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Theoretical photoabsorption cross sections for alkali-metal atoms in a static electric field
I' are derived for energies near the zero-field ionization threshold (e =0), extending a previ-
ous development for hydrogen. Spectra result from zero field -dipole matrix elements and a
density-ofstates matrix Dt t. The factors Dt t=(('p'

~

%' ) ')rt represent a renormalization
of the photoelectron's wave function WI necessitated by the long-range Coulomb plus Stark
potential. The matrix DF contains all spectral information on quasidiscrete Stark levels

and continuum resonances, expressed as an algebraic function of (1) quantum defects p~
embodying core effects, (2) a frame transformation between spherical and parabolic coordi-
nates in the pure Coulomb field outside the alkali-metal core, and {3) factors Hq"I and hI I

calculated from asymptotic amplitudes and phases of hydrogen-Stark wave functions of the
parabolic dissociation channels. Hydrogenic parameters are calculated semianalytically
within the WKB approximation; pI and dipole matrix elements are known independently.
Predicted cross sections for photoionization of the excited 3 P3/2 state of Na agree with ex-

periment. The theory reproduces (a) asymmetric resonances observed at e & 0,
parametrized as a Beutler-Fano profile for a simple case, and (b) the oscillations observed
at e &0, attenuated by factors cos2~pI from their predicted depth in H. Dependences on

light polarization are sorted out for two-photon excitation.

I. INTRODUCTION

Theoretical studies of the Stark effect of Rydberg
spectra have traditionally focused on the shifts and
broadening of the discrete levels of hydrogenic
atoms photoexcited from the ground state. Howev-
er, recent experiments performed on Rb, ' Na,
Ba, K, and rare-gas atoms, rather than H, have
shown two additional effects in the photoionization
cross section near the Rydberg series limits (e=0):
(i) A pronounced asymmetry in the profiles of the
high-lying Stark levels, and (ii) a series of
polarization-dependent modulations extending
beyond the zero-field threshold. The asymmetric
line shapes are evidently caused by interference ef-
fects between continuous and quasidiscrete channels
that are coupled by a nonhydrogenic core. The res-
onances (ii) were discussed by Rau, in the general
context of external-field effects on Rydberg sptx:tra
near threshold. Subsequent explanations " have
based their qualitative success on a hydrogenic
model, whose potential (in atomic units)

also pertains to the region outside an alkali-metal
ion core, r ~ rc-0 (1 a.u.). (E=F.z is a static uni-
form electric field. ) The influence of the core has
not previously been evaluated explicitly. The

present paper describes a theory, recently outlined
elsewhere, ' which combines the hydrogenic Stark
problem with field-independent core effects and
which reproduces the available alkali-metal spectra.

Our treatment of the nonhydrogenic Stark effect
rests on the fact that the Coulomb term of the po-
tential (1) overwhelms the Stark term whenever
r ~~F ' —1000 a.u. ' ' Since an alkali-metal
core's electrons are confined within a radius ro-0
(1 a.u.), where the Stark field can be ignored, the
photoabsorption process proper is adequately
described by zero-field parameters, namely, quan-
tum defects and dipole matrix elements of the
relevant atom. These quantities can be obtained
from experimental spectra' or ab initio calcula-
tions. The photoexcited electron, on the other hand,
escapes to z —+ —Oe in the long-range potential (1)
without regard to details of the ion core, whose po-
tential departs from a pure Coulomb form only at
r &ro. Thus, the separate physical stages of photo-
absorption and ionization are herded into separate
regions of physical space.

The closed-shell core potential, though compli-
cated, is spherically symmetric whereas the
Schrodinger equation with the potential (1) is separ-
able' ' only in parabolic coordinates (g, i),p ). The
field axis destroys the spherical symmetry when

F@0, but invariance about the z axis is preserved
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and m remains a good quantum number. Orthogo-
nal parabolic eigenfunctions having n&

——0,1,2, . . .
nodes in the bound g coordinate perform then a role
analogous to that of Legendre polynomials having
l —m =0, 1, . . . nodes. The common ground be-
tween the region of spherical (r «F '~

) and para-
bolic (r & ro) symmetry lies in the broad zone

ro (2)

wherein the potential is purely Coulombic and is
therefore invariant under both symmetry groups. '

In the range (2), the spherical-symmetry eigenfunc-
tions of atomic processes at small r can be expanded
into parabolic eigenfunctions appropriate to the
long-range potential (1) (or vice versa). Note that
the core occupies the region where both g and g are
small. For this reason, the motion in g alone
remains external to the core even at g -0 (when g is
not small), with unchanged n& quantization. The
core acts only on the combined motion of g and il

by mixing the parabolic channels and producing
phase shifts in the rl motion.

The Coulomb degeneracy in region (2) provides
the nix:essary link between photoexcitation of a
Rydberg electron and ionization in a Coulomb plus
Stark field. The final state of atomic photoabsorp-
tion in this region is represented by a wave function

%d~(r) normalized per unit energy, e.g. , in a WKB
approximation. This normalization would be ap-
propriate to calculation of the photoabsorption
cross section if +,I could be integrated to r ~ op in
the absence of significant potential barriers. In the
presence of the Stark field beyond region (2), 0',i

will instead be redistributed among parabolic con-
tinuum channels, each of which has its own
density-of-states spectrum. The aggregate of these
densities of states represents the capacity of the
outer field for absorbing the photoelectron. This
quantity will be seen to take the form of a density-
of-states matrix, DI ~, which serves to renormalize

per unit energy and thus to represent the effect
of the outer field on photoionization. This matrix
embodies all spectral information on the nonhydro-

genic Stark effect through (1) parameters of the
Coulomb-Stark wave functions (Sec. II), and (2)
zero-field core effects represented by quantum de-
fects pt ——5ilm. . In the total cross section, Dt i ap-
pears as a factor which simply modulates the zero-
field oscillator-strength density. This density-of-
states matrix is a novel concept which may find
broad application.

The effect of an alkali-metal ion core will be in-

corporated as an element of the modulating factor
D, whereas the electric field has generally been
treated as a perturber of the zero-field Rydberg
spectrum itself. ' Theoretical aspects of hydrogenic
cross sections are thus seen to contain most of the
essentials for our treatment of alkalis. Earlier nu-
merical calculations on the ground-state photoab-
sorption by H in a Stark field have in fact repro-.
duced the positions and spacing —though not the
depth —of the threshold modulations observed in
Na (Refs. 3 —5) and Rb (Ref. 1). These structures
have been rederived and interpreted semianalytically
in a recent paper,

' referred to as I. The general
WKB methods of I are algebraically convenient and
will prove sufficiently accurate for theoretical appli-
cation to the observed alkali spectra.

The threshold modulations are predicted to occur
in H (Refs. 8 —11) for n.-polarized light

(~ ~F;m =0~m =0) but only weakly for 0+--

circularly polarized light (IF;m =0~+ I). Each
modulation corresponds to the threshold for a
specific nl channel, i.e., to the energy required to
reach that channel via photoexcitation of the
ground state. The effect of the core is merely to at-
tenuate the depth of the modulations, and possibly
to invert them, without shifting their positions.
However, the asymmetry of the sharp peaks below
threshold (corresponding to quasibound Stark lev-

els) cannot be reproduced in the hydrogenic model
alone.

We also extend here the treatment of single-

photon absorption to the two-step photoionization
used in the experiments of Refs. 3 —6. Specifically,
we shall consider excitation of the ground states of
H and Na through an intermediate np level. In
two-step excitations, the photons may be polarized
independently and we must account for various pos-
sibilities: mw, mo-+, o.-+o-+, or+-m, cr-+0.+. We shall
find the polarization-dependent results to be quali-
tatively similar to those of single-photon ionization
for both H and the alkalis. With reference to the
intermediate and final states g; and t/if, the thresh-
old modulations are (1) large for m;=0—+mf ——0
(mm ) transitions and (2) very small for m; and/or

mf ——+1. Generally, the modulations are larger as
the value of l —

~

m
~

in the final state is larger and,
for given l,

~

m
~

is smallest; the value of I —
~

m
~

for the initial state is only of secondary importance,
in contrast to the predictions of Ref. 9 based on the
parity of l;+m;. In addition, ls coupling in a state

1 . 1 3

f; with mj ———, and j= —, or —, allows the atom to
reach different values of mf for mm and m 0.+-polari-
zations, thus superposing large and small modula-



DAVID A. HARMIN 26

tions, as well as sharp peaks below threshold with
different profiles.

II. HYDROGENIC PARAMETERS FOR
PHOTOEXCITATION

Our approach to photoexcitation of a Rydberg
electron conforms to the multichannel quantum-
defect theory, ' which emphasizes the distinction
between two regions of physical space and between
the behavior of the eigenfunctions in these regions:

(1) An external region, r &ro, where the com-
bined Coulomb plus Stark potential Eq. (1) permits
semianalytical solutions of the Schrodinger equa-
tion, sensitive to barrier and threshold effects.

(2) A localized core,
' r (ro, where the Rydberg

electron has a large kinetic energy and is therefore
insensitive both to small variations of its total ener-

gy and to the presence of external fields. The
matching of wave functions at the core boundary
results in a coupling of the external solutions. This
coupling will be described by a E matrix, whose di-

agonal form depends only on the quantum defects

pt =5t /nof the (a. lkali-metal) atom.
In Sec. IIA we describe the parameters which

characterize the external parabolic eigenchannels
for hydrogen in a Stark field F. We then apply a
coordinate transformation in the region (2) (Sec.
IIB); here the external field is negligible as com-
pared to the Coulomb field, which has both para-
bolic and spherical symmetry. The connection be-
tween the regions of different symmetry will prove
central in factoring the total cross section into (a) a
field-independent cross section and (b) a function
representing the threshold modulations and
broadened Rydberg levels induced by a finite Stark
field for single- (Sec. IIC) and two-photon (Sec.
II D) excitation. The derivation of hydrogenic pho-
toionization cross sections in Secs. IIC and IID
will contain all the essential ingredients for con-
structing nonhydrogenic cross sections.

We will view photoexcitation of a hydrogenic
state f,t~ =Pi as taking place at r (ro, as described
in Sec. I. The frame transformation to the parabol-
ic region at larger distances then serves to represent

gt as a superposition of continuum basis functions
of the elix:tron escaping in the potential (1). Ortho-
norinalization of the set I gt I via the overlap matrix
(Pt'

~ gt) '~ determines the extent to which each
photoexcited spherical function gt is "absorbed"
into the continuum. The Stark effect will thus be
ultimately encapsulated in a density of states (DOS)--
matrix

This matrix replaces the DOS of the spherically
symmetric wave functions, 5t t5(e' —e), determined

by the photoabsorption process proper at small r, by
the DOS of the continuum parabolic functions ap-
propriate to ionization. This method will be readily
extended (in Sec. III) to include the coupling of par-
abolic eigenchannels by a spherically symmetric,
closed-shell ionic core; experimental or theoretical
dipole matrix elements and quantum defects will

appear as semiempirical input parameters.

A. Hydrogenic eigenfunctions

The Schrodinger equation for H (Z=1) in a
combined Coulomb-Stark potential v ( r )

= +Fz —1/r is separable' in parabolic coordinates,

g =r +z =r(1+cos8),

i) =r —z =r(1—cosg) .

The resulting equations for g and il (taking m &0)
are

m —1

=0, (3a)

d m —1 1 —P2+ —
2 + + 2e+ 4'

dg 4q

X q
'

Yti(ri ) =0 . (3b)

The total energy-normalized wave function, regular
at r=O, is then

The factors g'~ and ii'~ in Eqs. (3a) and (3b) re-
move first derivatives. We will frequently omit the
indices m and e, which remain good quantum num-
bers. All quantities considered here are continuous
functions of the energy.

