, and that VR'=0 there. Along the
separatrix, 8' attains its minimum value at C, so
that C is a saddle point of JK Furthermore, the
characteristic curve through C can be shown to be
the most probable path out of D, . Finally, we re-
mark that the fact that the 8' contours reach all the
way to the separatrix (in fact, they fill the entire
basin D, ) closes a gap in the argument developed in
Ref. 26. Specifically, the system of contours of
constant I used there did not quite reach the separa-
trix.

and the critical current of the junction, respectively.

Iz, is the external dc current source, while 8 and V
are the phase difference and voltage across the junc-
tion, respectively. Employing the Josephson rela-
tion

(5.2)

Eq. (5.1) reduces to Eq. (2.1) with

I:Ig, /I—J,
6=(c0qRC)

(5.3)

and the time is measured in units of co& '.

B. Classical transport
of a charge-density-wave excitation

In a recent discussion ' of electrical conduction
by transport of charge-density-wave (CDW) excita-
tions, the phenomenological equation

21. 0.x+ —x+ singx =
g

(5.4)

was introduced to describe the position x of a single
excitation. Here 1/r =y/m, where y is the damp-
ing constant, coo is the natural frequency of oscilla-
tions of the excitation in its confining potential, g
is the wave number of the CDW, and E is the exter-
nal electric field. Defining 0 by

(5.5)

Eq. (5.4) reduces to Eq. (2.1) with

I—:E/Ez-,

6=(coos)
(5.6)

where the Josephson plasma frequency co& is given

by

2eIJ
COJ =—

The pendulum model discussed here is directly
applicable to a number of other physical systems.
Here we describe two such systems.

where
2

PICO o

e

A. The shunted Josephson junction

dV V
C +—+I&sing =I&, ,

dt R
(5.1)

where C, R, and IJ are the capacitance, resistance,

This system is often described, in dimensional
units, by the phenomenological equation

and time is measured in units of coo . In this sys-
tem, the current density carried by CDW transport
is given by

excooJ= (5.7)

where 0. is the cross section of the sample.
The results of Secs. III and IV can be used to
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68'
k T

where

predict various measurable quantities in these sys-
tems. Thus, using (3.26) we can calculate the
mean-square fluctuation of 8. Consequently, using
(5.2), one can show that the mean-square voltage
fluctuations across a shunted Josephson junction are
approximately equal to ksTR Also, using (4.3)
an expression for the lifetime of the nonequilibrium

steady state of the Josephson junction, in dimen-

sional units, is derived as

kBT
'"

-v n. R—C (5.8)

W

FIG. 5. Sketch of effective potential of forced pendu-

lum in action space.

b.R'—= (Id, I;„)R——2C . (5.9)

This quantity can either be measured directly when

it is sufficiently large, or observed as a peak in the
power spectrum of the junction at frequency 1/~, .
Similarly we derive the expression for the mean-

square CDW current fluctuations as kIiT, and the
expression

1/2
AT
6$'

68'
exp

BT
(5.10)

where

Eso7 458'=- eETQ
Eg m

(5.1 1)

for the lifetime of a CDW excitation in dimensional
units.

Finally, it is possible to use the values of 7, as a
function of I in a calculation of the I Vcharacteris--
tics of the Josephson junction. However, we remark
that an expression for the lifetime of the equilibri-
um states must also be employed since transitions
occur back and forth between them and the non-

equilibrium steady state. This calculation was car-
ried out in Ref. 26 and the results compared with
the I-V characteristic as constructed from numeri-

cal simulations. The agreement was seen to be ex-
cellent.

VI. DISCUSSION AND SUMMARY

%e begin by discussing the relationship of the
present work to Refs. 25 and 26. In Ref. 25 an ap-
proximate formula for the distribution of fluctua-
tions was presented. The approximation was based

on the assumption that the dissipation and the con-
stant driving torque balanced each other and conse-

quently mere ignored. Then the contours of con-

stant probability were claimed to be the constant en-

ergy trajectories of the free pendulum, that is

Ez ——i /2 —cosx. In view of our analysis, this can
be justified in the limit of small dissipation. The
authors of Ref. 25 have also presented a numerical

approach to the calculation of p whose results are
in qualitative agreement with ours. In our earlier
work approximate formulas for both the distribu-

tion of fluctuations and the transition rate were

presented. In that approximation, the constant pro-
bability contours were approximated by steady-state
trajectories corresponding to various values of I, or
equivalently of action A. The present analysis justi-
fies that the result in the limit of small dissipation.

