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Range distribution function for energetic ions in matter

NOVEMBER 1982

N. E. B. Cowern

(Received 30 December 1981)

A method of calculating the longitudinal range distribution function for ions incident at
energies much greater than that of the stopping-power maximum is presented. The effects

of electronic straggling and nuclear straggling and scattering are included. Straightforward

analytical results are obtained from which the longitudinal distribution is determined by

simple root finding. Results are given for the illustrative cases of 'H in Si, ' C in ' C, and
'Al in Be. The full width at half maximum of the distribution is found to result almost

entirely from electronic straggling in all cases. At high ion energies ion-nucleus collisions

affect the range distribution by producing a long, low-intensity tail on the distribution,

stretching towards the target surface. The shape of this tail depends principally on the

relative masses of ion and target nuclei. Comparison with limited available data on proton

range distributions provides support for these calculations.

I. INTRODUCTION

The calculation of longitudinal ion range distri-
butions has been performed in the past in essentially
two ways. The first method involves solving the
ion transport equation indirectly to obtain moments
of the range distribution. ' " This method does not
give the exact shape of the range distribution, since
there exists an infinite family of distributions which
will satisfy a finite number of moment values.
Nevertheless for ion energies below that of the
stopping-power maximum, comparison with experi-
mental data suggests that Pearson IV distribution
functions based on the first four moments of the
range distribution will give a satisfactory descrip-
tion. ' Pearson III distribution functions may also
give reasonable results in this region. ' However, at
energies above the stopping-power maximum, the
shape of the longitudinal range distribution be-
comes increasingly skewed as a function of energy,
and the higher moments of the distribution diverge
rapidly. It is then unclear whether a moments ap-
proach is useful, although in principle a large num-
ber of moments could be used to provide additional
information. " The second method of calculating
the longitudinal range distribution involves the
simulation of the ion trajectory by Monte Carlo
methods, '" ' which yields detailed sample distri-
butions for the particular examples studied. Calcu-
lations of range distributions for energetic ions us-

ing this method, ' together with experimental mea-
surements, ' ' confirm the increase in skewness to-
wards high incident energy.

The observed skewing at high incident energy re-

suits from the increasingly small-number statistics
of ion-nucleus collisions in the high-energy part of
the ion's trajectory, and leads to the effect recently
pointed out, ' ' that at high energy the full
width at half maximum (FWHM) of the longitudi-
nal range distribution is determined solely by elec-
tronic straggling. References 21 and 22 also indi-
cated the existence of a conceptually simple analyti-
cal method for directly calculating the shape of the
longitudinal range distribution function at high en-

ergy, and the first results were presented, showing
the characteristic clearly Gaussian peak, and a long
low-intensity tail arising from ion-nucleus scatter-
ing and energy loss. Reference 22 gave approximate
formulas determining the distribution shape in the
absence of electronic straggling.

The present paper derives a more precise result
for the general longitudinal range distribution for
ions with incident energies well above the stopping-
power maximum, and includes in approximate form
the effects of electronic straggling. Unlike Ref. 22,
this result is applicable to all ratios of ion mass to
target mass, and is limited only by the assump-
tions that (i) the incident energy is nonrelativistic
and (ii) the ions are fully stripped of their electrons
throughout most of their trajectory. These assump-
tions are not fundamental, however, and the quah-
tative aspects of the result hold for all high-energy
ions.

II. PHYSICAL MODEL

Several simplifications suggest themselves when
one deals with the ion transport process at incident
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energies well above the energy of the stopping-
power maximum. Firstly, the fall in stopping
power towards higher energies leads to a range dis-
tribution which is determined essentially by col-
lisions occurring at energies above the stopping
power maximum. For example, protons incident on
Si at 0.8 MeV (ten times ihe energy of the
stopping-power maximum) derive about 94% of
their mean range and about 8S% of their standard
deviation in range from collisions occurring before
the ions slow down to the stopping-power max-
imum. These estimates are based on the range dis-
tribution tables of Littmark and Ziegler, taking
additional account of the probable influence of elec-
tronic straggling. Towards higher energies these
percentage values rapidly approach 100%. Conse-

quently, collisions occurring at low energy (below
the stopping-power maximum) may be neglected in

a first approximation.
The physics of ion-nucleus collision in the high-

energy region is simplified by the absence of signifi-
cant screening. Following tradition' ' we
neglect here one potential complication, namely the
influence of nuclear forces on the scattering cross
section. Electronic stopping is given to a good ap-
proximation by the simple Bethe theory without
shell corrections, and electronic straggling is given
to a first approximation by the Bohr formula.