The separation parameters p=pi and 1 —p=—p2
appear in Eqs. (3a) and (3b) as fractional Coulomb
charges. In this sense —and for fixed m, F,e p-
determines the partition of nodes between the func-
tions =ti(g) and Yti(il), which extend in the up-
field (large g) and down-field (large ii) directions,
respectively. The quantity

A, =P i P2 ——2P —1 =(n, —n2)/n—
represents in fact the eigenvalue of the z component
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m' Pi
4ggz f I 2 4

1/2

=~(ni+ —, ) . (5)

Note that "ti(g) is bound at all e for F@0, owing
to the confining potential +Fz, whereas Yti(rt ) can
tunnel to g —+ ao even for e &0 and thus belongs to
a continuous spectrum. For fixed F and m and for
a given number of nodes ni ——0, 1,2, . . . in g, the
real eigenvalue

FP(eiFin

imam)

=P«im

defined by Eq. (3) is a monotonically decreasing
function of e (see Ref. 10, Fig. 2); at all e there is a
one-to-one correspondence between n i eigenchan-
nels and the discrete eigenvalues P,„~. We will useen

1
m

the channel labels ni and P interchangeably and
sometimes write simply P for P,„.The orthonor-

mal set of parabolic eigenfunctions =ti(g) (at fixed

e) plays a role in Eq. (4) equivalent to that of the
associated I.egendre polynomials Pt~(cos8) in the
spherical eigenfunctions of H.

A second eigenchannel parameter is

X,„m —Xp & 0, the energy-normalizati'on amplitudeenlm

of ll,„,~ =pti, which is fixed at rt ~ oo such that

Ig, „, P,„dr=5 (e' e) . —

[The notation here differs from that of paper I (see

Ref. 10), which defined N,„~ as an intensity. ] The

squared amplitude (N,p~) represents the density of
states at g -q -0 in the n i channel; Nts itself con-
stitutes the energy-dependent factor in

gati
near the

core:

gp(g -O, vI -0)
=N,~ Ie' ~(2~)-'"(gq)™/2[1+O(r)]].

(6)

of the Runge-Lenz vector,

&=r ——,(p Xi.—I.X p)+.O(F),

operating on the quasibound states. At I'=0, the
conservation of both A and the angular momentum
I. follows from the SU(2)XSU(2) symmetry of a
pure Coulomb field. ' ' Classically, A, represents
the constant direction of the major axis of a
Keplerian orbit with given eccentricity or angular
momentum. In wave mechanics, of course, bound
orbits are quantized. In the presence of a Stark
field, quantization occurs only in the motion in g
[see Eq. (25) of I]:

Note that the bracketed function in Eq. (6),

g,p /N, p~ is essentially energy-independent, to
O(r). Its behavior at small r is determined instead

by P and m; its dependence on e is relatively insig-
nificant, owing to the large kinetic energy at small
r. When e &0, the important effects of the barrier
formed at large q by the Coulomb and Stark poten-
tials are represented then by exponentially small
values of X,~ except for sharp peaks at quasi-
bound Stark-energy levels (see Sec. III and Appen-
dix A). These levels quickly broaden out at
e & e, = 2+P—2F, where the critical energy e,
marks the top of the g barrier in an n

&
channel.

In each ni channel with m@0 and e &0, N,~&
peaks as a function of the energy at Pi =P2= —,,
since

~
li

~

then tends to be repelled from the z axis

by centrifugal forces. In general, according to I,
we have

1N,pm 1

'~(PiP2» 0&Pi =1—Pz &1.

If m=O, on the other hand, X,po is not strongly
sensitive to the direction and

~

lit
~

may thus be ap-
preciable along the z axis, i.e., at P,„o= 1 (or 0). If
either P i

——P & 0 or P2 & 0 (P & 1), however, the
Coulomb barrier formed in g or g renders N,~ ex-

ponentially small. In fact, X,po changes dramati-
cally whenever P2 ——1 —P,„opasses through zero in

the range e= —,k &0: For P2=0,—ep2/k
N, tto ~ (1+e '

)
'r rises very abruptly' from

—
I ~p2/2k I to about 1/n& in a given n i channel.

[This effect is smoothed out for m+0, since (Ntt)
is already small according to Eq. (7).] In the fol-

lowing, we shall ignore those channels below thresh-
old with P2 & 0, since then

(Ntt) & exp( —
~

2e
~

~ /3F)

is always negligible.
The energies e„at which P,"„o-1 correspond

l
- enl

then to the following joint condition: (a) concentra-
tion of i)'j«0 along the positive z axis with n i nodes,

and (b) maximal amplitude of $,„,0 at r =0 (1 a.u.).

The energies e„mark the resonance peaks observed

at e & 0 for m(final) =0 in the total photoionization
cross section, which favors excitation along the z
axis.

B. Coordinate transformation

The transformation between regular eigenfunc-
tions in spherical and parabolic coordinate bases
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Any one of the parabolic functions can be expanded

in the set of spherical fiinctions, ' or vice versa:

cpm g Upl Palm
1=m

where the expansion coefficients Upl are limited to
l &n —1 when e &0. When f,p= and ij'l,l are nor-
malized as in (8), the transformation matrix

Vpl = (@pm
~

elm ) is orthogonal for fixed e and m,
i.e., Ulp ——( U ')lp.

I

g Ul p Upl =5l'l5m'm (10a}
n&

g Up'I Ulp 5p'p5m'm
I

(10b)

The sum over ni in Eq. (10a) actually stands for a
sum over the eigenvalues

Pen, m =(nl+ 2 + 2 m}/n .

In fact, Upl is Wigner coefficient which couples—+

spinor eigenfunctions of —,(L+A),

emerges when we first consider the pure Coulomb
potential. At zero field the nth level of the discrete
Rydberg spectrum (e= ,—n—)has n degenerate

eigenfunctions. For each
~

m
~

=0,1, . . . , n —1 of
a particular level, one can construct a complete set
of n —

~

m
~

orthogonal eigenfunctions in either
spherical or parabolic coordinates. (For e&0 in-

stead, these eigenfunctions are denumerably infinite
in l or continuous in P.) The discrete eigenfunctions
are energy normalized, in the sense that

g, 1(,Idr= 5„„=n5„„.E
~~

~

~ n
~~

n n I
P1

where j= —,(v —1),
v =( —2e ) 'i, and A, =2P —1.

Equation (11} has been presented here for zero
field and e&0. Formal extension to continuum
states and nonzero field implies that j and p+ are
no longer rational, or even real, for e &0. The for-
rnula extends nevertheless to such values by analytic
continuation, ' but it must be complemented by fac-
tors that reflect the proper normalization of the
wave functions.

In the presence of a finite Stark field, i}I,pm is a
continuum function at e= ——,v &0 as well as at
e = —,k )O, energy normalized according to

p, + ——, (—m+vA,},

fQ, g, dr =5(e' e)— (8')

as in Sec. IIA. The energy normalization depends
on the wave function's behavior in the Coulomb
and Stark potentials at r —+(x}. However, the coor-
dinate transformation is of interest at small r, where
the Stark field is negligible, because the overlap be-
tween g,pm and the localized initial state ir'I; in the
transition dipole (tbp

~

r
~ f; ) is appreciable only for

r & 0—10 a.u. We should like, therefore, to separate
the dependence of the expansion coefficients Upl
from the influence of long-range fields and of de-
tails of the energy normalization. Accordingly, we
explicitly factor out the energy-normalization am-
Plitude N,Pm from i',~m, as in Eq. (6). Similarly,
we factor out the normalization amplitude N, l from
the zero-field spherical function Q,I

where'5'8

(12)

QI(r-0)=N IIe' ~(2') ' PIm(coso)r [1+O(r)]J,

21+1 I

N,l=, g (1+2EP )2l+1!
1, e= ——,v gO

1

e 2mlk) I/2 e —~ k2 & 0—

Note, however, that for e &0 (discrete spectrum)
and e &0 (continuum) the normalizations (8) and
(8') for Q,I differ by

5(e' —e)v '=5(v' —v)

We now consider the wave functions P,& /N, p
and P,Im/N, l [in braces in Eqs. (6) and (12)], which
are normalized independently of energy at the ori-
gin. (The role of energy-independent normalization

l

has been described in Ref. 18.) These functions are
completely characterized in the Coulomb potential
at small r by their values of P,„m and 1, respective-en&m

ly, along with e and m. The fact that P,„ is
1

determined by a boundary condition at large g is ir-
relevant to the transformation at small r, i.e.,

F F F=O F=O —1/2
cpm Num cpm /Num &

We therefore write an expansion analogous to (9),



THEORY OF THE STARK EFFECT 2661

Wepm/cpm = P apt (fetm/Nsl)~ r &&F
l=m

(15)

we explicitly extend the transformation (9) to
nonzero F in the region where F is still negligible.
We also formally specify the transformation inverse
to Eq. (16),

The coefficients ap! are now free from the effects
of the Stark and Coulomb potentials at large r (ex-

cept for the implicit dependence on F through the
eigenvalues P), which are instead embodied in the
amplitudes N,pm and N,!. By rewriting Eq. (15) in
the form

PePm = g (aP! Num/Net%elm = g UPlgelm
1=m l

(16a)
I

f,tm
——g(U ')ipg, ~m, (16b)

P

but will never actually need to calculate (U ')lp.
The coefficients apl of Eq. (16a) embody the

purely geometrical aspects of the coordinate
transformation, which are represented by the
Wigner coefficient (11) in the special case F=O,
e (0. In general, apl remains real, even though the
parameters v and p+ of Eq. (11) become imaginary.
These coefficients,

i/4i+2m!2 l — I —m i+m I (ni+1)v lI (nz+I)
(2l+1)!![(l+m)!(i m)!—] k 0

k i —k 1(ni+1 k)P—(n2+1 —1+m+k)1/2 7 (17)

1 1

where n;
—=P;v+ —,+ —,m (i =1,2), are polynomials

of order l —m in A, =2P —1, just as the associated
Legendre polynomials are of order 1 —m in cos8
and sin8; the first few coefficients are given in

Table I. [The factors that multiply the Wigner
coefficient in Eq. (13) of Ref. 13 are represented in
our Eq. (16) by the ratio N,l/N, p= .)

The transformation between parabolic and spher-

ical bases, Eqs. (16a) and (16b), is appropriate to the
pure Coulomb region r «F '~ a.u., for any P or l.

I

I

In the parabolic region, however, the Schrodinger
equation is not separable in spherical coordinates.
Here the parabolic eigenfunctions 1(,pm of Eq. (1)
cannot be expanded into the set of spherical func-
tions If,tm I, which satisfy a Schrodinger equation
for a different potential (i.e., F=0) at the same e.
Therefore, the transformation matrix Upl is
nonorthogonal at fixed e, except for the special case
F=O, where

1, e&0
P F 0 5(v' —v)5„„, e= ——,v (n =1,2, . . . ) .

Ul' U l ~ ~l'I '
g

I

(18)

The e & 0 form of Eq. (18) follows from the different normalization conditions (8) and (8') for the discrete and

continuous eigenfunctions, as noted above.

C. Photoabsorption cross sections in H

The cross section for single-photon excitation of
the ground state

~
0) of H is given by an incoherent

sum over all independent continuum channels,

cr (e)=(4lrza)%co g I (1(l,p ~r„~!0) I

I

der to express Eq. (19) in terms of ordinary atomic
parameters, we expand the parabolic function g,~m

into spherical functions 1i,i at small r, where it'

overlaps
i
0). Insertion of the expansion (16a) into

the dipole integral in Eq. (19) yields

n1 ——0

(19)
TABLE I. Expansion coefficients a@~ defined by Eqs.

(14)—(17);A, =Pi —Pg =2P,"„—1.