In summary, we have introduced a method to
derive expressions for the distribution p of large
fluctuations about a nonequilibrium steady state,
and for the transition rate from that state at low

temperatures. The expresssion for p has the same
form as the Boltzm ann distribution with the
Boltzmann distribution with the energy replaced by
the function O'. The expression for the transition
rate is of the form Qe, where 48' is the ef-
fective height of the barrier to be overcome in order
to make a transition from the stable nonequilibrium

steady state. For the case of small G/I, a simple
analytical approximation to 8' in terms of an ac-
tion increment, i.e., W-=—,(M ) was derived. Thus

we can represent the random motion of the pendu-
lum as diffusion in action space, in a force field
determined by a potential which is linear in DE and
harmonic in D„as shown in Fig. 5. In other cases,
a straightforward numerical procedure ' can be eIn-

ployed to solve the characteristic equations (3.11)
for O'. Our method is readily generalized to other
types of noise, e.g., to shot noise, to nonlinear dissi-

pation, and to higher-dimensional systems, e.g., to
the dc sQUID.
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The differential equation of the trajectories of
(2.1) in phase space is

dy I—sinx= —6+
dx y

(A 1)

and the trajectory S is the unique (cf. Ref. 34) 2rr-

periodic solution of (Al). For small 6 we construct
this solution in the form

+yo+Gy&+ '
6

Inserting (A2) into (Al), comparing coefficients of
like powers of 6 and using the periodicity condi-
tion, we find the coefficients y i,yo,yi. . ., thus ob-
taining (2.6).

To find I;„(6)and G~(I) we set I=GIO for 6
close to G~(I), write y in the form

y-yo+Gy~+ ' ' '

and insert (A3) into (Al). The first term yo satisfies
the undamped and unforced pendulum equation, so
that

yo=[1(cosx+1)]'~ =2 cos—
2

APPENDIX A", ASYMPTOTIC REPRESENTATION
OF THE NONEQUILIBRIUM

STEADY-STATE TRAJECTORY

2'
2mIo = yo« =8

0

Hence, on the critical trajectory 5=5, that touches
the x axis, we have

4I =—o-
7r

so that

I;,(6)= 46

6 (I)= I—M

for small G. The graph of Im;„(6) for all values of
6 is given in Fig. 1(b).

Next we shall show that S, touches the separatrix
at the unstable equilibrium point and that it has a
cusp there. To show this we note first that

O'= —GRy (A6)

for motion on the separatrix. Therefore the
minimum of 8' on the separatrix is achieved at the
unstable equilibrium point, toward which the
separatrix converges. It follow that the 8' contour
that touches the separatrix does so at the unstable
equilibrium point. At this point xo we have, by
(Al) with G=GM,

I—sinx
y (xp)= —GM+ llm

cosxo
GM g

I2)1/2

y'(xo)

-6M+[6M+«1-I')'"]'"
y'(xo) =

2

so the W' contour that touches the separatrix has a
cusp at xo. We further note that the slope q of the
separatrix at this point is different from either slope
of the 8' contour, since q is given by (A7) with the
negative square root, and with GM replaced by G.
The point (xo,0) is a saddle point for W since by
(3.17) we have

8'~=0 at (x0,0)

In the next order we obtain the periodicity condi-
tion
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as y —+ 0 and x~ xo. Thus 8'achieves its maximal
value at (xo,y) along any curve that reaches that
point from the side of S, that includes the steady-
state trajectory S, and 8' achieves its minimum
value there along the separatrix. If one chooses a
coordinate system at (xo,O), one of whose axes is
the separatrix, while the other axis is a curve that
satisfies the above-mentioned condition and then
crosses smoothly into the domain D~, then (x0,0) is

clearly a saddle point of 8'.

APPENDIX 8: DERIVATION OF
THE SMOLUCHOWSKI-TYPE EQUATION

IN 8'SPACE

It has been shown in Sec. III that p, is essentially
a function of W and therefore it is a constant on W
contours. Writing the Fokker-Planck equation (3.3)
in the form

dp dp—y —[—U'(x) —Gy +6W„]
ax ' ~y

a2P =26 TW P +(W+ ,'T) P-+
9t gp 2 '

B'AV 2

(83)

A considerable simplification of (83) is achieved if
we choose the action A (I ) as the independent vari-
able in (83), rather than W. Using the relation
W= —,[A(I') —Ao] [see (3.22)] in (83), we obtain

we note that the expression in curly braces in (81) is
the time derivative of p along a W contour, and
therefore it vanishes. Thus, choosing 8' and x as
independent variables in D, we can rewrite (Bl) in
the form

82
=GTWy +6(Ws+TWss) +Gp .

BR'

(82)

Averaging (82) on W contours as defined in (4.1)
and noting that ( Ws ) =-2W and (toss)—:1, we ob-

tain the Smoluchowski-type equation

+Ggy +GT 2 +Gp,3P BP
Qy

2
(81)

BP 0 BP=6 [A(I ) —Ao]p+T
Bt BA

(84)
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