The final and most important siinplification lies
in the statistical treatment of ion transport. We be-

gin by neglecting the straggling due to electronic
collisions: this can conveniently be included at a
later stage in the discussion. The detailed range dis-
tribution arising from ion-nucleus collisions has
now to be calculated. Instead of following the usual

approach by attempting to solve the Boltzmann
transport equation, we note that the range distribu-

tion is in fact predominantly a single-collision dis-
tribution. This is so because the probability of an
ion suffering a significant nuclear collision as it
slows down from its incident energy to the energy
of the stopping-power maximum is very small. Sig-
nificant collisions in this context are those which
contribute noticeably to the variance or higher cen-
tral moments of the range distribution. The proof
that this probability is small is given in the appen-
dix to Ref. 21.

The procedure for determining the detailed range
distribution is therefore to evaluate the single-
collision distribution due to nuclear collisions and

Qaussian electronic straggling by
convolving it with the nuclear distribution. The va-
lidity of the procedure follows from the indepen-
dence of the electronic and nuclear collision process-
es 1,25,27

III. THEORETICAL ANALYSIS

A. Calculation of I'„(R~)

The geometry of the single-scatter process is
shown in Fig. 1. The ion enters the target at energy

E;, and slows down at a rate given by the electronic
stopping cross section S. In so doing there is a
small probability that the ion will experience a sig-
nificant collision at some energy E' with some ener-

gy loss T and scattering angle 0, subsequently
reaching some final energy Ef at depth R~. If
Ef &&E; then R& is the projected range of the
stopped ion. The objective is to determine the pro-
bability distribution Ii„(R~), the projected range dis-
tribution due to ion-nucleus collisions.

Defining N as the number of target atoms per
unit volume, and putting

I(E)=I[NS(E)] 'dE+const (la)

one has from Fig. 1 that

Incident Beam
E; E

Rp(E) =I(E; )—I(E')

+cos8[I(E' T) I(EI)] . — —(lb)

Ef

I

Surface

FIG. 1. Geometry of the single-scatter process leading
to the longitudinal range distribution I,(R~) of ions hav-

ing final energy Ef.

~p ——Rp —Rp (2a)

=I(E')—cos8[I(E'—T)—I(Ef)] I (Ef ) .

(2b)

In the absence of a collision, one has the most prob-
able depth

Rq (Eg ) =I (E; ) I (Ef ) . —

It is convenient to define the quantity
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The probability distribution E„(R~) may be shown

without difficulty to be

F„(Rz)= 1 —f y dR& 5(BR~)+y (3a)

y ~~ ~ E

m

»

I~ n

~
I

E,. 1 da aR~
y E. SdT BT

dE',

(Rq );„&Rq &Rq (3b)

y=0, Rp&(Rp);„, R~&Rq

provided that single-collision conditions prevail.
Here do. is the differential cross section for energy
loss T,E;„is the minimum value of E' for which a
collision can lead to the range R~, and (R~ );„is the
minimum range (corresponding to the maximum
kinematically allowed energy transfer at E'=E;).
The first term of Eq. (3a) describes particles which
have not undergone a collision, and hence arrive at
depth Rz, while the second term describes the
single-collision depth distribution. Equations (3a)
and (3b) are valid provided that

f y dR& « 1 . (3c)

Equations (3a) and (3b) are equivalent to the previ-

ously published expression of Vukanic and Sig-
mund.