1

where a= 1/137, the photon energy is fico =e+ —,

a.u., and rm =r cos8 for depolarization an.d

rm =r i 8sen+-'~/ 2v

for o +polarization. [-Note that cr (e)/2ir a equals
the density of oscillator strengths (df /de)r. ] In or-

1 0

2 0 0

(
4 )1/2

+ (—) '"[A,' ——,(1+ 2e)1

(
16 )1/2
15
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U UEM E1ll(ltd

e)0
(~) ~ 2ir a . de F 0

F—+P

f„5(e+ , n—),e &0,
(24)

with Uiii from Eq. (16a). The dipole selection rule
AI =+1 implies that only the 1=1 term survives in
Eq. (20), since 1=0 initially. The cross section (19)
thus reduces to

(22)

This result was obtained in slightly different form
in Sec. IB of paper I. 'The bracketed expression in
Eq. (22) is simply the zero field p-hotoabsorption
cross section, a = (e ), for a hydrogenic s ~p transi-
tion, which extrapolates smoothly to e &0 by the
normalization (8) of P,i . Thus, cr (e=) represents
the average oscillator-strength density at e &0 and
varies only slowly within 0.1 eV of threshold. The
fact that a = (e) can be explicitly factored out of
o (e)—even when there is a finite Stark field —is a
major feature of the present theory and will apply
in a similar way to the alkali cross sections.

The sum of squared expansion coefficients in Eq.
(22) appears as an energy-dependent modulating
factor, H (e), which multiplies cr (e) =The s.ame
values of 1 (1=1) and rn (0 or 1) appear twice in
each term UpI Upl, since the squared dipole enters
into the single-photon cross section (19). However,
two alternative values (l, l') occur generally in two-
step photoionizaton for the final state gf. Interfer
ence terms will then arise between different I chan-
nels in lif. Therefore, we define a more general
modulating factor Hi i as a matrix element (in an
infinite l)&l space) of the squared transformation
matrix (21):

Hi i = (1'rn '
i
H

i
1m )—:5~ ~ g UPi UP(

P

(23a)

Cross terms with m'Qm do not appear in Eq. (23a)
since m is a good quantum number. We will often
use matrix notation, writing

= [(UU) ']i i 5~ ~5(e e)—
=[(HF) ']ri5 ~ 5(e' e)—(25)

Orthonormalization of the states I i(i,i ] by the ma-
trix (ll'

~
p) ' now leads to the cross section

« ~) = 4~'~~ &0
l
r~

I Pa m & [&4'
l 0 & ']l'I

(26)

where f„ is the oscillator strength for a ls~np
transition.

It is important that H (e) depends only on the
final-state hydrogen-Stark wave functions ll,p~.
The identity of the initial state and even the details
of the transition itself are contained entirely in
~r

= (e), except for the specification of the final-
state angular quantum numbers I and m. The ef-
fects of the Stark field are contained instead in
H (e), to the extent that Hi i differs from 5i i, Eq.
(18).

An alternative and, for our purposes, more fun-
damental derivation of cr (e ) follows from first con-
sidering the photoabsorption process proper,
represented by (Pf ~

r
~

0). Excitation of
the ground state

~

0) leads to the excited state
~ f~)

in the limited region of their overlap, r «F
a.u. In this region the final state is equal to

, to within normalization. The evolution of
g,i~ to continuum behavior at large distances is
then represented by its expansion (16b) into parabol-
ic functions. However, the superposition (16b) is no

longer normalized to 5ii5(e' —e), nor is the set

J, in general, orthonormalized, because Upi is
not a unitary transformation since [(H ) ']ii re-
places 5I I in the overlap matrix

H =UU, (23b) which is identical to the expression (22) with

with the indices 1'1 and the sum g& understood.
Note that the matrix HI I is symmetric in I'~l. In
the limit I"—+0, H~g becomes diagonal because Eq.
(23a) reduces to the orthonormality condition (18),
and the total cross section (22) (with 1'=l =l)
reduces to its proper analytical form for hydrogen,

(27)

Note that the normalization factor 5(e' —e) in Eq.
(25) has been absorbed into the dipole matrix ele-
ments in Eq. (26), so the inversion in Eq. (27) is re-
stricted to the matrix of coefficients [(H ) ']ri.
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FIG. 1. (a) DOS matrix element DI"I for F=77
kV/cm, m=0, I'=1 =1, near the ionization threshold
{e=0). H», hydrogen; ——Dii, Na [Eq. (58)].
Quasidiscrete Stark levels labeled by (n, n&, n2, m). Ar-
rows numbered by ni mark P,„0=1,i.e., resonances at

1

e =e„. (b) H» and h», Eqs. (23) and (55), for m=O,

same F. Note anomalous dispersion in h ~~ at Stark reso-
nances.

The factorized form of IT (e) therefore has a direct
interpretation in terms of the separate physical ef-
fects of (a) photoabsorption and (b) ionization in the
long-range Coulomb-Stark potential.

Figure 1(a) (solid line) shows H»(e) for

F=1.5X10 a.u. =77 kV/cm,

final m=0 (n polarization), and e-0. The param-
eters p,„,~ and IVY for Fig. 1 (and all other figures

herein) were calculated by the WKB procedures
described in paper I. We note here a few general
features of H (e).

(1) The sharp symmetric peaks, which correspond
to the highly excited, quasidiscrete Stark states,
broaden out and disappear above e = —0.001 a.u.

(2) Regular modulations set in at e = —0.002 a.u. ,

persist beyond threshold, and peak at the resonance
energies e„marked by the arrows and their values

of ni in Fig. 1(a). These features overlap the sharp
peaks in a small region below threshold.

(3) At e )0, H ranges equally above and below
H =1. Thus, the presence of a Stark field induces
an oscillatory modulation of the zero-field cross sec-

I

'
I

II

-0.003 -0002 -Q.QQI

X50
I

I

(b)
I

Ad PV

I

I

I

0.000 0.00I

~(a. u. )

FIG. 2. Matrix elements as in Fig. 1, but with m =1
and expanded vertical scale: (a) D» for H and Na, (b)
H

& ] and 5 l l. Note Stark levels and detail of small
threshold modulations in H l l.

tion, so that the oscillator-strength density is (at
least approximately) conserved on the average above
threshold. The spacing and depth of the modula-
tions grow with increasing I' and reduce instead to
H (e)=const= 1 as F~O.

(4) The background at e &0 drops to zero at the
classical ionization energy e;,„=—V'4F and rises to
unity at e &0. The envelope or depth of modula-
tions, 2

I

H 1 I, decreases —at e & 0 roughly as

D. Photoabsorption from an excited state

The extension of the cross-section formula (22) to
include two-photon transitions through an excited
intermediate state is straightforward. Here we con-
sider the following case.

(1) The first photon excites the ground state to an

np state, P;, saturated by a laser.

4exp[ 3(e eo )/I e'o
I ]

=0.20exp (—3e/
I cia„ I ) .

Figure 2(a) (solid) shows H»(e) for
I
m

I
=1 (o+-

polarization) and F=77 kV/cm, with the vertical
scale expanded [see also Fig. 2(b)]. Above thresh-

old, H&& —1 is only a fraction of a percent; below
threshold, of course, one still observes sharp peaks
at the Stark levels.
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(2) 11(; is described by a superposition of Im(sm,
basis states (to be ls coupled in Sec. IV to a specific

1 3
jmj state, j = —, or —,).

(3) g; is localized within a region where the Stark
field is still negligible; this requires n «F ' (see
Sec. IB of paper I).

In hydrogen, one should also take into account the
linear Stark splitting of the nth level,
b,e= 2n F(2p —1). We forego this complication,
however, because of our primary concern with ap-
plications to nonhydrogenic atoms, whose linear
Stark shift is zero and whose quadratic Stark shift
is negligible.

The total cross section (19) for absorption of the
second (ionizing) photon is therefore given by Eq.
(22), with I(A) in place of IO). Once more, Eq.
(14) holds insofar as (A and P,p~ overlap appreci-
ably. only where Fz « 1lr Now. the dipole integral
(20) contains both p~d and p —+s transitions if

I

m(final)=m~ ——0, but only p~d if m~ ——1 or 2.
The hydrogenic photoionization cross section thus
becomes

(r22 (~)~22(e )+2(r20 (e )~20(~)

+ ='(~)~ (e), (28)

where the modulating factor H(( is defined by Eqs.
(23a) and (21). The presence of the cross term in
Eq. (28) requires us to define

(r((= (e)

=(4~'~)~(A Ir l, f.( &&4.(

(29)

we will henceforth omit the superscript F=O of o.
[Note that the angular brackets in Eq. (29) indicate
both radial and angular integration. ] The zero-field
total cross section, g((r((=o22+opp, may be fac-
tored out of Eq. (28) as in Eq. (22) by writing

«~) =(~22+F00)
(r22~ 22 +2(r2(P 20 +(r(xP 00

F F F

022+ Ooo
(30)

The expression in parentheses in Eq. (30), cr /(o22+opp), represents the modulation of (o22+opp). The in-
terference term between 1=2 and l =0 channels, 2o20H20, may be of either sign, depending on the angular in-
tegrals in Eq. (29). In the limit F~0 this term vanishes owing to Eq. (18), and Eq. (30) reduces to the zero-
field analog of Eq. (24) for two l channels.

The cross section (28) generalizes Eq. (26) since photoexcitation to final s and d states in the region
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FIG. 3. DOS matrix elements Dq~ for H and Na as in
Fig. 1(a), m =0: (a) Doo, (1) D20 =D02 (c) Dzz
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FIG. 4. D22 for H and Na as in Fig. 3(c), but with (a)
m =1, (b) m=2. D22 and H22 almost coincide since
p2~O,
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TABLE II. Hydrogenic cross sections for photoionization from an intermediate np state, Eq. (28); see Eqs.
(»)-(24); g, =-g.",=p, P'-=P,"....

25
V —3 1

v (0v+3
Gi(e)=(4ir~a)[2"3'(I+ 18@) 7]

e
—&4/k&tan 3k( 1

—2o /k) —1
& k 2 + 0

Polarizations m; ~mf
G2(e) =G1(e)/240

CrF(e ) /4n. 2a ACu

0—+0

(H" for m =0)

0.+0. or 0. o.+ 1—+1

—, (R„'1)H22

+ (R„'fR„'i )Hgp+ —(R„'i )~Hpp
3 5

—, (R„'1)H22

G)(e) g (Np)' —„[(2P —1)'——,]'
P

G2(e )(—+—e+ 14m 2)
F~O 54 9

Gi(p ) g (Np)' „', [(2P —1)'—( —, +2m)]'
P

mo+ or mo.

0+m or o m.

(H for m =0) — (R„'iR„'i )Hip+ —,(R„'i ) Hpp
3 5

(g 52 )2HFnl

(HF for m =1)

—+ G2(e)( —+—6+66 )
F-+0 27 9

G ) (& ) g (Ns )'—„(2P —1)'
P

~ G2(~)-2' (1+2~)(1+8~)
F~O

0 cT or cT cT 1~2
(HF for m =2)

—'(Z" )'H,',n1 G~(p') g (Ns)i ~ Gi(e)(1+2@)(1+8@)
P

F-+0

r «F '~ requires us to keep all four pairs of spherically symmetric wave functions
~ Pi &&pi ~, as in Eqs.

(28) and (29). Renormalization by the DOS matrix (27) leads once more to Eq. (28) in the form

&«}=(4~'~)~+&A lr IA&[&4'I@& ']it&it(lr It)' &

= g[&f'
I g& ']tion(e}=Tr[H cr(e)], I', l =I;+1.

I'I
(31)

The three modulating factors Hpp(e), Hzp(e),
and Hzz(e) are shown in Figs. 3(a)—3(c) (solid
lines) for mf =0 and F=77 kV/cm, while Figs. 4(a)
and 4(b) show Hzz(e) for mf =1 and 2 (and F=77
kV/cm). Note the qualitative similarity of all three
curves in Fig. 3, especially the fact that they ap-
parently oscillate in phase both above and below
threshold. Also note that ~Hit 1~ increases wit—h 1

at all e; Hqo is intermediate in magnitude between

Hpp and Hzz,' and Hzz(e) in Fig. 4 is much fiatter
above threshold for m=1 and 2, in analogy to Fig.
2(a) for m = l = l.

