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We have systematically developed a new approximation for the calculation of the cross
section for electron capture from a hydrogenlike ion of large nuclear charge Z~ by a
bare ion of charge Zpe moving with speed v. The amplitude in the wave treatment is ob-

obtained through consistent expansion in the small parameters Zp/ZT and Zpe /Av how-

ever, the ratio ZTe /tv is not assumed small. Following a careful analysis of the ap-

proach to the energy shell, an off-shell factor is seen to arise which does not appear in

the impulse approximation. The effects of this factor on the capture amplitude are ex-

plored. Using a peaking approximation, we derive a closed-form expression for the

1s ~ns capture axnplitude which includes the effects of the off-shell factor and is accu-

rate to order (Zpe /tv) . We tabulate the peaking-approximation cross section. The
derivation of the asymptotic form of the cross section when Zp/ZT « 1 is justified. Us-

ing a realistic one-electron model, K-shell capture cross sections are calculated for protons

on carbon, neon, and argon. These are seen to represent the data generally better than do
the impulse approximation cross sections.

I. INTRODUCTION

Over the last ten years, electron capture has em-

erged as a process of great practical and funda-
mental significance. ' For example, in determining
the hydrogen escape flux from the earth's upper at-
mosphere, capture by protons from the plasma-
sphere provides an important nonthermal source of
energetic hydrogen atoms. ' Electron capture also
gives rise to x-ray emission in the interstellar medi-

um. '5 Moreover, as the medium is far from ther-

modynamic equilibrium, capture is an important
factor in governing the level of ionization of the
constituent ions and thus the state of the system.
On the technological side, the capture process has
been discussed as a possible mechanism for pro-
ducing population inversion in an x-ray laer. In
neutral hydrogen beam injection into tokamak
plasmas, beam attenuation, as a result of capture,
seriously reduces the supplementary plasma heating
derived from the beam. These examples show the
need for a more fundamental understanding of the
capture mechanism.

Within the general area of electron capture there
are many specific types. One may mention inner-
or outer-shell capture from one-electron or many-
electron atoms. On the other hand, one has sym-
metric or asymmetric capture depending on the re-
lative charges of the target and projectile and also
resonant or nonresonant capture depending on
whether the initial and final bound energies of the

captured electron are equal or not. This listing re-

flects the variety of the field and furthermore
points out the limitations of present day theory:
one often treats each type by a separate method.
In addition, the picture is complicated by the
present need for separate theories applicable at low
and high relative projectile-target velocities.

A unified treatment for the whole spectral re-

gion has not yet emerged but a promising frame-
work has been developed for capture in highly
asymmetric systems where the projectile velocity v

is much greater than the electron velocity in the
bound state of the low-Z ion. This framework,
which has evolved over the past few years through
the efforts of Briggs and other workers, " is
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FIG. 1. Electronic energy-level diagram showing the
two-step picture of capture: (1) ionization and (2) at-
tachment. The target spectrum is on the left and the
final-state spectrum is on the right.
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most easily visualized in terms of an electronic
energy-level diagram. Consider an asymmetric
one-electron model with the target charge Z&e
much larger than the projectile charge Zpe. The
electron is initially bound in the ground state of
the target with binding energy e;. The energy-level
diagram of the target is shown schematically in
Fig. 1 with the ground-state energy noted explicit-
ly. When the electron is captured by the projectile
ion of velocity U, it acquires a binding energy ef
and a kinetic energy —,mu, with m the electron
mass. Because the projectile, including the cap-
tured electron, is moving with velocity u relative to
the nearly stationary target we add —,mu to ef to
place the electron's energy in the final state on the
same diagram. The key feature of the present for-
mulation for interpreting capture dynamics is that
capture reactions are mediated by target states cen-
tered around the most favorable energy ef + —,mv .1

Such states are represented by electron wave func-
tions of momentum of the order of m v. In this
picture, virtual ionization provides the essential
mechanism b~ which the electron acquires the ki-
netic energy —,mu and momentum m v of the fi-

nal state. Because two steps are involved, this
theory is intrinsically a second-Born-type theory.

This paper develops the theory in a time-inde-

pendent framework by consistent expansion in the
parameters Zz/Z& and Zze /Av where Zz is a
good measure of the final mean orbital velocity. It
is not assumed that (Z~e /fiv) be small, i.e., the
projectile velocity v need not be much larger than
the initial mean orbital velocity. Hereafter we use
atomic units (m =e =5=1) although m is retained
in many equations for clarity.

It is now well established theoretically that the
second Born theory gives the correct asymptotic
velocity dependence of the cross section for asym-
metric as well as symmetric captures. ' ' Since
this theory is second order, it provides for the
double-scattering mechanism which is known to
dominate at high velocities as was first derived by
Thomas using a classical analysis. " The cap-
tured electron moves under the influence of two
potentials deriving from the projectile and target
nuclei. The second Born theory treats these two
interactions on equal footing. From basic con-
siderations an equal treatment of each potential' is
well justified for symmetric and only moderately
asymmetric captures. However, for the highly
asymmetric case, the stronger potential has an ap-
preciably greater effect on the electron's motion.
Briggs has particularly stressed this point in his

impulse approximation (IA). Two important
things to note about this theory are that it is ob-
tained by retaining the lowest term of a consistent
expansion of the total Green's function in the
parameter Zz/Zz and it is not assumed that
Zz. /U « 1. The electron-target interaction is in-
cluded to all orders while the electron-projectile in-
teraction (the weaker one) is included to first order.
Briggs also pointed out the connection with ioniza-
tion through the following picture. The electron
initially bound to target T is ionized by its col-
lision with projectile P leaving P essentially unde-
flected. The ionized state of the electron consists
of a packet of incoming Coulomb spherical waves
plus Coulomb plane wave traveling in the direction
of P with approximately the same velocity. Thus,
far from the target one has the system (P +e) trav-
eling with velocity v. The weighting of each term
of the packet is determined by the final-state distri-
bution of momentum and is centered about m v.
The impulse approximation also leads to the
correct asymptotic velocity dependence of the cross
section. ' The above discussion supports the con-
clusion that the impulse approximation is the
lowest-order theory which is both derivable from a
natural and consistent scheme and at the same
time satisfies the known general characteristics of
the capture process.