In the physical model to be described here, the in-

equality (3c) is not satisfied owing to a divergence
in y as R& approaches R&. In order to retain the at-
tractive simplicity of the single-collision approach, I
shall therefore proceed to calculate the distribution
F„'(Rz), closely related to F„(R~) and given by

tively, the atomic numbers and masses of the ion
and target atoms, m, as the mass of the electron
and I, as the mean ionization energy of the target
atoms, one has

and

S=a ln(cE)/E,

a =2neZ. iZ2Mi lm, ,

c =4m, /(MiI, ),

(4a)

(4b)

(4c)

=k/(E'T ),dT

k=~e ZiZ2Mi/M2 .

(Sa)

(5b)

BR~=[Ar+Br +Cr +0(r )]/(Nc a),
A (x) =2agp+gi,

1 1B(x)= (a ——, )gp —2agi ——,g2,

(6a)

(6b)

(6c)

1 I
C(x)= —,(6~ —1)gp —(Ir ——, )gi+~gz+ —,g3, (6d)

2

gp =li(x ~) = [1+a (x)],
2 lnx

(6e)

To enable an analytical solution for y'(Rz), Eq. (2)
is expanded in powers of r=T/E'. Only a few
terms are required since, for most collisions of in-

terest, T «E'. Using the standard relation between
r and 8 for elastic scattering, and applying Taylor's
theorem in Eq. (2), one obtains from Eqs. (1), (2),
and (4)

F„'(Rp ) = (1 e)5(b Rp )+y',—

y'=y, ARz )p

y =0, kR& &p

where p is chosen such that

e= f y'de «1 .

(3a')

(3b')

(3c')

It will be shown later in this paper that the use of
F„' (Rz) in place of F„(Rz) has a negligible effect on
the range distribution for high-energy ions, once the
contribution of electronic collisions to the range
straggling is included.

To evaluate y'(R~) we make assumptions about
the stopping cross section S and the differential
scattering cross section do, as remarked in Sec. II.
The Bethe stopping-power formula is assumed,
without shell corrections or relativistic terms, and
the Rutherford elastic scattering cross section is
used. Thus, defining ZI,M& and Z2, M2 as, respec-

1— 1

1I1X
(6g)

x 1

(lux) ~ lnx
(6h)

where x =cE', a =M2/(4Mi~, li(u) is the logarith-
mic integral function, and 0&o, &0.5 for x&5
and a —+0 as x —+Do. li(u) is a special case of the
confluent hypergeometric function U(m, n, z) with
m =n =1 and z = —lnu. It may be accurately ap-
proximated by a finite series when x )5. Equa-
tion (6e) is obtained on the assumption that
li(c E/)=0, which corresponds approximately to
E~ ——1.2/c. Since E~ may be chosen arbitrarily pro-
vided E~ &&E;, this particular value of E~ is select-
ed on the grounds of convenience (a) that any other
value leads to an additional constant in Eq. (6e), and
(b) because this value is comparable with the energy
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of the stopping-power maximum.
In Eqs. (6) above, all terms containing the con-

stant v may be interpreted physically as arising
from angular scattering, while the other terms arise
from the energy loss in the elastic collision. The
distribution function y (R~) is given from Eqs.
(3)—(&) by

min
y'(R )=-

a " x lnx
Qx,

R~ ) (R~ );„, b.R~ )p (7)

where x; =cE; and x;„=cE;„.From Eq. (6a) one
obtains

BRp

Bf E~,

Xc a
¹ a(bR )

28 C O(r )

A (QR )2
(8)

The convergence of the series solution for b,R~
[Eq. (6a)] may be investigated by considering the
case of slowest convergence, ~=~,„. Since the
quantities g;(x) differ only slightly in their depen-
dence on x when x & 5, it is sufficient to illustrate
the situation for just one value of x =x;. Figure 2
shows the ratio Rz/Rz calculated for the specific
case r =r,„,x = 100, where r,„ is defined by

r,„=4M tMg/(M i +M2)

