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Nonlinear theory of the free-electron laser with an axial magnetic field
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A nonlinear, one-dimensional formulation of the free-electron laser with an axial mag-
netic field is presented. The problem is formulated in the cold-fluid approximation for the
electron beam, and is reduced to a system of the first-order, nonlinear, coupled, ordinary
differential equations. Nonlinear effects due to the departure of the electrons in the beam

from the conventional helical orbits are considered and illustrated in numerical examples.
The formalism also allows the study of the initial phase of saturation in the laser. In the

presence of the axial magnetic field the saturation is shown to be mainly due to the
development of undesirable large radial excursion of the electron trajectories.

I. INTRODUCTION

Free-electron lasers operating in the Raman re-
gime are believed to be promising sources of intense
submillimeter coherent radiation. This prediction
was tested in experiments at the Navy Research
Laboratory (NRL) and Columbia University, '

and recently with improved electron beam quality
at NRL. ' The Raman free-electron lasers operate
with relatively low electron energies (relativistic
y&10) and high beam currents (I&1 kA). These
experimental conditions, especially the high beam
currents, necessarily rtxluire the presence of an axial
guide magnetic field, in addition to the magnetic
wiggler, conventionally used in free-electron laser
experiments. As was demonstrated in recent
theoretical studies by Friedland et al. ,

' the sim-

ple addition of the guide field results in many non-

trivial consequences. For example, in the presence
of the guide field electron trajectories may become
very complex, and, only for certain combinations of
injection conditions on the electron beam, the elec-
trons will move on simple helical orbits. 7 More-
over, even on the helical orbits, in combined guide
and wiggler magnetic fields, the beam response to
perturbations is characterized by an additional
response frequency, which may be varied without
chariging the helical orbit itself. It was shown in
the single-particle theory of the laser that the reso-
nance between this natural response frequency and
the frequency of a driving electromagnetic wave can
be exploited to provide higher gain in the system.
These predictions were confirmed by the self-
consistent collective theories ' which also demon-
strated the presence of additional effects. For ex-

ample, under certain conditions, the frequency
range of the free-electron laser instability may be
substantially extended to both lower and higher fre-
quencies. The effect was explained in Ref. 10 by
the presence of an unstable beam mode in the sys-
tem.

All this complex behavior, induced by the pres-
ence of the guide field in the system, has been stud-
ied in Refs. 7—10 on the basis of linearized
theories. The linearization procedure itself was
based on two assumptions. First of all it was as-
sumed that the perturbing electromagnetic fields
were so weak that all the induced nonlinear effects
were small and could be neglected. Second, the as-
sumption was made that the unperturbed electron
beam propagated on one of the helical orbits
[branches A or C (Refs. 8 —10)] and the linearized
perturbation analysis was performed around these
steady-state trajectories. Both these assumptions
impose serious limitations on the theory. Indeed,
the linear theories predicted the possibility of very
high gains, so that the nonlinear electromagnetic ef-
fect might become important and lead to saturation
after the radiation traversed a relatively short dis-
tance. Moreover, as was already mentioned, the
helical orbits, in the presence of the guide magnetic
field, are exceptions rather than the rule. In case of
a departure of the beam from the helical orbits, the
electron dynamics becomes intrinsically nonlinear,
which may play an important role in realistic sys-
tems even when the radiation fields are weak.

In this paper we present a nonlinear theory of the
free-electron laser with the guide field and consider
both aforementioned nonlinear effects. A nonlinear
theory for the laser without the guide field was
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given by Sprangle et al."' Their approach was
primarily designed to study saturation effects due to
particle trapping in the ponderomotive potential of
the wave and the wiggler field. The trapping occurs
on a scale length comparable to the wavelength of
the electromagnetic wave. The number of test par-
ticles, separated initially by distances short corn-

pared to the period of the wave, were necessary to
model the saturation effects. Here we present a
more simple approach based on the cold-fluid
model of the electron beam. The method requires
one to follow only one test particle along the laser.
Although the trapping effect, in principle, cannot
be described by our formalism, its use is very con-
venient in describing all the effects occurring on the
scale length long compared to the wavelength. We
will show that in the presence of the guide field,
both the departure from the helical orbits and the
initial saturation phase belong to this class of slowly
varying effects, and thus can be treated within the
cold-fluid approximation.