But the theory does not adequately represent ex-
periment for velocities Zz « v &Z~ which is
where the cross section reaches a maximum and
then decreases again. For inner-shell capture from
argon by protons this peak is at v =12 a.u. or
E =3.5 MeV and here the parameter (Zp/u)
equals 0.01 which is much less than 1. Macek and
Taulbjerg have pointed out the cause for this
discrepancy as being the neglect of a certain factor
of the order of (Zq!u), even though the theory is
supposedly derived correctly to this order. "

The problem arises because, according to the
above capture picture, we represent the outgoing
electron as a packet of Coulomb plane waves with
distribution of momentum determined by the final
state and centered about m v. That is, we have an
electron traveling along with the projectile but not
bound to it. The ratio of the difference in energy
of the two states to the actual final-state energy is
roughly equal to the ratio of the final-state binding
energy to the traveling kinetic energy. This ratio is
approximately (Zp/u) . Since the above energy
difference is neglected, this ratio indicates the basic
limitation of the theory.

Because the final state is a bound electron-
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projectile system, one must represent the ionized

electron using off-energy-shell Coulomb waves.

Off-energy shell means that the wave's energy is
not equal to the energy of the plane-wave part as
for on-energy-shell Coulomb waves. The ratio of
the difference in energy of the two waves to the
on-shell energy is (Zp/v), the same as that dis-

cussed above. If we approximate the off-energy-
shell waves by the on-energy-shell waves, then we

expect errors of the same order as this difference;
this is how the IA is derived. Jakubassa-Amund-

sen and Amundsen were the first to clarify this

point.
Unfortunately, the limit to the shell is nonuni-

form in the complex energy plane': a branch

point exists at the limit point. Thus, one can never

go to the limit exactly. Yet, very close to the
branch point the off-energy-shell function is ap-
proximated by the on-energy-shell one multiplied

by an extra factor containing the effects of the
branch point. It is precisely this factor which is
left out of the IA as pointed out by Macek and

Taulbjerg. " The error produced by neglect of this
term is of the order (ZT/v) . Moreover, it is espe-

cially important to realize that inclusion of this
factor does not lead to any kind of divergence in

the cross section and contains, in particular, contri-
butions from the bound states. We derive the cap-
ture amplitude incorporating the exact off-energy-
shell wave function by treating the strong potential
to all orders. The theory is called the strong po-
tential Born theory. Later, we make approxima-
tions on the amplitude to gain a closed-form ex-

pression.
We can interpret all the second-Born-type

theories in terms of the electronic energy-level dia-

gram of Fig. 1. Clearly, the important feature
characterizing the theories is their treatment of the
target spectrum. The second Born theory with free
Green's function treats the continuous part of this
spectrum using plane waves, which, in general, re-
sults in an overestimate for the cross section. '

The error involved is of the order (ZT/v) . The
strong potential Born (hereafter referred to as
SPB), incorporates the correct target spectrum of
intermediate states. Both discrete and continuum
levels are represented by exact wave functions of
the electron in the field of the strong potential.
Because the strong potential is included to all or-
ders, the errors in this approximation are of the or-
der (Zp/v) or Zp/Zz. The impulse approxima-
tion neglects additional small energy differences of
order (Zp/v) and is apparently accurate to the

same order as the SPB. Macek and Taulbjerg"
show, however, that the IA neglects terms of order
(ZT/v)~. This is the same order of error as for the
plane-wave second Born theory. The continuum-
intermediate-state theory' (CIS) is obtained by
making further approximations to the IA. These
approximations introduce additional errors of the
order (Zr lv}2. Thus, the IA, CIS, and the plane-

wave second Born theories all contain errors of or-

der (Zr/v} . The eikonal theory neglects part of
the second Born terms and is accordingly of lower
order than the second Born theory. From an

a priori standpoint, all of these theories except the
SPB are inapplicable when Zz/v is non-negligible.
The SPB theory, since it requires only that Zp/v
be small, is applicable when Zz. /v is large provided
that (Zz/v) «1.

An even greater difference between the SPB
theory and the others appears in the manner of in-

clusion of the target discrete spectrum. Here the
SPB is unique since contributions from the bound
states are provided for correctly by using the off-
energy-shell wave function. These contributions
are more important for the lower velocities. The
other theories, however, do not give an adequate
treatment of the bound states. The second Born,
CIS, and eikonal theories do not include them at
all. The IA treatment of the bound states is in-

correct. Because the Coulomb waves appear in a
final-state momentum integral, the wave's energy
can become negative. The corresponding bound-
state functions have exponentially increasing terms
in coordinate space. Although other factors tend
to compensate for this problem, the bound-state
treatment is nonetheless wrong. The conclusion to
be drawn from the analysis of the second-Born-

type theories is that the SPB theory offers a more
comprehensive framework and that it is the only
theory which can be extended into the intermediate
velocity region.