The nine possible polarization combinations of
the two photons lead to only four distinct cross sec-
tions for the transition process 1s—+np —+ed+as:
(a) nor, (b) cr+o, (c) n cr+ (same as o+n ), and (d)
o+cr+ (if we ignore ls coupling). The corresponding
cross sections are listed in Table II in terms of the

I

radial dipole matrix elements R„'I+' and R„'I'

(l =1}and of the values of the angular integrals.
Also shown in Table II are the analytic expressions
of the cross section (28) for a hydrogen n =3 inter-

mediate state, which are explicit functions of e,
N,p, and A, =2P —1 (note that o'po ——ozp=O for
mf ——1 and 2}; the zero-. field cross sections o(e) are
analytical functions of e alone.

The polarization dependence of the depth of
modulations above threshold for g; with n =3,
1=1, m =0 or 1, is illustrated in Fig. 5, which
shows all four o (e) on the same vertical scale (in
a.u. ; E=77 kV/cm). The dashed lines mark the
cross sections for F=O (see Table II). The qualita-
tive features of these curves for two-photon excita-
tion are the same as for single-photon excitation (cf.
Figs. 1 and 2},but are enhanced here: The modula-
tions are largest for mf ——0 and decrease for succes-
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1.5
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C)

b

0.5—

(C) «-' (or a--'~)

(b) o-'-0-

0.0
-0.002 -0.001 0.000 0.001 0.002 0.003

~(a.U. j

FIG. 5. Two-photon ionization cross sections for hy-
drogen 0. (e) for I'=77 kV/cm: (a) mw (m =0~m =0),
(b) cr—+cr+ (m =1~m =6), (c) m. cr—+ or 0.—+a
(m =0~m =1 or m =1~m =1), (d) o —+cp—+

(m =1~m =2); see Table II. Quasidiscrete Stark levels
labeled by (n, n l, n2, m); depth of modulation and n l peak
are shown at e =O. ——,cr

= (e).

sively larger values of mf. This enhancement re-
sults from the larger value of l in the final state
reached in the two-photon process. The size of I-m
measures a spherical wave function's alignment
along the z axis, maximal for m=0 and large l.
This focusing translates into parabolic coordinates
via the transformation coefficients afP (cf. Table I),
which are most heavily weighted towards
A, =Pt —P2 ——+1 by their leading term A,' . The
presence of an alkali-metal ion core will not alter
this picture substantially.

III. PHOTOIONIZATION OF
NONHYDROGENIC ATOMS

In Sec. II, we factored the photoionization cross
section for hydrogen, Eqs. (19) and (28), or Eqs. (26)

I

and (31), into zero-field dipole matrix elements

rrrt(e) [Eq. (29)] and a density-of-states matrix
[(t)'j'1l( ) ']I t [Eqs. (27) and (23)]. This separation
was effected via the coordinate transformation a~t
which is performed at r-0 (10 a.u. ) and connects
the spherical eigenfunctions P,t, appropriate at
small r, to the parabolic eigenfunctions g,p~, ap-
propriate to the Coulomb-Stark potential at large r.
The transformation is possible because both sets

] and {g,~ [ are regular solutions of the same
Schrodinger equation in the intermediate zone (2)
characterized by a pure Coulomb potential.

In this section we apply the prescription of Sec.
II to derive expressions for alkali cross sections
a"(e) analogous to Eqs. (26), (27), and (31) for H.
We again utilize the transformation (16a) or (16b) in
the Coulomb zone (2), but the presence of core ef-
fects necessitates an additional transformation for
hydrogenic eigenfunctions irregular at r=O, which
are defined through the Coulomb Green's function
(Sec. IIIA). In the expressions for u (e) we then
identify a generalized density-of-states matrix,
Dtl=[('0'14) ']It, which modulates the zero-
field cross sections ot t of the alkalis (Sec. III B) and
which contains all spectral information on the Stark
effect, including asymmetric line shapes at @&0
and a series of modulations at e )0 (Sec. III C). We
shall characterize the asymmetry for the simplest
case of Dtl by a Beutler-Pano parameter q, ex-F

pressed analytically in terms of pI and of parame-
ters of the hydrogenic-Stark spectrum. Differences
between atoms appear only in their respective zero-
field parameters o.

t t and pl, which we assume to be
known from zero-field data.

We begin by considering an atom's final-state
wave function in region (2) following photoabsorp-
tion. If the region r &ro is occupied by an alkali-
metal ion core instead of a bare nucleus, each of the
hydrogenic wave functions l(,t~(r) acquires a radial
phase shift 5t =mpI outside the core boundary ro.
The wave function ql,t~(r) of a nonhydrogenic
atom is then written in terms of a radial base pair
[f,t(r),g,,(r)] of regular and irregular Coulomb

functions for the excited electron:

+ I (r) cossl[f l(r) tan51g l(r)]~1 (~ '((') r &ro . (32)

A factor representing the wave function for the core electrons is implicit in O',I but need not be spelled out,
since we will never need to treat these electrons explicitly. The oscillations of g,&(r) in the range (2) lag 90'
behind those off,I(r). Both eigenfunctions are energy normalized, e.g., as WII B wave functions

f,t(r) =[2/n. k(r)]'~ sin k(r')dr'+ —,m (33a)
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T

g,i(r) = —[2/n. k(r)]' cos I k(r')dr'+ , rr—, p ) i'p (33b)

with wave number

k(r)=[ —(l+ , ) /r—+2/r+2e]'~

I

introduce the notation

fi(r ):f,i—(r) Yi~(8,$)=Q,i~(r), (34a)

and Wronskian W„(f,i,g,i )=2/n. [T.his energy
normalization applies to e (0 as well as to e & 0; cf.
Eqs. (8) and (8').] For the total wave functions we

(34b)

again we have omitted the labels m and (E. The total
atomic wave function (32),

%,i ( r ) =cos5ifi ( r ) sin—5igi ( r ) (35)

=[e' (2m )
' ]Pi (cos0) [cos5if,i(r) —sin5ig, i(r)], (36)

is energy normalized over the range (2) by Eqs.
(33a) and (33b), as was f,i (r) =fi(r) itself in Sec.
IIA. 4',i~ may therefore be treated on the same
footing as P,i~ upon passing to the Coulomb-Stark
region via the coordinate transformation(s) between
energy-normalized spherical and parabolic func-
tions.

A. Core effects and Green's function

The net effect of the core on the spherical solu-
tions %,i is contained in the phase shifts 5i. The
coefficient tan5i in Eq. (32) may be viewed as a ma-

trix element of a diagonal reaction operator K, de-
fined on the core boundary r =ro and operating on
the regular solution

Eqs. (12) and (34a):

N, i (el'm
i
E

i
elm )N, i = 5i im 'tan5—i .

(37)

The diagonality symbol 5I I in this equation applies
only to alkali-metal atoms with a closed-shell core;
it should be replaced for other atoms whose reaction
operator is not diagonal in a basis of spherical
waves. The normalization coefficient

cos5i=(1+tan 5i)

is set positive by taking the quantum defects pi on
the branch

1 1—
2 &pl&+2

i.e.,
1 1pi~(pi+ —, )(modl) ——, .

l

This choice also ensures that the regular spherical
and parabolic functions are defined with the correct
sign at r~0, Eqs. (6) and (12), and therefore
transform according to Eqs. (16a) and (16b).

The irregular solution (34b) arises because the
core potential departs from a pure Coulomb poten-
tial at r & ro. The departure from —1/r acts as an
inhomogeneity whose effect is propagated by the
standing-wave Coulomb Green's function

G'(r, r ') =~ g gi( r )fi(r '),

(39)

a solution of the Schrodinger equation for the
Coulomb potential alone. The Green's function (39)
is specified uniquely by our choice of boundary con-
ditions, namely, regularity at the origin for fi and a
90' phase lag of gi with respect to fi in region (2).
Furthermore, the Coulomb degeneracy in region (2)
implies that the spherical and parabolic forms of
6'(r, r ') must coincide there, as pointed out by
Fano. '

We thus require the spherical Green's function
(39) to be equal to its analog in parabolic coordi-
nates,

G'(r, r ') =2 g Xp(r )fp(r ')/~„(Yp, Yp),
P, m

(40)

In analogy to Eq. (39) the right-hand side of Eq.
(40) is constructed with the regular parabolic eigen-
function gp~ Yp(il) from Sec. IIA, Eq. (4), and
with a second parabolic function irregular at g =0,
Xp ~ Yp(g ), with the same eigenvalue P as gp..

imP

X„, =Xp(g, ri, g) = :-p(g)Yp(ri) . —

(41)
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The function Yii(ri ) lags 90' in phase behind Yii(ri )

for 1«ri &F '/, that is, only within region (2).
This relationship parallels the large-r boundary con-
dition on g,i(r) expressed by Eqs. (33). On the other
hand, Y and Y are continuum normalized at

q —+ eo, asymptotically, they oscillate like Airy
functions with a different phase relationship, dis-
cussed below.

We shall now verify that the Green's functions
(39) and (40} indeed satisfy the same boundary con-
dition in region (2). To this end we consider a nar-

I

row cylinder about the negative z axis, such that

8=~,
Pi (8) ~sin 8=(ir —8)

g =r(1+cos8}=2
r(n. 8)—

i}=r(1—cos8) =2r «F
The regular hydrogenic functions in this region
reduce to confluent hypergeometric functions, '

and

f~(r )=N, i~ [e' i'e '/"(ir 8)—]r F( —v+l + 1,2l +2;2r/v)

p&(r)=Nii [e' ~e "/"(m 8) ]r F—( p2v+ —,m+ —,—,m+1;il/v),

(42)

(43)

where we have used

(g~ )1/2m [r2( 8 )2]1/2m

v=( —2e) '/, F(...;g/v)=1,
and where numerical factors are lumped into N, i~
and N,p . The factors in brackets are the same in

Eqs. (42) and (43). The remaining factors are ana-

lytic functions in the variables 2r/v and il/v,
respectively, which coincide within our narrow cone.
We have seen in Eq. (16a) how the function (43)
could be matched by a superposition of the func-
tions (42). By the same token an irregular solution

lagging in phase by 90' with respect to (43) will be
matched to a superposition of solutions lagging in
phase by 90 with respect to (42). The uniqueness
and separability of the Green's function in the
pure-Coulomb region guarantee that the matching
achieved in the narrow cone applies off the axis as
well. The spherical and parabolic Green's functions
thus coincide throughout region (2) independently of
the Stark field.

This comparison of Green's functions differs
from Fano's treatment of nonhydrogenic Stark spec-
tra' in the following respect. The Green's function
is defined in Ref. 13 through its eigenfunction
expansion —i.e., as a principal part integral over all
e—which is brought to the form of Eq. (39) [or
(40)] only at r +co [ri —+ ao ], whe—re the Stark field
dominates. However, we have seen that the irregu-
lar functions must be defined with respect to the
regular ones in the pure-Coulomb zone (2}. Thus,
the approach of Ref. 13 is incomplete, insofar as it
ignores the essential barrier effects below threshold
that produce interferences between parabolic eigen-

I

functions at i}~Do, as will be seen in Sec. IIIC.
Fano's main contribution lies in the identification
of the Coulomb Green's function in bases of dif-
ferent symmetries.