I

reasonably large values of x, a «1. An analytical
solution can then be obtained. The solution for
y'(R~) is given by

1.0

Exact
1st order
2nd order

0.5 — ——— 3rd order

The exact absolute value of Rz/Rz is simply given

by

Rq[E;(1 r,„)]/R—~(E; ),
and its sign is given by sign (M~ —M2). The first-,
second-, and third-order approximations for Rp/Rp
are obtained from Eqs. (1) and (6). It is clear from
Fig. 2 that convergence is rapid even when

Mt ——Mt (i.e., when r,„=l). The first-order ap-
proximation is only acceptable when M& & 1OM2 or
Mi & —„M2, but the third-order approximation is
quite satisfactory for all values of M&/M2. For
values of r&r,„ the precision in estimating Rz is
even better. By differentiating the series solution
for Rz with respect to r we observe from Eq. (7)
that the accuracy of the solution for y'(Rz) will also
be satisfactory.

Equation (8) includes a zeroth-order term (the
leading term), a first-order term which is identically
zero, and a second-order term which corresponds to
the third-order term in b,R& [Eq. (6)]. In evaluating
the zeroth-order term resulting from the integration
in Eq. (7), the function li(x ) in A (x) is expressed in
its infinite series form and is truncated at a suitable
point, and terms containing lnlnx are neglected.
This procedure yields reliable results for x )5. In
evaluating the second-order term the approximation

g0 ——g~/2 is made; an acceptable step since for

0—
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FIG. 2. Ratio of the minimum range (R~);„ to the
most-probable range R~, plotted as a function of M~ /M2.
The range A~ would be attained if no significant ion-
nucleus collision occurred, and the range (R~);„ is
reached by a head-on elastic ion-nucleus collision. For
the purpose of this figure, the stopping medium is as-
sumed to extend to negative depths, so that backscat-
tered light ions can be considered. Solid line gives the ex-
act value of (R~);„/Ez, which has reflection symmetry
about the coordinate (1.0,0) in the diagram. Other lines

show, as indicated, the successive approximations ob-
tained by following the expansion in T/E'.
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y'(Rz)=kN '(cahR&) [h (x;)—h(x;„)], Rz )(Rz);„, ~z )p (10)

h(x)=2+ (1+s/j)
JJ)

X

1nx

P(¹a~)

(1+v)x
C3 (j—1)!—Ci — +(C2 —2Cs) g ( —1) '. +R„
lax (21nx }I

(1 la)

C, = [—„(1+24~)+—,] /(1+&) ——„(1+6~)/(1+~),

C2 ———1/(1+K ) —( 6
—K )/(1+k ),

C3 ——ll[2(1+k)] +ll[6(1+k)],

(1 lb)

(1lc}

(1 ld)

where n is the largest integer less than 21'.
The small convergence term R„may be neglected for x & 5. xm;„ is obtained from the relation [special case

of Eq. (6a)]

~q ——[A(xm;„)r,„+8(x;„)r,„+C(x;„)r,„]/(Nc a) . (12)

b,R& &5r,„/(¹a) . (13)

A convenient way to obtain x;„from Eq. (12) is to
use a zero-finding method such as bisection. For
small values of xm;„where the calculation of
h (x;„) is inaccurate, it is convenient to set
h (x;„)=0 since it is in any case «h (x;). The cri-
terion used here is h (x;„}=0 when

I

convolution of a Gaussian with y'(Rz) (Eq. 3a').
Although the convolution with the tail function
y'(Rz) cannot strictly be achieved analytically, the
desired result can be reproduced quite adequately by
convolving y'(Rz) with a rectangular distribution
with standard deviation cr, . One obtains the ap-
proximation (good when e «1}

Having determined y'(R~) it is now possible to
find the value of p [Eq. (3b')] which is needed to
satisfy the inequality e«1 [see Eq. (3c')]. It may
be shown that

F(Rz)= exp[ bR&/(2o, —)]
o,&2m.