The structure of the paper is as follows: In Sec.
II we derive the exact SPB capture amplitude by
retaining only the lowest term in an expansion in
the small parameter Zp/Zz. A parameteric in-

tegral in the amplitude is then evaluated by mak-

ing order-of-magnitude estimates of the size of cer-
tain parameters. A major part of the amplitude is
seen to come from a pole contribution. In Sec. III
the relation of the off-energy-shell wave function
to the on-energy-shell wave function is found. An
explicit form for the off-shell factor is exhibited
and the on-energy-shell function is seen to result
from a pole contribution of the integral representa-
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tion of the off-energy-shell function. In Sec. IV
we explore the relation of certain on- and off-shell
matrix elements. In Sec. V the 1s—+ns capture
cross section is derived using a peaking approxima-
tion. In Sec. VI the effects of the off-shell factor
are determined and the derivation of the asymptot-
ic form the cross section is justified. The 1s~ns
universal capture cross section is tabulated. Final-

ly, the theory is extended to treat inner-shell cap-
ture for asymmetric systems and the capture cross
sections are calculated for protons on carbon, neon,
and argon. We use the notation of Macek and
Shakeshaft. ' Our plane-wave functions are repre-
sented as P-„(r )=(2e.) 3i2e' " ' '. The reduced

masses are v; =MpMrl[a(m + Mz +Mp)] and

vf MpM——r/[P(m +Mr + Mp)] with rr=M&/
(w +Mr), P=Mp/(m +Mp), and with Mr the tar-

get nuclear mass and Mp the projectile mass. The
initial and final bound-state energies are e; and ef.

II. THE SPB AMPLITUDE

We are interested in the amplitude, exact within
the framework of the SPB, for the capture of an
electron from the bound state P;(r z ) of (e +T) by
P to the bound state Pf(rp) of (e+P). The target
charge ZT is assumed to be much larger than the
projectile charge Zp. The theory will thus be
developed using VT, as the strong potential. We
neglect errors of the order of m /MT and m /Mp in
the following analysis, and in accord with the ar-
guments of Wick, ' omit the internuclear potential.
This implies that effects due to projectile deflection
in the internuclear field are neglected.

The Hamiltonian for the system in the total
center-of-mass frame is given by

with

and

Q;(rr, Rr)=(2rr) / Pg (Rr)P;(rz. ),
ff(rp Rp)=(27') P K (Rp)ff(rp)f

6,+ =—1/(E —Ho —VT, +Eg),

we see that the Neumann series of 6+ in terms of
Gc is

6+=6,++6,+ Vp, G,+

+Gc+V„G+V„G++ - . . (2.3)

Noting that 6,+ is independent of Zp and ZT, we
observe that Eq. (2.3) represents an expansion in
the small parameter Zp/ZT. To obtain the SPB
amplitude, we retain only the first term of Eq.
(2.3):

G+ =Gc

The Green's function 6+ has the property that

Ge'
I P K «r) &

=
I P x «r) &(e—H, +in) '

(2.4)

E =Ki /2vi +~i =Kf /2vf +ef
If we scale all the coordinates by ZT. r T

~ZTr T, RT~ZTRT, etc., then VT, has a strength
of 1 whereas Vp, has a strength of Zp/ZT which
is much less than 1. Defining the Hamiltonian of
the bound (e +T) system plus free particle P as
Ho+ VT, and the Green's function as

~R ~r +VTe+ ~pe
1 p 1

2v. ~ 2'
—=Hp+ Vz;+ Vp, , (2.1)

where e=E —K /2v; and H, is a one-electron
Coulomb Hamiltonian. It follows that our 6+ is
closely related to the Coulomb Green's function.
This property of 6,+ plays an important role in the
reduction of the SPB amplitude.

Our approximate amplitude is now given by
where VT, -———ZT/rT and Vp~, = —Zp/rp. The
Green's function corresponding to the complete
Hamiltonian H is defined by the equation

6+=—1/(E —H +tg),

(2.2)

with E the total system energy and the limit

g~0+ being always implied. The scattering am-

plitude is expressed by the relation

~ =&q, I
~,.+~;G+v; I~;&

~ spa (4f I
l pe + VTe Ge ~pe I gi & (2.5)

Note that this amplitude, while it incorporates first
and second Born terms, actually represents a
zeroth-order amplitude in the small parameter
Zp/ZT. For asymmetric collisions, this is the only
amplitude that represents a consistent lowest-order
approximation. In particular, the Brinkman-
Kramers (BK) approximation takes just the first
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term in Eq. {2.5). The second term, however, is of
the same order as the BK term and frequently of
comparable magnitude.

In order to evaluate Eq. (2.5), we insert a com-

piete set of plane-wave states

&R,, r, ~
y-„,y-„& =(2~)-'e' 'e'

to give

~spa= I d'kd'&'&4/(rl, RP) I kx «i )4k(ri )&&kg { ~)kk( ~) I('+Vr. G.+)Vi.
I A( r Rr)& .