Normalization per unit energy of the parabolic
functions

Qadi
and Xii does depend on the field

strength F through barrier effects outside region (2).
If we begin with Yii(ri) and Yii(ri) for ri «F
in their WKB forms, Eqs. (33a) and (33b) [with
k (r) replaced by

k(ri) =( , m'/ri'+P, /—ri+ , e—+ „Fri—)'/'j, —

propagation across the barrier modifies their phases
and amplitudes':

Yp(ri) ~ Rp[2/~rk(g)]' sin I k(ri')deal'
Q ~ 00

+ 4~+5p
1 F

Yp(ri) ~ Sp[2/nk(ri)]'/ sin J k(ri')dpi'
'Q ~ 00

(44a)

+ —,
' ~+5pF—ypF

(44b)

The asymptotic relative phase shift y differs in
1

P Fgeneral from —,m but lies in the range 0&yp &w.
(The absolute phase shift 5ii is discussed in Ref. 10
but is irrelevant here. ) The ratio of amplitudes of
Yp(i}) [or Yp(ii)] at small and large ri is (Rii)
[or (&p) ']. In order to regain the continuum nor-
malizaton [2/nk(ri)] sin( ) appropriate to the
ionization region ri —~ oo, we multiply Eqs. (44) by
these ratios to obtain
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(g, p ~

~ f,p ) =(X,p ~X,p ) =5(~' e—)5p p5 ~

(y;p ~ ~X,p )=(X,p ~

~ y,p )=cosyp5(e' e—)5p p5 ~

W„(Yp,Yp}=(2/ir)sinyp ——(2/m )(RpSp)

(45)

(46)

(47)

Explicit expressions for Rp, Sp, and yp are given in Appendix A; we note here the following properties of the
amplitudes and phases, illustrated schematically in Fig. 6: (a) at energies sufficiently above the barrier top
(e & 0},R ' and S ' approach unity and yp reduces to , ir —forall P; (b) below the bamer top, e & e„R
and S ' are exponentially small and y &0 or &n., except that (c} near a resonance R ' is very large withp p 1

(approximately) Lorentzian profile and yp rapidly increases by =n through its value yp ———,m at the reso-

nance.
The equivalence of the Green's functions (39) and (40) now serves to relate the irregular functions in region

(2) with the boundary conditions and normalization conventions prescribed above:

6'(r, r ')=m hagi(r)fi(r ')=n+Xp.(r)cscypgp(r ')
l, m pm

=ir g [SpXp(r)][Rpgp(r')], r'&r «F
p, m

The role of the Wronskian (47) in the Green's func-
tion (40), performed in (48) by cscyp or SpR~, is to
reduce the parabolic functions Yp(rl ) and Yp(rl ) to
the same normalization as gi(r) and ft(r), thus re-
moving any barrier effect from the Coulomb
Green's function. [The Stark field exerts only an
implicit effect by determining the spectrum of
eigenvalues P(e,F;n i,m).] The transformation be-
tween the sets {gtI and IXpI follows immediately

upon substituting the transformation between {f~ J

and {gpI into Eq. (48). In the present notation

l

Eqs. (16a) and (16b) read

4p(r )= g Upifi( r»
I

fi(r)= g(U ')tpPp(r);
p

Eq. (48) then yields

Xp(r)= gsinyp(U ')pigt(r),
I

g, (r ) = g U(pcscyq~X$(r )

p

(48)

(49a)

(49b)

(SOa)

(50b)

with constant values of e and m implicit
throughout. Note how the transformation UR in

Eqs. (48) and (49) is replaced by (UR) ' in Eqs.
(50},which equals UR only for F =0.

(b)—

B. Photoionization and generalized
density-of-states matrix

FIG. 6. Wave functions Y"(g) and Y (g) (schematic)
in the potential Viil ) =—(m —1)/it '—p2/il Frl- —
(Pz&0), showing different barrier effects. Amplitudes
fixed by energy normalization at g —+oo,' relative phase
—m fixed at g «E ' . Amplitudes (Rp) ' and (Sp)
induced at g «F '; relative phase yp induced at

g ~ 00. (a) e ~&e„weak barrier reflection. (b) e & e„bar-
rier tunneling off resonance. (c) e & e„Yp quasibound at
resonance in the potential well.

Our treatment of photoionization for alkali-metal
atoms now follows as a generalization of Secs. IIC
and II D for H. We consider photoabsorption by an
atom in an initial state 4; that is confined to r & ro

4; may be the ground state or a low-lying excited
state. Following photoabsorption, the final-state
spherical wave function %,t~(r), Eq. (35), evolves
through the Coulomb zone (2) and into the ionizing
region, g ~ 00, where it must be continuum normal-
ized in the parabolic basis. We accordingly replace
the basis functions {f~(r),gi(r)I in Eq. (35) by their
respective expansions (49b) and (50b) into the
energy-normalized basis functions {fp(r),Xp(r) I,
giving, for r & ro,
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4,~~(r) =cos5~ g ( U ')Ipg&(r) —sin5I g U~cscy&X&(r)
P P

=[8' (2~) ' '] g:-p(g)I [cos6I(U ')lp]Yp(ri) [—»»IUIpcscyp]Yp(g)I .
P

In matrix notation, Eq. (51) reads

V=cos5 U 'g —sin5 UcscyX

(52)

(53)

where the sets of functions I V~ I, I g~ J, and [X@I form column vectors and trigonometric functions represent
diagonal matrices. Each parabolic channel in the superposition (52) contains one eigenfunction =~(g) and a
linear combination of Y&(g ) and Y&(q), as Eq. (36) contained one function of cos8 and a combination of
f,((r) and g,((r).

In order to orthonormalize the set IV~ I, Eq. (53), we construct the overlap matnx &4', ~ I V,I~ }:
&ql'

I

'0 }=cos5 U 'U cos5+sin5 Ucsc y Usin5 —cos5 U 'cosy cscy Usin5

—sin6 Ucscy cosy U cos6

=(cos5 —sin5 Ucoty U)(UU) '(cos5 —Ucoty Usin5)+sin5 UUsin5, (54)

where we have taken the transpose of the coeffi-
cients in

I
+ };an overall factor 5 ~ 5(e' —e) is un-

derstood. In the first line of Eq. (54) we have used
(1) the orthogonality of the eigenfunctions =p(g),
and (2) the overlap integrals for lip and Xp, Eqs.
(45) and (46); in the second line, (3) the identity
csc y=1+cot y. Note that each channel in Eq.
(54) includes a pair of interference terms between P@
and g~, proportional to cosy'. These terms vanish
in the special case of hydrogen, where all 51 =0, and
we recover Eq. (25).

Core effects appear in Eq. (54) only through the
short-range phase shifts 5~. The Stark effect is
manifest instead through hydrogenic parameters
determined by the potential [Eq. (1)]: (1) the ampli-
tudes of barrier penetration, (Rp ) ', appearing
in the normalization coefficient Np in Upl [Eqs.
(21) and (44a)], and (2) the asymptotic phase shifts

yp. The hydrogenic DOS transformation,
H = UU, contains only information on the intensi-

ty in each parabolic channel; its terms are
~(Rp) . Phase information is contained instead

in a second hydrogenic constituent of Eq. (54),
which we designate as a companion to H:

I

I

hI i =5~ ~ g Ug' Ug cotl ~

ol

h =Ucoty U, (55b)

=Tr[D cr(e )], (56)

with zero-field dipole matrix elements contained in

Il«)=(4~'&)~&'P Ir Iq', r }&+,z

and with the Stark effect embodied in the DOS ma-
trix

analogous to Eq. (23a) or (23b). Near a resonance,
H and h will be seen to vary with energy as a pair
of absorption and dispersion curves.

The cross section for photoionization of an
alkali-metal atom is now given as a generalization
of the hydrogenic expression (31):

&(~)=g[&'p'Iq'} ']n n«)

D:&0"
I
4} '=t(c—os6 —sin6h )(H") '(cos6 —h sin6)+sin6H sin5]

Equations (56)—(58) are the central results of this
paper. Our study of various spectra near threshold
will henceforth focus on the modulating factors
D~ ~, since the factors in Eq. (57) vary very slowly
within, e.g., 0.1 eV of threshold. The matrix inver-
sions in Eq. (58) are restricted to the 1')&l subspace
where 5~+0—which is 0&l (2 or 3 for alkalis —so

I

manipulation of Eq. (58) requires only a modest
amount of matrix algebra (Appendix B). Numerical
computation of a (e) is limited to a few matrix ele-
ments H~ ~(e) and h~"I (E), which in turn depend only
on a~I and on a few hydrogenic parameters, P,„&8)7tl &

X~, and yp (see Appendix A). The number of para-
bolic channels thai contribute significantly to H
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and h is in practice' & [F(a.u.)]
=47[RkV/cm)] '/, e.g., =26 channels for F=10
kV/cm.

C. DI I and Spectral Profiles

We present here a brief study of the matrix ele-
ments Dl I of Eq. (58), which modulate the slowly

varying zero-field cross sections Ol I(e). When all

5I =0, Eq. (58) reduces to Eq. (27) for the hydrogen-
ic spectrum HI ~, indicated by the solid lines in Figs.
1(a), 2(a), 3, and 4 for F=77 kV/cm and for various
values of m and (l', l). We regard the quantities Dl I
as variants of the hydrogenic spectrum Hl. l. The
deviation of the matrix D from H is a function of
the set of quantum defects pi =5I/n [with the re-
striction (38)] and involves the hydrogenic quanti-
ties hI"I as well.

By way of example, we illustrate the modulating
factors for Na by the dashed lines in Figs. 1 —4—
the observed Na spectra of Refs. 3 —5 will be dis-

cussed in Sec. IV. The values

Po= 1.350-++0.350

p] ——0.856~ —0.144,

p2
——0.014, pI &3=0

were taken from experimental data for the highly
excited levels of NaI and were assumed to be ener-

gy independent. Note that (A) the oscillations at
e )0 are diminished in magnitude in every case and
inverted in Fig. 3(a), and (B) the peaks at e &0 are
broadened and asymmetric with interference mini-
ma on one side or the other in a given spectrum, but
with the line shapes varying among the different
spectra. We shall discuss first H (e) and h (e ) and
then describe how these building blocks are com-
bined by different values of I ui J to generate the ob-
served profiles.

H i i (e) and h» (e) are shown together in Fig. 1(b)
for m=0 and in Fig. 2(b) for m= l. Near or above
e=0, H i i oscillates about unity with

~

H i i
—1

~
&& 1 (see Sec. II C). In general HI I oscil-

lates about unity (zero) for l'= l l l'+l) with
0(0.1), as shown in Figs. 3(a) —3(c}

for (l', l) =(0,0),(2,0),(2,2). The function hl I, on the
other hand, quickly vanishes at e )0. In this range
all the relative phase shifts in Eq. (55a) approach

yp ——, n [see Fig. 6(a)], si—nce e is far enough above

the barrier top e, =—2[(1 P)F] '/ in each cha—nnel
for diffraction by the barrier to have a negligible ef-
fect on the wave functions' phases and amplitudes.

Hl'I =~l'I+( UI.PULI )(Rlt)
F F 0 0 F —2 (60)

where we have specified the smoothly varying back-
gl ound

F
Rl'I g Ul'p Upi ~

ppP
(61)

which rises from zero at e &e;,„ to unity at (I &0.
The "renormalized" transformation coefficient

UpI ——UpIRp
0 F

(62)

replaces Upi in the transformations (49) and (50) if
we consider the functions Yp(ri) and Yp(il ) to be
energy normalized as in Eqs. (33) and (44), i.e., as in
a pure Coulomb potential at q «F '/. The fac-
tor Rp serves to cancel in UpI the barrier-
penetration amplitude R '—representing the
resonance —so UpI varies smoothly through a reso-
nance. The amplitude Rlt is given in Eq. (A6) in

terms of parameters of Appendix A. Near a reso-
nance R has a Lorentzian profile:

(R&F) 2=(T2cos2b, +T sin b, }

1

—,I /rr

m'/2 (e eo)2+( —I )2 d (b /m )0 6p

(63)

where 5 is the WKB phase accumulation modulo m

in the potential well of Fig. 6 [Eq. (A3)]; e=eo
is the resonance center, corresponding to 4=—,~;
T=2e'»1 is a tunneling amplitude; de/d(b, /n. ) is
approximately the energy spacing between reso-
nances; and the resonance halfwidth

—,I =T de/dh ~,, (64)

is by assumption «de/d(b, /n. ). We assume for
simplicity that all parameters except 6 are nearly

(This corresponds to the usual circumstance of a
WKB wave function in a single classically accessi-
ble region, whose phase accumulation is smooth in
a slowly varying potential. ) Note the small reso-
nance in Fig. 1(b) at e=O: only in the n i

——12 chan-
nel, where p2 & 0 and the barrier is shallow, is e, =0
and is there any appreciable reflection of
4,ni ——12,m =0.