The scope of the paper is as follows. In Sec. II
we derive a reduced system of equations for the am-

plitude of the radiation field. In Sec. III we consid-
er the momentum equation defining the sources in
the field equations. A complete set of first-order,
coupled, nonlinear ordinary differential equations
governing our system will be presented at the end of
Sec. III. This set of equations, in Sec. IV, will form
a basis for the discussion of possible nonlinear ef-
fects in the system, which will be illustrated by nu-

merical examples.

II. FIELD EQUATIONS

Consider a one-dimensional model of a free-
electron laser, where the electromagnetic field is
described by the Maxwell equations

BBi 3Ei
ce, )& = 4me(NVi (NV—i),„), —

Bz dt

as, =0.

Here the electron beam propagates in the z direction
and is described in the cold-fluid approximation.
The electron beam density N and velocity V, and
the electromagnetic fields E and B, in Eqs. (1)—(6)
are assumed to depend only on z and time, and the
subscript l describes directions perpendicular to the
z axis. Moreover, we are interested in solutions of
(1)—(6) periodic in time with period 2m leo and con-
sequently subtract off the time-averaged parts

(NV ),„= J NV dt,

(N),„= I N dt,

of the sources in Eqs. (1), (3), and (5).
The periodicity condition allows one to expand

the electromagnetic fields in the Fourier series

+ oo

E(z, t)=-, g E„(z)e-'""
n= —oo

n+0

= g Re[E„(z)e '" '],
n=1

B(z,t)= g Re[8„(z)e ' '] .
n=1

We assume now that only the n =1 component in
(8) is excited, which is the usual case in free-electron
lasers operating in the linear regime. The coupling
to higher harmonics is a second-order nonlinear ef-
fect, as can be seen from Eqs. (1) and (3), and we
will neglect this effect in the present work. Thus
we write

E(z, t) =Re[E,(z)e ' '],
B(z,t) =Re[B,(z)e -'"'],

and accordingly

BEi BBi—ce, )(--

N(z, t)=NO(z)+Re[Ni(z}e ' '],
V(z, t}=VO(z)+Re[Vi(z)e '"'] .

(10)

aE,
at

=4n.e (NV, —(NV, ),„),
as, =0,
aj

4n.e (N —(N ),„),—

(3)

(4)

(5)

We also assume here that co is much larger than
various characteristic frequencim of the electron
beam (such as the plasma frequency co&, the undula-
tion frequency, the natural response frequency,
etc.). Then we can separate "fast" spatial oscilla-
tions in (9} and (10) from the slow ones which are
imposed by the presence of the electron beam.
Namely, we write



2780 LAZAR FRIEDLAND AND IRA B.BERNSTEIN 26

2
)ei (cu/c)z

e

On expressing v via (17), and substituting it into
(16) we have

B (z) b (z)ei (cc/c)z

e

N((z}=
2

v (z)e'" "
4me

.N Vo.—l 1—
C C

Note that in (18}

2
Vp, d N~u,+ a, =c dz C2 c

(18)

V, (z)=V(z)e'("/ )~,

where in order of magnitude for X =a,b, v, v,
N 1—
C

Vp, N 1

~ 2y!

d 1IlX N

dZ C
(12)

Note that at this point we have excluded from the
analysis all waves with wave vectors in the direction
opposite to the direction of propagation of the elec-
tron beam. These backward waves can only arise
froin noise and their amplitudes are assumed to be
negligible in comparison with the main amplified
signal which propagates in the direction of the
beam. Although in some cases the backward waves
are absolutely unstable' they are characterized in
such cases by long wavelengths and therefore can be
easily suppressed by appropriate construction of the
amplifier cavity. '

We now proceed to the derivation of the approxi-
mate equations, describing the slowly varying am-
plitudes of the electromagnetic fields. First, we
combine (1) and (2) to give the wave equation

BE B~E1 i 4me B (~V ) (13)
Bz2 c2 Br2 c2 Bt

and thus (18} indeed describes variation of a, (z) on
a scale long compared with the fast oscillations of
the electromagnetic field.