We have the relation

&P/ ~ P K,P q &=(2n) {('i/(k)5(K' —K/)

and using Eq. (2.4) we have

(I+6~ Vz~) ~Pg (Ri )Pz(rz)&= ~P&g z(Rz)&[1+(e H~ ir—i)—Vr. ] ~Pk, (rz)&

—= IdisK' —k(RT)& IP'k, , {rT)&

(2.6)

(2.7)

(2.8)

where k2=ak+( I —aP)K ', and e=E —(PK ' —k) /2v;. Since, in general, e@k2/2m, Eq. (2.8) defines
g'=' (r z ) as the off-energy-shell Coulomb wave function with ingoing wave-boundary condition. Because of

the off-energy-shell nature of 1('k '„we note that its expansion in a complete set of states for the Coulomb

problem will necessarily include bound-state terms. This fact is very significant as pointed out in the Intro-
duction.

We define the "average" momentum transfer vectors

K=PK/ —K; and J =aK; —K/ .

Carrying through the RT integration, we obtain the result

(2.9)

(2.10)
2

i (Rz)
~

VP {arr Rr) I&i—f.{RT)&
2 /p —K/

where p—:uk+{ I —a)K and we have used the delta function of Eq. (2.7) to replace K' by K/. Inserting
Eqs. (2.8) and (2.10) into Eq. (2.6) and writing P/(p/a —K/a+K) =PI(p), since a = 1, our amplitude be-
comes

Aspa= —4irZp fd'pP~j(p), &P'=+ -„,(r) ~e" '' ~P;(r)&
Ip —KI

We have used the momentum conservation equation'

K+ J+m v =0,
which is valid to order m/MT and m /Mp. Also, we have the relations

v'K= —
2 mv +(E' —E'f ),

E +2m@; =J +2m' .

Equation (2.13) is useful in reducing e to the form

e= —,mu + v p+ef .

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

X~,'(~) —=f~,'(~) —P-„(r ) .

They were then able to reduce the matrix element involving X':+ -„,in Eq. (2.11) to a one-dimensional in-

(2.16)

Equation (2.11) involves two three-dimensional integrals over momentum and coordinate space. Moreover,
the r integrand contains the off-energy-shell Coulomb wave 1(t' + „,(r) whose properties and explicit form
are not commonly known.

Kelsey and Macek have derived an integral representation for the related function X'z,'(r) defined as
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tegral. Substituting their expression Eq. (25) into Eq. (2.11},defining k i
—= p —K and noting that now

k2 ——p+m v, we find

4

~spB 4irZp f d'p py( p)k i
' (p-„~ e '

~ p; )+Zr N; mX[ ie—' /(2 sinn r)]
)
3/2

where with p, &

——p and p, 2 ——0,

f dpp '[DiDi —2(EiEi+4X ki. ki)p+DiF, p ]
Qp C

(2.17}

p;(r)=N;e "", p=Zr, N;=Zr /n'

X=[—2ni(e+irl)]', ReX&0

~=mZ~/X,

(X+PI )2+k;,
E; =X —p. —k.

Fi=(X—p)i+ki .

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

The contour C starts at 1+i0, encircles the origin within the unit circle, and ends at 1 —i0.
Equation (2.17) gives the fundamental result of the SPB theory. We emphasize that the order of the er-

rors involved are ni /Mr, rn /Mi, and Zi /Zr. Equation (2.17) is further simplified by evaluating the p in-

tegral and by making a peaking approximation to the p integral. Both of these simplifications introduce er-

rors of the order of (Zp/u) . We now effect the p integration; the peaking approximation is carried through
in Secs. IV and V.

Using a partial fraction decomposition, we can rewrite the p integral as

with

f dpp '[F,Di(p 2Bp++C)]—'=[2FiDi(8 —C)' ] ' f dpp
1 1

C p p+ p p—
(2.24)

8=(EiE2+4X ki.ki)/FiDi, C=D, /F, (2.25)

p, =a+(S' C)'" . — (2.26)

Equation (2.24) contains two pole terms at p=p+ and p=p . In consideration of the derivation of the p in-

tegral by Macek and Kelsey as used in Eq. (2.17), we note that the contour C does not enclose either of
these poles. To gain information on their location, observe that D2 exactly equals p +Zp/n2 and that Eqs.
(2.19), (2.22), and (2.23) give the order-of-magnitude estimates

~
EiEq+4X ki kz

~

=u and
~
Fi

~

=
~
Di

~

=u, provided p « (mu} and p &Zi. We are anticipating a peaking approximation here; nevertheless,
when these relations hold we estimate the magnitudes of the moduli to be

~ p+ ~

= (v/Zi ) && 1 and

~p ~
=(Zi/U) «l.

Since p+ is outside the unit circle, we immediately evaluate the first term in Eq. (2.24) to give

f dpp =, gFi(1, 1 r,'2 r;1—/p }—.1 2i sine v

'p-p. -(1-.)p.
(2.27)

To integrate the second term of Eq. (2.24), form the closed contour I by adding the unit circle to the con-

tour C. The contour I contains the pole at p=p and thus we can write
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2s sinew=—2m.ip '+ . 2FI(1,~;1+~;p ) .
~ e l7TT

(2.28)

Substituting Eqs. (2.27) and (2.28) into Eq. (2.24) and then substituting this into Eq. (2.17), we have

24
As@a —— 4n'Zp —f d p Pf(p)ki ((('ii,

~

e '
~ P;)+Zr»2 N;mX [2FiD2(B —C)'~ ]"2 (2ir)'~' &p

1
X 2FI (1,1 —r, 2 —r, 1/p+ )

(1—r)p+

1 e l%"T

——2FI(1,r1+rp )+ . np
7 sin77

(2.29)

Additional simplifications of Eq. (2.29) will be
made in the peaking approximation of Secs. IV
and V. We point out, however, that Pf(p) deter-
mines the condition p & Zp which was needed for
estimating ~p+ ~

&&1 and ~p (
&&l.