Below @=0 there occur instead narrow resonance
peaks in HI I at quasibound Stark levels, labeled in
Figs. 1 —4 by their hydrogenic quantum numbers

(n, ni, n2, m). For an isolated resonance in the p
(n I ) channel we write Eq. (23a) in the form
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constant within an energy range of several —,I
about ep. [This condition will not hold near or
above the barrier top; cf. the (12,11,0,0) peak in Fig.
1. Note also that above the barrier T actually ap-
proaches unity —see Eq. (A7)—so R ~1.]

The behavior of hl l near a resonance varies in
tandem with that of Hl l, Eqs. (60) and (63). From
Eq. (55a) we have

hl! =bl!+ ( Ul,p Utl! )(Rt!) coty!7,
F F 0 0 F —2 F

with the background

br! = g Ul tl cotyp Up!
F F

PAP

(65)

coty& ——(T —T )sink cosh, 0 & yg & Ir

(67)

The absorption and dispersion curves E. and
R coty are illustrated in Figs. 1(b) and 2(b), e.g.,
in the small (11,8, 1,1) peak. Note that the max-
imum of Eq. (68) lies at lower energy than the
minimum. This reflects the fact that Ytl(I) ) lags in

phase behind Ytl(ri) at ri~ao by ytl &0 at e &ep
(or ytl & Ir at e & ep) [cf. Eq. (67)]. Away from any
resonance, R —+O so Hl l just reduces to its back-—2 F

ground Bll,' on the other hand, 8 coty —~tank
and so

I hl! bl I I
may be ap—preciable between res-

onances. Owing to this circumstance, the mixing of
h into the nonhydrogenic spectrum (58) will

broaden the narrow peaks of H .
Case (A) e &0, e&0. Near or above threshold

the matrix B assumes an especially simple form.
As noted above, in this region

I
H!'I f'Ir!

I

0—
and hl I &

I
Hl I 5rl I, so to secon—d order in these

quantities Eq. (58) reduces to

D!I = 51!+(Hl l —5l l )cos[1r(pl +pl )]
F F

+hl Isln[Ir(pl +pl)] .

The cosine factor in the second term in Eq. (69)
merely attenuates the threshold modulations while

from Eq. (A9). (At e &0, T~l so ytl~ , m., as-
stated above. ) Thus, with T»1, R coty is the
companion dispersion curve to the Lorentzian (63):

p 2 F sink cosk
cos 5+(T —1)

R coty =

«p —e)~~ de
6-L~/2 (e ep)2+( —1 )2 d(blIT)

(68)

the third term is asymmetric at e &0 [Eqs. (65) and
(68)] and vanishes at e&0. We see then that the
core effect preserves the positions and spacing
of the hydrogenic series of oscillations H —1 but
diminishes their depth and possibly inverts them ac-
cording to

F

F
Hl'l 5l'1

1

&0 i«&
I pl+p! I

&-,
1' =O~f pl+Pl=+ 2 ~

&»f —,
'

& Ipl'+pl I
&1 .

The condition (70) is illustrated by the dashed lines
in Figs. 1 and 3 (m =0). Referring to the quantum
defects (59) for Na, the modulations in Fig. 1(a)

(2pI ———0.29) and Fig. 3(b) (p2+pp=0. 36) are sim-

ply shallower than for H, but are inverted in Fig.
3(a) (2pp=0. 70). (D22 II1 Fig. 3(c) is hardly affect-
ed since 2pI ——0.03=0.) Such an inversion would
give rise to an apparent shift of the hydrogenic os-
cillations by 180' in an experimental spectrum if
their slight asymmetry were overlooked. In an
nl;~@I alkali transition with I'=I the zero-field
cross section (57) at e & 0 is modulated by

Dll = 1+(Hll 1)cos27rpl—. (71)

0+pl!+pl & 1
if O.p+p, .-1

L

(72)

and there is no asymmetry if pl +pl ——O. For ex-
ample, the interference dips in Figs. 3(a)—3(c) and
4(a) —4(b) are all on the high-energy side of their
peaks, whereas the minima in Figs. 1(a) and 2(a)
(2p, &0) are on the opposite side. The asymmetry
condition (72) still holds, in general, when the peaks
are very sharp (see below). Thus„a knowledge of
the quantum defects suffices to predict both (a) the
sign of the peaks' asymmetry in the cross section
(56) as well as (b) the depth of the threshold modu-
lations in a nonhydrogenic atom.

Case (8) e&0. The sharp resonances below
threshold cannot be described by Eq. (69) since
H 1 and

I
h

I
»0. T—he most general treatment

For example, 5s~ep ionizing transitions in Rb
(p, I

——2.65) should reveal this effect; the expanded
spectrum in Fig. 6 of Ref. 1(b) suggests this
behavior.

The grosser asymmetry of the dispersive term hl l
is evident in all the resonances of D below thresh-
old in Figs. 1 —4. According to Eq. (68) and the
approximation (69), the positions of the smaller
peaks' maxima and minima are related'by
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of the matrix equation (58) for D// involves the
solution of an eigenvalue problem, detailed in Ap-
pendix B, whose dimension is no larger than the
number of nonzero quantum defects p/ =5//ir
Thus, all the dashed curves for Na in Figs. 1 —4 in-

volve only matrix elements H~ I and h~ I with I', I (2
[cf. Eq. (59)]. Although the matrix manipulations
in the solution of Eq. (58}are computationally sim-

ple, the exact algebraic expressions for D// with
even just two p/+0 are cumbersome. We shall

therefore discuss the profile of an isolated resonance
as a function of a single nonvanishing p/=pi,
though unrealistic, this example adequately reflects
the qualitative features of the alkali-metal spectra
shown in the figures.

The simplest expression is for the matrix element
with I'=l = l:

1+tan 5I
DII —

HgE F ~ F(1—h//tan5I ) +(HI/tan5/)

or equivalently

(73)

D/i =csc 5IImI [cot5/ (h//+iH—(/)] 'I . (74)

Equation (73) is plotted versus (e —eo)/ —,I' in Fig.
7(b) for various values of pi. Figure 7(a) (first
panel) shows the pair of absorption and dispersion

F
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FIG. 7. DI"I vs (e —eo) / —I for a single

5i/ir=pi=pi+0. (a) Hydrogen matrix elements i', l =1
or 0 used in Eq. (58}. Lorentzian Hi/ [Eq. (60)]
with 8~] ——0.70, B~p=0.20 BOO=0. 86; ——dispersion hI I

[Eq. (65}] wi'tli bii =0.25 bio = —0.20 boo=0. 10'

{T=31.5, Up, ———0.34, Upo
——0.31). {b) D)) for dif-

ferent pi, Eq. (73). Values of q and G calculated from

Eqs. (80)—(86}for various y, i..

JM] 0 0.1 —0.1 +0.5
q ao —4.0 + 4.8 + 0.4
6 1 1.3 1.2 5.5.
{c)D &z and (d) Doe for same p~ as in (b).

1. Beutler Fano profiles-

The archetypal expression (73) can be cast into
the form of a Fano profile under the resonance
conditions stated above for (Ris) . We seek the

parametriz ation

(e —en+ Gq)~
DII ——A +a

(e —s,)'+G' ' (75)

e=(e —ec)/ —,I'

curves Hii and Ii ii used to plot Dii in Fig. 7(b).
[The relevant parameters of H and h in Eqs.
(60)—(68) correspond roughly to the (11,9,1,0} reso-
nance of Fig. 1, with I =1.28X10 a.u.] For
small values of H i i

—1 and h», Eq. (73) reduces to
Eq. (69); if 5/=0, we recover Dii ——H» for hydro-
gen. The asymmetry of Dii comes from the term

(1—hiitan5i) in the denominator of Eq. (73), since
this term is not even with respect to @=co. Note,
however, that the reflection Iu, i

—+ —pi does not pro-
duce the reflection

Dii(e —ep) —+Dii(eo —e}F F

in Figs. 7(b) —7(d), since hii contains the back-
ground term b» [Fig. 7(a)] and so is not exactly odd
about eo.

A nonzero value of ski also affects the resonances
D~"~ with l' and/or /+I, but to a lesser extent than
it affects D» itself. Figures 7(c) and 7(d) show D io
and Do/i for the same pi used in Fig. 7(b); the func-
tions H io, ii io Ho/i Aixi are also shown in Fig. 7(a).
Note that these curves are broadened but less asym-
metric than the curves D

~ &.

The interference effects that give rise to the
asymmetric profiles of D~I stem from the factor

cotyis [Eqs. (65) and (67)] in the resonance channel

of Ii//. If sin5/&0 in the total wave function
0',/ (r), Eq. (51), Pi~s and Xi~s interfere almost entire-

ly constructively (or destructively) at ri ~ Oc, where

y & & , ir (or yB—&—,ir), so (q//
~

q//) is small (or

large) when t & eo (or e & Bc); if sin5/ &0 the oppo-
site is true. Thus, the asymmetry condition (72)
holds for all resonances with nearly constant
parameters T and I in each spectrum

DI'I«)=[&+'
I
+ & ']l'I

Any nonzero quantum defect IM/ will affect all

channels of DI /, with either the same or different I'

and l, since the overlap matrix (q/r
~
q//) mixes all /

channels.
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measures the energy with respect to the center of
the hydrogen-Stark resonance in units of its
halfwidth, Ep 2

I 1s tlM ellel'gy s11lft of the resonance

from ep, 6 measures the relative broadening of —,I",

q is the usual asymmetry parameter, and A and a
are positive constants. These parameters are all ex-
pressible in terms of 51 n.p—1—and parameters of H11

and farl.

F sin 5
l1 =-

csin 5I

T

cR' +Bsin 5' 8 . 2,+—sin 5'
+c c

(79)

5i =tan c 1 ~ 1—2m'(5l' & 2m .
cot5I —b

where 5I determines another phase shift,
I

HII ——8 +cd

hII ——b +cR coty,

(77a)

The Lorentzians (63) and (78),

(80)

R =(cos5 —s1115 R cotl') R +sin 5 R

—:T cos (6+5')+T sin (b, +5'), (78)

which coincides with Eq. (63) for R with the re-

placement 6~6+5'. (Equation (78) also follows
from the identity cscy=RS [Eq. (47)] and the de-

finitions of the amplitudes R [Eq. (63)] and S (R
with b, —+6——,m). )

Inserting Eqs. (77a) and (77b) into Eq. (73) for
D~~, we find after rearranging terms that

in Eqs. (60) and (65), with c =(U&&) and with in-

dices omitted. We will also use an important identi-

ty stemming from Eqs. (63) and (67):

2T
a+1

T2

(s—c') +1

(81a)

(81b)

have the same width I [Eqs. (64) and (76)] but R'
is shifted from S=O by

51' de /dh
6 =— +25

—I2

(82)

s' marks the maximum of D11 for T»1. Equation
(79) can now be further recast into a simple ratio of
Lorentzians:

T

Ds =8[( cos51 —b sln51 ) +(8 +c )s111 51]
p 1 "+1+CT'/8

(s—sp) +G' (83)

a form readily identified with Eq. (75). The energy
shift of the resonance (in units of —,1 ) is

(84)

Ep( —,I ) ~ (51' /rr )dE/d(A/17),

Ep
———51' T [1+(8/c) sin 5/ ]

which is smaller in magnitude than c'. The phase
shift 5I' thus plays a role analogous to 5& in a Ryd-
berg atom by shifting the hydrogenic Stark spec-
trum in energy by