Equation (17) can be also used to eliminate v
from Eq. (15},which then becomes

da~

dz

1 2~ oj.V
cop vi — (coqv, +inc a, )

2 3 I
Vo

I

(19)

The form of the operator in the square brackets
in Eq. (18) suggests the use of an independent vari-
able other than z, namely, we introduce variable ~
via

where y, is the relativistic factor associated with the
axial velocity of the electron beam. Therefore for
ro/c=2y, ko, which is characteristic of free-electron
lasers with a pitch k=2~/kp, we have

N Vo.1—
C C

day

dz

1

s (Npvl+Volv ) ~

2c
(15)

Substituting (9) and (10) into (13), applying defini-
tions (11), and neglecting the higher-frequency har-
monics, we get

.2~d aq N daJ
+2i =i —(iv vi+—Voiv ) . (14)

dz2 c dz c4 p l ol

Finally, exploiting the assumption of the weakness
of the z dependence of dai/dz, we neglect the
second-order derivative in Eq. (14) and rewrite it in
the approximate forin

dz = Vo,(z) .
d7-

Then for any quantity of the form

i(m/c)(z cT)—
we have

T

1 dX 1 8 i3+V X
c dr c B1 Bz

V=ei (co/c)(z —c~) ~ N—l
C C

(20)

(21)

In the notation of (11),Eq. (5) becomes

«c . (v v+i—a, =——
dz c

and (3) can be written as

(16)

oz d
C dz

Therefore (18) can be rewritten as

1 da,
U

C dV

(22)

(23)

. N 1
i a, (rozv, + V—o,

—v ) =—0 —.
C C

(17) In addition to simplifying the notation, ~ has an im-
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portant physical interpretation: It measures the
time along the trajectory were the electron to move
with velocity Vp, (z). As we will show in the next
section, convective derivatives similar to d/dr in
Eq. (23) appear naturally in the momentum equa-
tion for the electron beam. Thus, in the following
we will adopt ~ as the independent variable in the
problem. Consistent with this approach we also
rewrite Eq. (19) in the form

III. MOMENTUM EQUATION

Consider the momentum equation describing the
electron beam

a—+ V, (yV) = ——E+—X (&+ A )
Bt '

Bz m
(25)

where the static magnetic field is given by

daj
c dr

.N=—l 1—
c

~oz
aJc

% (z}=—ei(z}cIIi+e,9F,

with the vector

ei(z) = —(e, coskoz +e~ sinkpz)

(26)

(27)

[o)~ Vp, vi Voi(—o)~u, +inc a, )] .
2c

(24)

Equations (23) and (24) are the desired equations for
the electromagnetic field.

representing the direction of the helical field on the
axis of a magnetic wiggler commonly used in
theories of free-electron lasers. Substituting (9) and
(10) into (25), using definitions (11), and retaining
only the first-time harmonic in the resulting equa-
tion, we have

d - dVo d}'o i co,„, Vo
yov+Vog+uz (yoVo)+Vo, g +v +——

U,'vg= —c a+ Xb —vXQ .
dz dz dz 2 c ' c

Here we defined 0=e cN'/mc,

+Re[g (z)ei (mlc)(z ct)]—

(28)

and (" ) =[ iso(1 —V—p, /c)+ Vp,d/dz](" ). In the last term on the left-hand side of Eq. (28), which is the
only nonlinear term of the third order, in view of (12), we have neglected d v/dz and dg/dz compared with

i ( )/oc) v and i (to/c)g, respectively. An equation for the quantity g in (28) is obtained from the energy balance

mc —+ V, y= —eV-E (30)
Bt '