The impulse approximation amplitude is derived
from Eq. (2.29) by neglecting the first term within
the large parentheses, approximating 2FI (1,~;1 + r',

p ) by unity, and disregarding a certain multiplica-
tive factor in p in the pole term. This last factor
arises from the off-energy-shell function. Its form
and affect on the amplitude is treated in the fol-
lowing sections. There, the pole contribution to
the amplitude will be seen to result from the on-
energy-shell Coulomb wave and the second term
will be derived from a plane wave.

III. OFF-ENERGY-SHELL
WAVE FUNCTION

We have seen how the capture amplitude as ex-
pressed in Eq. (2.11) involves 1('k ',(r), the off-
energy-shell (eQ , k ) sca—ttering solution of the
Coulomb problem with ingoing wave-boundary
condition. As previously stated, the IA is derived

by approximating li'k ', with the on-energy-shell

Coulomb wave 1('f '. Since the limit to the shell is

nonuniform, an extra factor representing the

ZT
(H, E+iri)1'i, —,'(r)= P-„(r) . (3.1)

Kelsey and Macek solved Eq. (3.1) finding the
closed-form integral representation

I

branch point in the complex energy plane multi-
plies it -„'. The inclusion of this factor is crucial
to a proper treatment of the relative errors in-
volved.

We now give a closed-form expression for
f'k '(r) and then find the correct limiting value.

This value has been obtained by Mapleton using a
lengthy partial-wave analysis. ' Because a
thorough understanding of the mathematical prop-
erties of the off-energy-shell function is necessary
to use the SPB theory, we present a shorter and
more transparent derivation of Mapleton's result.
In particular, the method of derivation implies that
in the limit to shell the cancellation (as shown in
Sec. IV) of the plane-wave term in Eq. (2.29) by
the second 2FI term originates in the structure of
y(

—)

The function

X'-„,'(r)=(r
~

(e H, iri) —'V—r, ~P-„)

satisfies the inhomogeneous equation with eQ —,k:

( )
( )

7 ie' '
p d, (1—s)(1—t)

(2~)3/2 2 sining J P ( 1 sp)( 1 tp)

g exp
sp 1 X(r —z)+ tp 1——X(r+z)

sp —1 2 tp —1 2
(3.2)
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where

X—ik
s =— . , t=1/s,X+ik '

and the z axis is parallel to k. Here we still have ReX&0 but with X defined according to

X =[—2m (e i—ri)]'r' .

(3.3)

(3.4)

Note that +iri appears in Eq. (2.19) because g'-„', is coinplex conjugated in Eq. (2.11). The contour C is de-

fined as in Sec. II and any singularities of the integrand must not be inside the contour.
From the definition Eq. (2.8) we have

1('-„',( r )=p i, ( r )+X'-„'E(r ) . (3.5)

This P'k ',(r) has a form similar to that for the on-energy shell function g'k '(r) which has the integral repre-

sentation

1('z '(r) ~e' iFi[ iv, —1; ik(—r+z)]

+1=—sinhnv du (1—u)'" (1+u) '"+ 'e' (3.6)

where 5 is a convergence factor and v=—Zz/k. The on-energy-shell function is a solution of the homogene-
ous form of Eq. (3.1), viz. ,

(H, e+ir—i)g'k '(r)=0.

Equation (3.6) is used to evaluate a matrix element in the next section. As sho~n also in the next section,
such use represents an alternative to the use of Eq. (3.2) in Eq. (2.11) to give Eq. (2.17).

Rewriting the integral in Eq. (3.2) as

, (1—t)(1—s) 1 1I=—e " dpp '
t —s p —t p —s

exp[ Xp[(r z)l(p t)+(r +—z)/{p ——s)] ], (3.7)

we see that it has two singularities at p=s and p=t. From Eq. (3.3), we have ~s
~

~0 and
~

t
~

~oo as
e~ —,k . Therefore, when going to the shell we can write

I=e ' I dpp
' exp[Xp{r ~z)/(p —s)] .c p s

To evaluate this, form the closed contour I by adding the unit circle to C:

(3.8)

dp - — dp. dpI c
I pl =]

The integral on the unit circle is easily found since
( p [» (

s [. The result is

(3.9)

We evaluate the integral along I by noting that the contour encloses the pole at s. If one expands the ex-
ponential in a power series in Xp(r +z)/(p —s) and integrates term by term using Cauchy s integral formula
for the nth derivative, one obtains

1
dpp ' e &'+"r'" '= 2iris 'ex'+—*'iFi[r, l; X(r+z)], 0&arg(—s) &2n .

p —s

On combining Eqs. (3.7)—(3.10), we have the result

(3.10)
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l 7TT

X'-„-',(sr =k, e (2~)3/2 2 si

e '— . s 'e '~F~[r, l; X—(r+z)],
(2~)3 (2~)3/z 2 sinm&

for e= —,k . From Eq. (3.4), we observe that X =i~2@ and thus

(3.11)

s'"e . e' ~F~[ iv—, 1; ik(—r+z)],
(2~) / sinhmv

for e= —,k, where we have set ~=Zz-/ik —=—iv and s'v is equal to
lV

1 —2&/k
2 kz2@&k

(3.12)

(3.13)