I

When 5~ is small such that cot5I &&T,B,b, c, Eq.
(86) simplifies to

q = —cot51/8 . (86')

&o 2a = 8[ (cos51 —bsin51)
Gq

Finally, the weighting factor a and the background
A of Eq. (75) are

i.e., with a "quantum defect' pj =5j /m and wtth
level spacing n' =de/d(b, /m) The broade. ned
resonance halfwidth 6 is given in units of —,I by

+(8 +c )sin 51] (87)

G = 1+2x + [(5/ /sin51' ) —1]x

x =
I
sp/5i

I

—»n 5i ~c
(85)

cp —6 +l+cT /8
g co6

(86)

and q is the solution with the same sign as co of the
equation

6q——1 a.,

Ep
(88)

The set of five parameters I Ep, G,q, a,A I, Eqs.
(84)—(88), completely characterizes the Fano pro-
file (75) in terms of the four hydrogen-Stark param-
eters {8,b, c,T [ plus the alkali-metal quantum de-
fect 51/m, along with the related phase shift 5~, Eq.
(80). The values of q and G for the curves of Fig.
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7(b} are indicated in the figure caption.
We consider further the case when the back-

ground 8 effectively vanishes, namely, when all par-
abolic channel functions (except for P=P} are ap-

preciably damped at r-ro by barrier tunnelling.
With B=0 the parameters of (75) become

co——e'= —T25', 6 =1, q = 00, A =0, and

2

Dii=aq R' =[(cos5i —bsin5i) c '+csin 5i]
(s—E') +1

(89)

Therefore, even ivith 5i+0 an alkali-metal reso-
nance will again be symmetric: Eq. (89) is equal to
the Lorentzian (81b)—identical to the hydrogen-
Stark resonance (8la) but shifted from e=eo-
times a factor representing Eq. (73) [cf. Eq. (58)]
with H =c and h =b. We therefore conclude that
only those resonances in the "autoionizing" region
0&e &e;,„= V'4F ar—e asymmetric.

The presence of a background term Bi t as well as
a nonzero p, t is thus essential for producing an

asymmetric lineshape. This corresponds to the usu-

al,interpretation of interference effects as being due
to the autoionization of a (quasi-) discrete parabolic
channel coupled to one (or more) continuum chan-
nels of lower ni which provide the background.
Note, however, that the continua intensity enter
into Eqs. (77) as constant terms, whereas all odd or
even variations in amplitude near a resonance are
contained here in the parameters 8 and R coty
of the resonant channel itself. This differs from
Fano's treatment of configuration interactions,
inasmuch as wave functions of different channels
are coupled through an interaction Hamiltonian V, .
Here the parabolic continua play two separate roles:
(1) the wave function of a quasidiscrete state of the
inner potential well at g «F ' [see Fig. 6(c)] is
"coupled" through the potential barrier to the con-
tinuum region g »F ' of the same ivave func
tion at the same energy, producing variations in the
amplitude Rp and the phase shift yp, (2) the

greatest intensities come in Eq. (61) from those
channels PQP (ni & n, ) whose wave functions are
above the top of their respective potential barriers

(Rg- 1), as in Fig. 6(a), and which we may charac-

terize as "continua" in the region rt «F . Both
kinds of parabolic continua are coupled to the
quasidiscrete state by the spherical but nonhydro-
genic core, represented by 5i in Eq. (58).

2. Limit I"~0

Finally, we verify that the cross section O.
I ~ actu-

ally reduces to its zero-field alkali-metal spectrum

I

as I' —+0. Above threshold, we know that U —+U
and H ~1 [Eq. (18)] and that h ~0 [all

yp~ —,m], so Eq. (58) for D trivially reduces to the

identity matrix. Below threshold, we consider that
all parabolic channels have degenerate energy eigen-
values when F +0; then—Eq. (60) becomes

de
Hrt = g ( Ur p Upi )

p (e —eo)'+( —,I'p)' "v

—2where eo ————,~o

n] ——0, 1,2, . . . , and

(90)

vo =n ) +n 2 +ptj + 1,

deld (b, /~) =de/dn2 ——deldv

is the same for all channels. Moreover, every value
of I p (or 1/I p) is exponentially small (or large) so
with negligible error at either e=eo ol' e@ep we

may factor out a common Lorentzian from Eq. (90)
with I p=I'. The bracketed factor in Eq. (90),R, then approaches the 5 function 5(v —vo) as
I —+0 [cf. Eq. (63)], while by Eq. (18) the transfor-
mation Up~ becomes orthogonal. Similarly, hI I ap-
proaches the form (90) with ( —,I /m ) replaced by

(eo —e)/m and we are left with unit matrices multi-

plied by

g
Ii ~0 I'-+0

(91)

When these are inserted into Eq. (58), Dt t reduces
to a diagonal matrix whose elements resemble Eq.
(78) with 5i —5i and 6=m(nz+ —,).:

Dtt =R =[ T Sill 8 (n2+pi)

+T cos n(n2+pi)]. (92)

This result is identical to Eq. (89) with B =b =0,
c =1, and 5i =Si from Eqs. (77) and (91). In the
limit T ~0, Eq. (92) becomes Dt's=5(vo+pi n)—
for integral n. Thus at I'~0 the modulating factor
singles out the proper discrete levels

1e= ——,(n —pi), in analogy to Eq. (18) for H,
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and the cross section reduces to its proper form (24}
with n replaced by n* =n —pl.

IV. COMPARISON WITH EXPERIMENTS
NEAR THRESHOI. D

Experiments have been reported on Rb and Na in
electric fields near the zero-field ionization limit.
We consider here only the sodium experiments, all
of which involve two-photon excitation. The avail-
able experimental data on photoabsorption by Na in
a Stark field consists of the work of three groups:
(1) Luk, DiMauro, Bergeman, and Metcalf, (2)
Feneuille et al. , and (3) Sandner, Safinya, and Gal-
lagher. ' For purposes of comparing theoretical
cross sections with experiments we consider their
results in turn.

(1) In Ref. 3, Na atoms in the ground state were
ionized by two photons, polarized mm, through the
3 PJ intermediate state. The first laser was tuned to

3 1

either the j= —, or —, state of the NaD line, whose

splitting (17 cm ') far exceeds the laser resolution
(0.3 cm '). Since the second ionizing laser was

pulsed simultaneously with the first and since the
laser pulses occur on a shorter time scale (10 nsec)
than hyperfine transitions, we will .ignore here hy-
perfine effects on the fine structure 3 PJ state. In
order to apply the procedures of Sec. III, we need to
expand the ls-coupled intermediate state

~ j,mj & in

an
~

l, mi& ~s, m, & basis for j=—, or —,, mj ——+ —,,
1 1

s = —, m =+—and I =12' s —2~

+(—,)'/ ~1,+1&
~

—,, + —, &, (93a)

Entering these initial states for 4; in Eqs. (56) and
(57) (with l=2, l'=0) we obtain the nit cross .sec-
tions

o3/2«) =
3 {«&»m =0~01+ i {«&»m =1~I I

oi/i(e)= , {o (e—),m =0~01+—, {o (e),m =1~1[
(94a)

(94b)

where we have indicated the second m transition by
m ~mf ——m; . Thus, ls coupling simply superposes
the cross sections with mf ——0 and mf ——1, thereby
mixing two sets of resonances. According to Fig. 5
for H—as an approximation to Na—Eqs. (94)
should also have the effect of superposing relatively
large m =0—+m =0 threshold modulations with the
relatively flat m =1—+m =1 spectrum.

Figure 8(a) shows an experimental photoioniza-
tion spectrum of Na 3 P3/2 from Ref. 3, with
8=3.59 kV/cm =6.98)& 10 a.u. Figure 8(b)
shows the results of a calculation using the present
theory. In our calculation of o.3/2 Eq. (94a), we
used the first and third expressions of of Table II;
Hi t was replaced by Dt t, Eq. (58), using hydrogenic
parameters N,„,~ and p,„, calculated'p for

n&
——0—30 and the values of the quantum defects

cited in Eq. (59). The zero-field radial dipole ma-
trix elements for Na used in Eq. (57), 8 si and R i'i,

were extrapolated through threshold from a theoret-
ical calculation for -high Rydberg states, which ap-
pears more reliable than existing experimental
data' for the Na 3@~ns transitions.

The theoretical spectrum of Fig. 8(b) reproduces
both the positions and shapes of the resonances ob-
served below threshold. We can account for the res-

I

onance profiles on the basis of the discussion of
Figs. 3 and 4 in Sec. IIIC. The sharp resonances
contributed by {a(e), m = 1~m = I J

—marked by
mt= 1 in Fig. 8(a)—are little changed by the Na
core from their hydrogenic Stark spectrum: as in
Fig. 4(a) for m=1, the small value of p2 ——0.014
does not broaden the peaks in the modulating factor
Dzq significantly from H22. The sharper peaks are
broadened, however, by experimental limitations.

The pronounced asymmetry of the mI ——0 reso-
nances follows from the properties of the DOS ma-
trix elements D pp, D2p, and Dzz for Na, shown for a
larger field in Figs. 3(a)—3(c). For example, the
sharp (11,10,0,0) peak is broadened and has the
same asymmetry sign in each spectrum, the asym-
metry being determined by Eq. (72) with the quan-
tum defects (59). The modulating factors are ad-
mixed in the cross section (56) in the ratio
Dpp:Dz~.D22-1.0:3.1:2.4, according to Table II(a)
for arm polarization (note that D2p enters with a +
sign). Thus, both Dpp and the interference term D2p
are responsible for the asymmetric line shapes in
Fig. 8. For m=0 resonances obtained via o.+0.
polarization, D2p would enter o with the opposite
sign and we would expect the a,symmetry to be re-
versed. This effect has indeed been observed in
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FIG. 8. (a) Experimental mw photoionization spectrum of Na 3 P3/g in a field E=3.59 kV/cm, vs photon energy flu,
within 0.01 eV of threshold (Ref. 2). Note labeling of Stark resonances (n ~, nq) for mI ——0 and 1. (b) Theoretical cross
section, Eqs. (56)—(58); ——o = . Asymmetric peaks labeled as for (a) and discussed in the text. Stark-induced oscilla-
tions for mI ——0 extend past a =0 with same spacing as in H (19.6 cm ') and 11%%uo depth of modulation.

another spectrum and is discussed below. The Fano
parameters for the mi =0 peak at fico =24422 cm
in Fig. 8(a), labeled (24,0}, have been measured as

q =—1.7(0.3} and I =0.7(0.15) cm '. The values
of these parameters taken from the theoretical spec-
trum in Fig. 8(b} are q =—3.3 and I'=0.39 cm
corresponding to a sharper peak unbroadened by ex-
perimental resolution. However, we obtain the
values q =—2.6 and I,=0.82 cm ' when the lattice
spectrum is folded into a Gaussian distribution cor-
responding to a resolution of I',„z——0.6 cm '. The
calculated depth of the modulations at e & 0 is 11%,
which exceeds the experimental value [(6+2)%].