Bz

which yields

d}og= —v, —Vo. a .
dz

Also, it follows from (2}, that

(31)

. c .o)
bj ———i—e, X i—aj+

N c dz
(32)

Then in (28)

Vo - ~c .
a+ X b =—ay+e

c N

Voi . c da~
aq —i-

c co dz

EC ~ OlV
+a, =—a&+e, .aj+a,

N c (33)

The appearance of the dotted quantities in Eqs. (28), (31), and (33) suggests that one change from the vari-
able z in these equations to the time r along the steady (time-independent) component of the electron motion
in the z direction [see the definition in Eq. (20)]. Then, on using notation (21), observing that
Xexp[i (co/c)(z ct)]=dX/dr and Vp, dX—/dz=dX/dr, and substituting (33) into (28) we get
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dv' - dg, - ic= —Vp —v )(0— —c e,
d1 N d7

VOj.
~ a+a,

C

(34)

where v' has components v~, up, and u„etc., and where according to (31)

dg Ug d YO —Vp. a
dr Vii, dr

(35)

Because of the form of the helical part of the magnetostatic field 3P it is convenient in the following to in-

troduce a rotating coordinate system defined by the base vectors
I

e 1
———e„sinkpZ +8& coskpZ& e2 =8J

A
e3 =ez

Then, finally, components in Eqs. (23), (24), (34), and (35) become

(36)

=kp V03a2 —iso 1—
d7

V03 1
a 1+ 3 l~p V03rl Vol(01pu3+i~c a3)]

C 2C
(37)

Q2 V03 1 2- ~ 2-=—kpVp3ai iso —1 — a2+ [ct) Vp202 —V02(oi u3+ki)c a3)]
c 2c' p (38)

da 3 cop

d7
(39)

dg
gp = gpkp V03U2 —V01 —lU3

I I
U2

7

ic U3 d
kpV03 2 (roV01) rokoV02V03

N V03 dr

U2

70 d

01 VO lCO—kpVo2Vo3 —ui + u 3uig ~dr 2c
r

dg )g3 da2
Okp V03U1 VO2 ++I IU1 +kp V03a 1dr co dr

d
(roVo2)+rokoVoi Voi

03

(40)

02 rp 1 N—g d
+koVoiVo3 —u2

d
+

2
u302g id~ d'r 2c

(41)

dU3 dg CU3 d Vp3
rp =(C —V03) —ca3 + ro 1—

dr dr Vpi dr c

d yp d Vp3 iso

d7 dv' 2c

dg u3 d'Yo
Vol a 1 V02a2 V03a3de' V03 dc (43)

Equations (32)—(43) describe the nonlinear evolu-

tion of the time-dependent parts of various quanti-
ties characterizing the free-electron laser. These
equations are combined here into a system of first-
order, nonlinear, coupled differential equations,

which can be solved numerically with an appropri-
ate set of initial conditions. In order to do so, we
still have to complete this system by the equations
for the steady (time-independent) parts of various
quantities (cop, rp Vp). One such equation is ob-
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FIG. 1. Dependence of the absolute value of the per-
pendicular component of the electric field on z. A:
r =0.868 (branch A) co/c =75 cm '. B: r =1.077
(branch C), co/c =75 cm '. C: r=1.077, m/c =130
cm '. In all the examples co&/e =0.5 cm 2, yo

——3,
kp ——6cm ', and)=0. 5.

FIG. 2. Spatial growth rates (Imk) vs co/c in the linear
regimes in the sample case, Solid and dashed lines are
the results of the linear theory (Ref. 9) for r =0.868 and
r =1.077, respectively. The dots are the results of the
present calculations.

tained from the continuity equation

(NV, }=0,
dt Bz

the time-independent part of which 1s

dz
(cop'Vp, +(v'v. )+}=0 (45)

d~&sp N

dT c
=—

(v3g ) —(v1a1)+—(V2a2)+

(V2&3)+

And, finally, an equation for Vp is obtained by con-
sidering the steady part of the momentum equation
(25), which can be written in components as

or, on using (17)

2 2
p1p V03= (p3p V03) l.=o

+ (p1p (V3V3 )++Co

(46)

where we have used the notations

d Vp) =V„k,V„—
dT 70

Q~
~03+

Xo Vo

d V02 Qii
~01 kp ~03 +

dT QQ $0

(49)

(50}

(ap )+
———, Re(a ~p ),

(ap) = —, Im(a~p} .