Using the definition of the on-energy-shell function

we gain the desired relation

IV

(( ) 1 —2e/k
p-k, (r)= e ~ 1(1—iv)1('-„'(r),

f'='(r)=— e ~ 1'(1+iv)e' ~F~[ iv, l—; ik(r—+z)],k (2 )3/z
(3.14)

(3.15)

for e= —,k~, where we have also used
~

1 (1+iv)
~

=mv/sinhm. v.
Pradhan, and later Mapleton, ' have previously

derived the result Eq. (3.15). Since the derivation
presented here works with the full wave function,
and not a partial-wave decomposition, it is concep-
tually more direct. The on-energy-shell Coulomb
wave of Eq. (3.15) arises from the pole term in the
evaluation of Eq. (3.7) while the unit-circle integra-
tion gives rise to a plane wave which cancels the
plane-wave term of 1('z ',. Equation (3.15) shows

also how the impulse approximation must be modi-
fied for Coulomb interactions. Since the branch
cut factor is integrated over, and gives a well-

defined result, the multiplicative factor must not
be arbitrarily dropped as done by Pradhan, Ma-
pleton, and later workers z5, 8,9,3z

The deletion of the multiplicative factor ori-
ginates with the work of Okubo and Feldman on
the scattering of two bare charged particles. They
noted that the multiplicative factor s'"e I (1

iv) of Eq. (3.15) d—istorts the elastic-scattering T
matrix so that the expected Rutherford cross sec-
tion is not obtained in the correct form. Since the
latter must hold the method for obtaining the T
matrix must be modified when dealing with the
Coulomb problem. Okubo and Feldman renormal-

l

ized their wave functions such that the asymptotic
form was correct. Their procedure is acceptable
when the wave functions represent entrance or exit
channels. Alternatively, Dettmann showed that a
wave-packet treatment of elastic Coulomb
scattering with the T matrix incorporating the
multiplicative factor of Eq. (3.15) leads to the
correct Rutherford cross section. In essence
Dettman's analysis shows that for the Coulomb
problem the particles always propagate off the
shell.

For the problem of interest in this paper, /'-„',
always enters under a momentum integral, i.e., as
an intermediate state. Thus, we are not justified in
requiring f'-„', to satisfy a particular asymptotic
form in coordinate space. The extra factor must
also be retained since it represents, in the limit to
the shell, the fact that the particle in reality always
propagates off shell. Finally, we note that the
cross section is altered in a finite way even though
s'V is undefined at the branch point.

It is our intention in this paper to take special
care in delimiting the errors in the approximations
made. Since r and p are arbitrary, it is difficult to
keep track of the errors in the derivation leading to
Eq. (3.15); in particular, when t is large but not in-

finite, terms of order 1!tare neglected. Because
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these occur in an exponential in Eq. (3.2}, their
contribution to the matrix elements of Eq. (2.11}is
not immediately obvious. To analyze the errors,
we first carry out the r integration using Eq. (2.29)

and then go to the shell following a procedure
similar to the one used for f~z,'. The approach of
the matrix element to the shell is made in the next
section.

IV. APPROXIMATE EVALUATION OF A spy

(4.1)

4iN;(f'-„'
~

e '
~
P;) = — e I'(1 —i v)si nhm. v

(2m. )
~

Having found the proper limit of g'k ',(r), we proceed to evaluate the matrix element under the p integral

in Eq. (2.11). From Eqs. (2.11) and (3.15) and the relations k~ ——p —K and k2 ——p + m v, we have the fol-

lowing integral:

e mv/2

(1(I'z '~ e '
~p;) =

3&2
I'(1 iv)N; —f d re' 'e I''"&F&[iv, l;ik&{r+z)],

where J = k, —kz. Substituting Eq. (3.6) into Eq. (4.1) and performing the r integration and some other
reductions, we have the result

&( du u'"+s '(1 —u) '" [p +J —2(ik2p —kg J)u]
Bp

where 5 is a convergence factor.
If we change variables to t=u/(1 —u), Eq. (4.2) becomes

4iÃ,—e ~2I'(1 i v}si—nhn v

(2 )3/2( 2 J2)

(4.2)

f dtt'"+ '[1—[1 2(ikz—pkz J, —)/(p +J )]r ]Bp

Equation (4.3) allows us to more easily determine the phase convention on

Z —=2(ik2 p —k2. J )/( p +J ) .

(4.3)

The branch cut of 1 —Z is along the real axis from Z=1 to —ao so that —m. (arg(1 —Z) & + m. Further
reduction of Eq. (4.3) and use of Eq. (3.15) gives the desired matrix element

' —lv
i k] r ~y& 1 26/k2(P'-„',

~

e '
~
P;) =e I (1+iv)

(4.4)&2 g (K —v +p +2p. J —2ik2p)
X — e ~ I (1—iv)(2-)" ap ( +2+g2)1 —IV

for e= —,k2. Note that v here is defined as Zz/k2.
1

This derivation is straightforward, but as stated before it does not allow us to keep track of the relative
errors involved in the approximations used in arriving at it, yet this is exactly what we must do in order to
assess the consistency of the whole development. Indeed, the later peaking approximation of Sec. V would
be suspect if the errors introduced here were larger. We are led then to derive Eq. (4 4) by other means
which permit a clearer estimation of the approximation error.