+ 2 2 [h(x;}—h(x;„)]G(Rz),
Nc a

(15)

kh (x;)

%cap
(14)

For all ions at energies well above the stopping-
power maximum, the standard deviation of the
Gaussian range straggling due to electronic col-
lisions, 0;, is such that one can choose p &0., while
at the same time e« 1. Thus the width of the mul-
tiple nuclear-scatter distribution, which is clearly
much less than p, must be much less than that of
the electronic straggling distribution, and may be
neglected when electronic straggling is included in
the range distribution. Our use of F„'(R~) in place
of F„(R~) is therefore valid.

B. Inclusion of electronic straggling

The total projected range distribution F(Rz) is
obtained by convolving the Gaussian electronic
straggling function F,(bR&) with the distribution
F„'(Rz). This yields a Gaussian with centroid at
hR~ =0 plus a very-low-intensity tail given by the

where

G (R~ ) =0, b,R~ &p —v 3cr, (16a)

G(Rp }= 1

2 30~

1 1

b,Rq —v 3o, ERE+v 3o.,
p+V 3o, &~z . (16c)

For large ~z, Eq. (16c) reduces to
G (Rz )=1/(~z) . In Eq. (15), h (xm;„) is zero for
negative values of ~z.. this follows automatically
from the inequality (13). p (and hence e) is chosen
arbitrarily, so long as it satisfies the criterion p &o„
e «1.

G(Rp)=
1 1 1

2&3o, p aR, +v 3o,

p —v 3 &b,Rp &p+v 3o, (16b)
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It only remains to provide an estimate of the elec-
tronic straggling standard deviation 0, . For a first
estimate the electronic energy straggling at high en-

ergy may be described by the Bohr formula. This
gives the second moment of the electronic single-
collision energy-loss spectrum as

0, =4me Z)Z2 . (17)

2m,
Oe=

Nc2a

' 2'
a(x; )—

2(lnx; )

where a is defined as in Eq. (6e) and may easily be
evaluated by a finite series approximation.

Owing to the high frequency of electronic collisions
as the ion slows down, the electronic contribution to
the range distribution closely approximates a
Gaussian, and simple use of transport theory yields
the result

Eg Q2
, I,', dE.S' Ef S'

Using the stopping-power formula of Eq. (4), it is

easily shown that

The above calculation of F(Rz) is available from
the author in the form of a portable Fortran code.

IV. RESULTS AND DISCUSSION

The calculation described above is suitable for all
ion-target combinations, subject only to the require-
ments that the incident ion energy be well above the
stopping-power maximum () ten times this ener-

gy), the ions be fully stripped of their electrons at
the incident energy, and that the incident energy be
nonrelativistic. The results presented here are
chosen to illustrate the different shapes of the elas-
tic scattering tail due to ion-nucleus collisions, and
to provide limited comparison with the small
amount of experimental data available on the shape
of the range distribution. Figure 3 shows the calcu-
lated range distributions of 1 —100-MeV protons in

Si, together with experimental data at much lower
energies' „which are included for completeness.
Backscattering causes the elastic scattering tail to
extend out close to the target surface, but this tail is
of very low intensity. Almost all of the incident
ions come to rest in a near-Gaussian peak close to
the mean range. Most importantly, the width of

t I
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FIG. 3. Range distributions for 1 —100-MeV protons in Si, as calculated by the method described here (solid lines).
Points show experimental data of Demond et al. ' Experiment was not sufficiently sensitive to show the very-low-
intensity tail of the distribution, but indicates the approach towards a near-Gaussian peak shape at higher energies.
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FIG. 4. Calculated range distributions for (a) 100-MeV —1-GeV "C ions in "C; and (b) 1 —2-GeV 27Al ions in Be.
These cases are calculated at high energy to preserve quantitative accuracy in the range. At lower energies, still well
above the stopping-power maximum, the neglect of bound electrons on the ion leads to a significant underestimate in the
range, but the shape of the range distribution is qualitatively the same.

this peak is determined entirely by electronic strag-
gling. Figure 4 shows the calculated range distribu-
tion of ' C ions on a ' C target and Al ions on a
Be target. In the ' C-on-' C case, the range distri-

bution falls steadily towards zero as the target sur-
face is approached, while for Al on Be the distri-
bution is confined well within the target since
M1&M2. In the latter case the elastic scattering
tail arises mainly from the energy loss in an ion-
nucleus collision, rather than from the effect of an-
gular scattering as may be seen from Eq. (6b) where
~ is small. As in all cases, the peak shape is again
nearly Gaussian, and its width is determined by
electronic straggling.