Similarly to (45) the steady part of (30) gives

(47)
d Vp3 Q1

=~pi +
dT Q $0

where

d
51 —V01 + ($0(U3U1 ) + Vol (V3g) )+kp( V02(v3g)++ V03(U2g)++$0(U2U3 )+)+c(v301 )+dT C

(52)

d
~2— V02 + ( Xp ( u 3 V 2 ) + V02 ( u 3g ) —) k o( V01 ( u 3g ) + + Vo3 (v 1g ) + + Yo (u 3 v 1 ) + ) +c (u 3a 2 )+,

dT
(53)

70 CO

~3— V03 (V3g ) — c( (u 1&1 )++ (V2+2 )+ )
dT

(54)
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FIG. 3. Effects of the departure from the steady-state
trajectories on the gain in the amplifier in the sample
case. All the curves correspond to initial value of
r =0.868 and ro/c =75 cm '. A: t/&=0. B: /=0. 1. C:
g =0.3.
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FIG. 5. z dependence of real parts of a2 (the solid line)

and a3 (the dashed line) in the saturation phase. The

parameters are ro /c =75 cm ', P =0, r =0.868.

IV. NUMERICAL EXAMPLES

In the following numerical applications we will

consider the case where ko ——6 cm ' and initially
the beam is characterized by yp ——3 and

ror
/c =0.5

cm . This sample case has been studied in the re-
cent linear theory of the laser, and therefore pro-
vides a convenient example of our nonlinear formu-
lation.

1.0

0.08—
R {em)

Q.OS '-

—0.8

03
Q.s

0.04—
rr ~ ee o ~

002"

I I I I m I I I l

10 20 30 40
z {cm)

0.0
50

FIG. 4. Axial, time-independent component of the
velocity V03 and electron displacement R vs z in the sam-
ple case. Initially (at z =0) in the figure r =0.868 and
co/c =75 cm '. The dashed lines represent the case /=0
(steady-state trajectories) and the solid lines correspond to
/=0. 3.

As a first application we will assume that as in
Ref. 9 the electron beam enters the interaction re-

gion on one of the two possible "steady-state" heli-

cal orbits (branches A and C of Ref. 9}. These two
regimes are characterized in the linear theory by
different ranges of parameter r =0!!/ypkp Vp3 (on
branch A, r & 1, while on branch C, r & 1). In these
calculations we will change r by varying Q~~. We
will simultaneously adjust Qj so that in all the ex-

amPles, initially at v =0, we will have VpJ /c —g/7'p
with (=0.5. In Fig. 1 we present some typical re-
sults of the nonlinear calculations of the evolution
of the absolute value of the perpendicular com-
ponent of the electric field ! aj! along the amplif-
ier. The cases r =0.868 (branch A) with ro/c =75
cm ' and r=1.077 (branch C} with ro/c=75
cm ', 130 cm ' are shown. It can be seen in the
figure that the evolution of the electromagnetic sig-
nal in the device passes through the qualitatively
different stages. At short distances the interference
of the linear modes in the system leads to a non-
trivial occasionally oscillatory dependence of ! aj !

on z. At longer distances the electromagnetic gain
in the amplifier is linear and the corresponding
slopes of the curves in Fig. 1 are determined by the
maximum spatial growth rate (Imk} in the system
as described in the linear theory. Finally, when the
intensity of the wave becomes large enough, the
nonlinear effects start playing a major role and the
wave enters the saturation stage. We will discuss
the saturation effects in our system later in this sec-
tion and now proceed with a more detailed compar-
ison with the results of the linear theory. Figure 2
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0.6—

I I

VOI/ R (cm'

—0.20

p4-

0.2—

p

-0.2—
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presents such a comparison. The frequency depen-
dence of the linear spatial growth rates on branches
A (r =0.868) and C (r = 1.077), shown in this figure
has been obtained from the results similar to those
shown in Fig. 1. An excellent agreement with the
linear theory is obvious.