From Eq. (2.29), we have the quantity under the p integral within the large square brackets

(f~z,') e '
)((}I) =(pk )

e ' (p;)+ mNZrX [2F~Dz(B —C)'~ ]

1 1 ~e I1'
X 2Fi(1, 1 —r, 2 —r;1/p+) ——~Fi(1,z;1+v;p )+ . p(1—~)p

' ' ' + ~
' ' '

sin~~
(4.5)
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(4.6)

Comparison of Eqs. (2.11) and (2.29) implies that Eq. (4.5) equals Eq. (4.4) for e= —,k . In order to demon-

strate this equality, we first must justify the derivation of Sec. II which led to Eq. (4.5). Since we assume

(Zp/v) «1 and because Eq. (4.5) appears within a p integral containing P f {p },which implies that the ma-

jor contribution to Aspic comes from p values such that p (Zp, we have

Di-(p i—mu) +K +2p ( J i—pv),

D2-p'+zp/n',

EiEi+4X ki k2-2(p +J )[(mv) +2m v p],
F)-(p+imv) +E +2p ( J+ipv),
X — i [(—mu)2+2m v p]'~

t=Zz m/X .

Thus, the conditions under which (4.5) were derived, specifically

I Di I 2 EiE2+4X'ki'k2
~

C
~

= =1+0(Z~/U ) and 8=
Fi I

F,D,
v

Zp

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

are seen to be satisfied. Moreover, we can approximate p+ using their definitions Eqs. (2.26) and (4.12).
The results are

p+-28 and p =C/28 . (4.13)

Equations (4.6) —(4.13) are used to reduce Eq. (4.5) where we neglect terms of order (Zp/u) . The fiirst term

in the large parentheses is neglected since it contains the 1/p+ factor and the second term is approximated

by —I/r. We see that Eq. {4.5} reduces to the form

24m.~P;}+,q2m&;ZrX [4(p +& )(m'U'+2mv p)]"2 (2~)'" '
&p

[(p imu) —+K +2p ( J ipv)]—(p'+Z~/n2)—21J'l T

t Sin777 4(}u +J2)(m2v +2m v p)

(4.14)

Note that the factor e "arises because the phase of p was defined with the branch cut along the posi-
tive real axis whereas Eq. (4.4} was derived taking the branch cut of 1 —Z along the negative real axis.

The first term of Eq. (4.14) gives the first Born amplitude when substituted into the full amplitude Eq.
(2.29). It is readily verified that

(4.15)

Comparison of the second term of Eq. (4.14) with Eq. (4.15), employing Eqs. (4.10) and (4.11), shows that

they cancel. Therefore, we are left with the result

[(p imv) +K—+2p ( J ipv)](p +—Z~/n )
X

Bp p+J 4(p +J )(m v +2mv p)
(4.16)

Equation (4.16) is equivalent to Eq. (4.4) when terms of order (Zp/v) are neglected.
The approximate amplitude is obtained by substituting Eq. (4.16) back into Eq. (2.29) in the place of the

large square bracket quantity. We have
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&spa —— 4—irZp f d p $/(p) ~ p —K
~

4g —I5T'
X 3/2 mN;

(2m )
' sin~~

( ]g2+J2)—1 pa [(p i—mv) +Ki+2p ( J i'p—U)](p2+Z /ni)

Bp 4(~ +~ )(m u +2mv'p)
(4.17)

Recall that v is defined by Eqs. (4.10) and (4.11). It is to be emphasized that when (Zp/u) « 1 Eq. (4.12)
provides the conditions justifying the simplification of Eq. (2.11) to (4.17) and (Zp/v) also indicates the or-
der of the errors involved in applying Eq. (4.17).

V. PEAKING APPROXIMATION
FOR FINAL s STATES

The amplitude in Eq. (4.17) involves a three-
dimensional integral. If we restrict the final elec-
tronic states to isotropic ones, i.e., to final s states,
Eq. (4.17) can be simplified further. The momen-
turn integral can then be evaluated analytically
reducing the amplitude to a closed-form expres-
sion.

The simplification is achieved by neglecting all
terms linear in p in the integrand. This approxi-
mation introduces errors of the same order as be-
fore, viz. , (Zi /u)2, though apparently it should re-
sult in errors of the order Zp/u. The reason there
are no Zp/u errors is seen on expanding the slowly

varying part of the integrand in a Taylor series
about p =0. The slowly varying part is assumed
to be everything except tI'i/(p)(p + Zi /n ) '. On

integrating the linear term of the series, we see it
gives no contribution since (()/(p)(p +Zpln )

' is

taken as an even function of p. Thus, the quadrat-
ic term is the first to contribute beyond the con-
stant term and is of the order (Zi /U)'.

Results of Refs. 9 and 31 show that application
of the peaking approximation to the IA is not
valid for low energies. This means that the matrix
element draws large contributions from large p
where e——,k is not necessarily small. Since this

energy difference is assumed small in the IA, these
results imply that the IA itself is invalid. This
raises the question as to the validity of applying
the peaking approximation to the SPB theory. To
see that it can apply, consider the ratio R of the p
integrands in the SPB and IA amplitudes. From
Eqs. (4.17) and (3.15) we have

g = e '~ I (1+7),p+Z /n

u +2p'v

where ~=iZT/(u +2p v)' . %(hen p= —v/2

and u + 2p v )0, ~ is imaginary and R oscillates
rapidly. This rapid oscillation reduces the result-
ing contributions in the SPB theory. Alternatively,
when p = —v/2 and u + 2v. p &0, ~ is real and
positive and R is of the order

~

R
~

=V2nre '(p r/Zr)

which is much less than unity. For other large p
values, the quantity ~R

~

is of the order of unity.
It follows that the integrand is more strongly
peaked in the SPB approximation than in the IA.
In this connection, Shakeshaft and Macek' have
shown that the peaking approximation is valid for
the plane-wave second Born amplitude when

Zp «ZT and v &&Zp. This supports our observa-
tion that the failure of the peaking approximation
is peculiar to the IA.
To show that the factor D

~

' of Eq. (4.17):

D, '=[K +(ii —iu) +2p ( J ipu)]—

is slowly varying, we rewrite it taking the z axis of
p along v and use p ZT Kz 2(u+ZT/u),
and Eq. (2.12). We have

D
~

——K —2p& Kj + (ZT —iu) (1+p, /u) .