It may be remarked that in previous calculations
of moments of the range distribution for all ions
and targets the standard deviation of the distribu-
tion was found at high energy to arise partly from
elastic ion-nucleus collisions and partly from elec-
tronic straggling. ' The separate contributions
from these two sources were of the same order of
magnitude. The way in which ion-nucleus col-
lisions contribute to the variance is now clear: the
tail of the distribution has a shape given approxi-

mately to first order by 1/b, R& [Eq. (10)], while the
variance weights the distribution by ERE. Thus the
extreme tail of the distribution contributes a large
part of the variance, and renders this parameter
worthless for experimental purposes.

If one is interested in the detailed behavior of the
elastic scattering tail of the distribution, then it be-
comes necessary at high energy to take into account
nuclear forces: a useful criterion for this is the en-

ergy at which the ion surmounts the Coulomb bar-
rier, namely,

Z1Z2e

(g i/3+g i/3)

where A1 and A2 are the mass numbers of the ion
and target nuclei, respectively, and ro is 1.4 fm.
This may be expressed conveniently in units of MeV
as

Z1Z2

g 1/3+g 1/3
1 2

Thus, e.g., for protons at energies above a few MeV
incident on Si, the tail will be substantially more in-
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tense than is calculated in Fig. 3 on the basis of
Rutherford scattering. Nevertheless, the basic qual-
itative features of the present calculation will be un-

changed, and the width of the peak of the distribu-
tion will remain essentially the same.

A comparison between the calculated Gaussian-

type peak shape and experiment is possible for the
case of 100-MeV protons in Al. This experiment, '

which only measured the Gaussian-type part of the
distribution, yielded a "standard deviation" of
120+6 mg/cm . This corresponds to a FWHM of
the peak of 283+14 mg/cm . This is in fair agree-
ment with the FWHM obtained from the present
calculation for 100-MeV protons in Al of 264
mg/cm . Most importantly, the effect of the elastic
nuclear-scattering tail on this FWHM is found to be
negligible, and the deviation from a Gaussian shape
is negligible down to Q ]p of the peak maximum.

A more precise treatment of electronic straggling
would include electron binding effects on the energy

straggling and relativistic effects in the stopping
power. Such effects were included in very early
work by Sternheimer, which neglected nuclear col-
lisions, and is therefore expected to provide good
agreement with the experimental datum for 100-
MeV protons. This is indeed the case:
Sternheimer's treatment gives a standard deviation
of 118 mg/cm in agreement with the experiment.

V. CONCLUSIONS

An analytical treatment of the range distribution
due to both electronic and nuclear collisions has
been developed to describe the behavior of a wide
range of ion-target combinations at incident ion en-

ergies well above the energy of the stopping-power
maximum. The distribution so calculated consists
of a nearly Gaussian peak whose width arises al-
most entirely from electronic straggling, and a long
low-intensity tail which arises from elastic ion-
nucleus collisions. Since many applications of
range straggling are concerned with the peak width,
a clear need exists for a detailed treatment of the
electronic range straggling. Although Sternhei-
mer, Lewis, and Janni have performed such
calculations for high-energy fully stripped particles,
these calculations do not take into account effects
arising from the presence of electrons bound to the
ion. Thus for partially stripped ions the stopping
power and energy straggling depend on the ionic ef-
fective charge, and the straggling is enhanced by the
effects of charge exchange. Some considera-
tion of the charge exchange process will be required
to obtain reasonable range straggling predictions for
fast partially stripped ions.
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