Next we proceed to the study of nonlinear effects.
First consider the effects due to the departure of the
beam from the steady-state branches A and C. This
situation is likely to occur in experiments as a result
of an inaccurate alignment of the direction of injec-
tion of the beam into the amplifier. In Fig. 3 we
demonstrate the effects on the gain of the departure
from the helical orbits. We present the case of
co/c =75 cm ', for which the gain on branches A

and C is maximum, and assume that at ~=0,
Vpi =1p/7 0 (on the helical trajectories /=0) and

V@ (g f) ' /yp—,— s—o that as before

~ Vpi~~, p
——g/yp. The three curves in the figure

correspond to r ~, p
——0.868 and /=0, 0.1,0.3.

Note that even for /=0. 3 the reduction of the gain
is not very significant, although the z dependence of
the gain becomes more complex. Note also that in
the examples in Fig. 3 the intensity of the radiation
field is relatively weak and the nonlinear depen-
dence of the gain is a result of the nonlinear dynam-
ics of the beam in combined helical pump and axial
guide magnetic fields. We demonstrate this non-
linear behavior in Fig. 4, where the time-averaged
axial velocity Vp3 and radial displacement R of a
typical electron trajectory are shown as functions of
z in the cases /=0 (the dashed lines) and /=0. 3

p6 i ( I I I I I
'

p
34 36 38 40 42 44 46 48 50

z (cm)

FIG. 6. Time-independent components Vo~, V03, and
radial displacement R vs z in the saturation phase in the
amplifier. The curves correspond to the case m/c =75
cm ', g =0, r =0.868.

(solid lines). For /=0. 3 we see the development of
oscillations in Vp3 with the natural response fre-
quency and period of —12 cm. The same frequen-
cy is present in the dependence on z of the radical
displacement, where we also see additional rapid os-
cillations with the period of the helical field ( —1

cm). Note that with an increase of g the radial dis-
placements of the trajectories increase, which may
lead to the violation of the conventional. assumption
in the theory that the beam is close to the axis of
the magnetic wiggler. Increased radial excursions
of the beam require inclusion of the radial com-
ponent of the magnetic field of the wiggler and may
result in additional destruction of the gain.

Finally, we discuss nonlinear saturation effects
due to the radiation field itself. In the following ex-

ample we assume that the beam initially is on
branch A with r =0.868. The z dependence of the
real parts of a~ and a3 for this case in the satura-
tion phase, is shown in Fig. 5. The reason for the
saturation in its initial stage becomes clear from
Fig. 6, where the z dependence of Vp3 V02 and R is
shown at saturation distances. We see in this figure
that the saturation occurs mainly due to the des-
truction of the electron trajectory. The beam slows
down, thus violating necessary conditions for the
instability. In addition the radial excursions of the
trajectories increase significantly.

It can be seen in Fig. 5 that at the late phase of
the saturation, the amplitude of the electromagnetic
field starts oscillating with increasing frequency as z
increases. When the wavelength of these oscilla-
tions becomes comparable to the wavelength of the
wave ( -0.08 cm in the example in Fig. 5), inequali-

ty (12) is violated and our formulation becomes in-
valid for larger values of z. In Fig. 5 this happens
at z-49 cm. At this stage, new nonlinear effects
occurring on a scale comparable with the wave-
length of the electromagnetic wave may take place.
One such effect is the trapping of the electrons in a
strong ponderomotive potential. Our method can-
not describe such effects and a more complicated
approach, similar to that used in Refs. 11 and 12
must be applied at this stage. Nevertheless, the
present theory is still valid at the onset of the sa-
turation and describes its initial phase.
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