(2} In Ref. 4, Na atoms were first optically
pumped from the ground state to the 3 P3qi,
F=M+ ——3 hyperfine level by a circularly (o+) po-
larized cw laser. This pure mi ——1 state was then
ionized in a Stark field E=9950 V/cm by a cr -, m-,

or o+-polarized dye laser, yielding final states with

mi =0,1, or 2. The calculated spectra for these po-
larizations, shown in Figs. 9(a)—9(c) versus wave-

length, are to be compared with the experimental
data in Figs. 2(a'), (b'), and (c') of Ref. 4. Again,
the theory reproduces both the shapes and positions
of the resonances below threshold, labeled by (n, n

& )

in Fig. 9.
(a) The mi =0 (cr+cr ) spectrum [Fig. 9(a)]

displays broad, highly asymmetric peaks like those
in Fig. 8 for nor polarization. .The resonances in

0.2—

IV

Q4-

0.3—
CO

0.2—

Or '

0.5—

0.4—

(0) o.+a.-(m=0 j
i
I

I ON
I

I

I

I

(b); ~+» (m= t j
CIl

OiK
&n&
w&—
IZ:&

I I

(c ) ', a'o-'(m=2)
w&

o&
w

I

I il ll &IJ II i I ll~

sA

CO Cl CO N CO

CO

NO ) Pj/2
MF=5

9950 V/cm

IU

0.0'408
I I I

409 4l ! 4l2 4l4

)(0~)
FIG. 9. Theoretical cross sections for photoionization

of Na 3 P3~q, F=M~ ——3, mI ——1, in a field 9950 V/cm,
vs wavelength A, . Polarizations (a) cr (m =0), (b) a
(m =1), (c) o+ (m =2). Stark resonances labeled by
(n, n&); different peak asymmetries for (a) —(c) discussed
in the text. Experimental spectra appear in Fig. 4.

4I34l0

Fig. 9(a), however, are asymmetric in the opposite
sense and not as sharp. As anticipated above, this is
because the DOS cross term Dio enters into Eq. (56)
with a negative coefficient (cf. the second expres-
sion of Table II).

(b) The mi= 1 (o+n. ) resonances [Fig. 9(b}] are

only slightly asymmetric with q &0, owing to the
small value of pz in Eq. (86'). The single matrix
element Dzz also depends on &ci&, whose effect is only

to broaden the peaks slightly [cf.Fig. 7(d}].
(c) The mi=2 (o+o+) spectrum [Fig. 9(c)] is
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given exactly by Eq. (73) for D2i. The peaks are
very sharp and essentially hydrogenic, i.e., q && —1.
The interference dips are apparent —even though

~ q ~

=25~nly because the peaks are so narrow,
but all the sharp features in Fig. 9(c) are anyhow
broadened in the experimental spectrum.

(3) The Na experiments of Ref. 5 are similar to
those of Ref. 3, except that spectra were observed
for intermediate 3 PJ states with both j= —, and —,

in a field F=8.91 kV/cm. Our theory reproduces
these results as well, but we do not display the cal-
culated spectra. The predicted depth of modula-

3
tions above thresholds, 18% for j= —, and 11% for

1j= —,, agree with the observed values.

As far as computation is concerned, to a 0.1%
level of accuracy, ' the use of semianalytical WKB
parameters for the hydrogen-Stark wave functions
is very efficient. Each of the spectra shown in Figs.
8 and 9(a) —9(c) were calculated on an IBM 370
computer in 20—30 sec of CPU (central-processing
unit) time.

effect in Na, to Dr. H. Metcalf and Dr. T. Berge-
man for providing the data for Fig. 8, and to Dr.
K.-T. Cheng for the theoretical zero-field oscillator
strengths used in this work. This research was sup-
ported by the U.S. Department of Energy, Office of
Basic Energy Sciences.

APPENDIX A: HYDRGGENIC &KB
PARAMETERS

1 I b dg'
a k(g')g' (Al)

We collect here the WKB expressions for the hy-
drogenic parameters used in our calculations, most
of which are given in detail in Ref. 10.

For fixed F, m, and e the eigenvalues P,„~ aref5)m

determined by the quantization condition (5) in g,
with ni ——0, 1,2, . . . . If the eigenfunctions =p(g) of
Eq. (3a) are normalized at g-0 (1 a.u. ) as Coulomb
functions, they must be further normalized for
F+0 by the factor

V. CONCLUDING REMARKS

Our treatment of photoionization in this paper
should in fact be applicable to phenomena other
than the Stark effect. We have considered separate-

ly (a) the localized photoabsorption process for zero
field and (b) the effects of long-range fields on the
photoelectron's density of states. The QQS matrix
D =(4'~%) i contains the parameters H and

h, but these parameters do not depend explicitly on
details of the asymptotic channels, such as the con-
tinuous or discrete nature of their spectra or the
coordinate system used. Accordingly, our formula-
tion should be essentially applicable to the quadratic
Zeeman effect, whenever it would be possible to
construct the analogs of H and h . Our analysis is
also applicable, e.g., to molecular photoabsorption
by simply allowing for the greater variety of chan-
nels corresponding to ionization, rovibrational exci-
tation, and photodissociation.
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where the WKB wave number k(g) appears in Eq.
(5) and a and b are its two non-negative roots. We
have assumed in Eq. (Al) that =ii(g »1) has the
WKB forin (33a) and that sin ( )=—on the
average. Note that E~ may be interpreted as a re-
normalization amplitude from a smooth to a
discrete spectrum in the eigenvalue P at fixed e, i.e.,

(A2)

In this sense Xg measures the spacing in the
smoothly varying parameter P,~ between discrete
states with n i and n i+1 nodes, just as de/dn =n

in Eq. (8) represents the spacing between hydrogenic
levels at fixed Z or P. If the levels are closely
spaced then g„omay be replaced by fdP, with

an error -0(1/N)
In the unbound coordinate, the wave functions

Y&(g) and Y~(g) normalized at r) &&F '~ as in
Eqs. (33a) and (33b) acquire barrier-penetration am-
plitudes Ris and Sii at i)~go (we assume here
P2=1 —P&0). In a generalized WKB method
which allows for two propinquous turning points
we define (1) the WKB phase accumulated in the
potential well of Fig. 6,

b
B,=Re f k(g')dg', (A3)

~' ' 1/2
rn 1 —P2

k(i) ) = — + + e+ Fq— —
2 4
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F (T2cos2g+ T—2s1n2+)1/2 (A6)

and (2} the tunneling integral

r=lm I k(g')dr)', (A5)

where the turning points c &b &a are real if e & e,
and b and a =b* are complex. (c &Reb} if e &e, .
Thus defined, 5 and r are real quantities which
vary smoothly through the barrier top and which
account for reflection from the barrier; note, more-

over, that r & 0 for e & e, . The amplitude R~ is

taining sin5+0 (and cos5+1) complicate this pic-
ture and DI"I apparently involves the entire matrices
H and (H )

' rather than a single matrix element.
Nevertheless, the actual effect of having only a few
nonvanishing elements of the diagonal matrix sin5
is to supplement H11 only by the few matrix ele-
ments H11 and h11 with 5r or 51+0. We show this
by reducing the inversions in D to a finite eigen-
value problem, as follows.

We first proceed without specifying whether 5I
vanishes and define the matrix

~here Q= 1 —h tan5, (81)

T (1+e2~)1/2+ex . (A7)

Sp is obtained from R~ by substituting h~b, ——,1r:

where 1 is the identity matrix and tan5, sec5, etc.,
are diagonal. Then with 0 = UU the symmetric
expression (5S) becomes

( T2sin2+ +T—2cos2+ )
1 /2 (AS) D =sec5Q

XU[1+(UQ tan5 U)(Utan5Q 'U)]

X UQ 'sec5 . (82)

The symmetric matrix in parentheses in Eq. (82) is
diagonalized by an orthogonal matrix B =B with
eigenvalues A~,

UQ 'tan5 U=BAB (83)

Inserting this expression into Eq. (82), we obtain

D =sec5 W'(1+A ) 'Wsec5, (84)

where we have defined the unsymmetric matrix

W=Q 'UB . (85)

(The elements of both B and W are labeled by in-

dices I, A, =0,1, . . . .) Now we see from Eqs. (83}
and (85) (and the transposition relation

Q tan5=tan5 Q ') that W diagonalizes the ma-
trix Q 'UUtan5 with the same eigenvalues A2,

cotyp [(Rp Sp ) 1]——'/2—
=(T T)sinb, cosh—, 0&y1s&m .

At (a) e &&e, (r »0) and (b) e »e, (r «0), T ap-
proaches the familiar limiting WKB cases of (a)
two well-separated turning points, T~2e', and (b)
a single classical region without reflection above the
barrier top, T~1. In the latter case, both Rp and

Sp —+1 independently of b. Below the barrier (with

T»1), (R ) is a normalized Lorentzian in the
1

variable (6/1r) ——,, centered at b, mod(n. )=2n.
(a=co), and with full width at half maximum
I =2T /n. «1; in the energy variable e,
(6/m. ) ——, is replaced by (e eo)d (hA—)/de, as in

Eq. (63). In the limit T 2~0,
(Rp) ~5(b, /~ n), with an—n half-integral.

The asymptotic relative phase shift yp between

Y1s(ri ~ oo ) and Y (q ~ ao ) follows from the
Wronskian (47) and Eqs. (A6) and (AS):

(A9)

For e&@„y~ is confined to &0 or &m, except
when 2b, =0 (mod1r ). For e & e„

APPENDIX B: MATRIX ALGEBRA FOR D .

The DOS matrix D is an inverted overlap ma-
trix, given in its most general form in Eq. (5S). In
the hydrogenic limit with 51——0 the overlap (25) is
simply (H ) ', which upon inversion gives
D11=H11. However, the factors in Eq. (5S) con-

i.e.,

(1—h tan5 ) 'H tan5 = WA W (86)

Since the left-hand side (lhs) of Eq. (86) is not sym-
metric, 8' is nonorthogonal; the eigenvectors 8'~
forming its columns are instead normalized by first
rewriting Eq. (85) as

WW=(1 —h tan5) 'H (1—tan5h )

and then using Eq. (83) to obtain

( Wtan5 H tan5 W)2 2 =A252 2 .

(87)

(BS)

Recalling that H ~1 and h ~0 for I"~0, these
equations show that 8'~1 and A~tan5 in that
limit; accordingly we regard A as the generalization
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of the reaction matrix of the core, —n.IC =tan5, for
F/0.

The DOS matrix D is thus expressed in Eq. (84)
through the eigenvalue problem (86) with the nor-
malization conditon (88). Equation (84) simplifies
under the realistic requirement that

5t+0, 1 =0, 1, . . . , N —1 & 3 (89a)

5I ——0, l&N . (89b)

The factor tan5 sets to zero all but the first N
columns of both h tan5 and H tan5 in Eq. (86),
thus permitting a straightforward inversion of
1 —h tan5. The diagonalization of the lhs of (86}
wi11 then determine at most N nonvanishing eigen-

values A~, A, =0, 1, . . . , N —1, so our eigenvalue
problem is in fact confined to the N)(N subspace
where 5t+0. The portion of A outside this sub-

space vanishes and Wtx and Ai for l, A, &N depend
only on those matrix elements H~~ and h~~ with
I', I &N.

Our final expression for Dtt will depend on
whether the specific indices l' and 1 fall within the
range (89a) or (89b). If both /' &N and I & N, Dt t
is given just by Eq. (84) with A, &N. If either I' & N
or 1&N, we use Eq. (86) to find the components

Wti (l )N) of the eigenvectors Wi (A, &N). We
then write Eq. (84) explicitly as a sum over Ai ~,
using (1+A )

' = 1 —A /(1+ A ):

Dt t = [(cos5 —h»» ) 'H (cos5 —»» h ) ']pt

A~4(1+A2i }-'
—sec5p g Wpi

— —Wit sec5t,
[Wtan5HPtan5 W],

(810)

where we have used Eq. (87) for WW and Eq. (88)
for initially unnormalized Wi. The first term in

Eq. (810) corresponds to the expression (58) without
the term sin5 H sin5 and thus represents a generali-
zation of the hydrogenic form (27), Dt t =Ht t. The
sum over eigenvalues in Eq. (810) stems instead
from the second term in (58) itself—through the
squared matrix (83) appearing in Eq. (82) and

I

hence through A —and represents, loosely speak-
ing, the admixture of irregular functions Xtt(r } into
%t(r) in Eqs. (53) and (54). Therefore, we see that
the presence of nonzero values of tan5t in the wave
functions (35) and in the DOS matrix (58) brings
into the expressions (84} and (810) for D only the
nonzero matrix elements of h tan5 and H tan5
from Eq. (86).
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