Since the major contribution to the amplitude
comes from the region of small Ej and

p(Zp«v one has
~ pi Ki~ &&K2 and

p, /u «1. Our expression for D& becomes

Di g +(ZT —iu)

and the minimum magnitude it attains is 2ZTu.
Therefore, we conclude that D] ' can be taken as
slowly varying.

Neglecting the linear terms in p of Eq. (4.17),
our amplitude becomes
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ASPB 3/2 2 W4U )'"e
I
r(1+iv)

I

(2 )3/2 K2

X I d pgf(p)(zpln +p )
()p p2+ J2

2
' —iv

E +(p —iv)

p2+ J2 (5-1)

Now v equals ZT/v.
To evaluate the p integral in Eq. (5.1), substitute P (p) for Pf(p) to give

S„=—f d'pP (p)(z p/ n'+p') '"

' 1/2
2 2

n

2 2 2

Z'/' f d'p n'+»v(n2p2+Z')-'-~'vC' n p —Zp

np +Z
(5.2)

where C„' ~(x) is a Gegenbauer polynomial. If we change variables to u=zp/[(np) + Zp] and use the rela-

tion C„' &(1 —2u)=n 2F&(n+1,—n +1;—,;u), Eq. (5.2) becomes

' 1/2

S 4Z3/2 —»vn2iv du &
—1/2+iv(1 M)1/2 F (n +1 n +1 .u)

2

n 0

n
w ~3/2 —2i v 2i v

n

'" r{-,'+iv)r(-,' )
3F2(n + 1, —n + 1,—,+iv; —,,2+ iv; 1).

I (2+iv)
(5.3)

Using Saalschutz's theorem

(y —a) (y—P)
3F2(a,P, —m;y, 1+a+P—m —y;1)=

(y) (y —a — )

where {a)„:—I (a+n)/I'(a), we can reduce Eq. (5.3) to

4Z 3/2 —2i v 2iv
n P n

2n

' 1/2
( 2 +'v)

a ~ (n —1 iv)(n 2—iv)—. —(1—iv)
( —1)"

F{2+iv) {n +iv)(n —1+iv) - . (2+iv)
(5.4)

Since S„will appear as
I S„ I

in the cross section, we have from Eq. (5.4),

II ( —,+iv) I'
IS„ I

=(2zp)'m'
I
I'(1+iv) I' n(n +v )

(5.5)

The expression for
I Aspa I

is readily obtained by performing the differentiation in Eq. (5.1), multiplying
by the complex conjugated expression and using Eq. (5.5). The total cross section is given by integrating

I
A spa I

over the transverse momentum transfer K~:

asps ——(2~ ) I I Asps I
KjdKJ (5.6)

where Ez is defined Kg K Ez We define the quantity

II(-, + ) I'
I
M„(v) I—: en(n 2+ )'

2n

(1+e )(n +v )
(5.7)

and recall 1V;=(Zr/m)'/ and IN(v)
I

=e "I I (1+iv)
I

. Then Eq. (5.6) becomes
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5&sps=
Z5

iM„(v) [

Z& n

2snv' iE(v) i I dx s +
~m «s (x —xo) +4

1+v' 2«o(x —xo) —8v

x4 + x'

Xexp —2v tan (5.8)

1

where we have set x=E /u, x = —,(1+v ), and xo= 1 —v

This cross section for ls~ns captures is valid to order (Zp/v) . Equation (5.8) is the expression obtained

by Briggs with the exception of the factor
~
M„(v)

~

. Therefore, we can attribute the factor
2n /[(1+ e )(n + v )] to a proper treatment of the approach to the shell. In the next section, we dis-

cuss what effects
~
M„(v)

~

has on the cross section.

VI. RESULTS AND DISCUSSION

In the cross section given in Eq. (5.8), we have

separated three factors. The factor in braces de-

pends only on the ratio v, but not on Zz and v

separately. This factor then presents the cross sec-
tion ospa as proportional to a universal curve
which is a function of v. The other factors are the
constant Zp/Zz which provides a scaling of the

I

universal curve dependent on the given projectile
and target charges and

~
M„(v)

~

n which pro-
vides the dependence on the final-state quantum
number n.

Recently much work ' ' ' has been done con-
cerning improvements to the so called "severe
peaking" approximations of Sec. V leading to Eq.
(5.8). These attempts are based, however, on the
impulse approximation which does not take the

TABLE I. Universal capture cross sections in units of (Zp/Zr) a.u. as a function of v=Zr/v from Eq. (5.8). To ob-
tain the SPB cross section in a.u. for Is +ns ca-ptures, multiply the table value by (Zp/Zr)

~

M„(v)
~

n . The number

in parentheses is the power of ten multiplying the corresponding table entry.

(a.u. ) [(Zp/Zr) a.u.]
log)p(0) V

(a.u. )

o'

[(Zp/Zr) a.u.]
log]0(o)

0.01
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

1.729 90(—19)
1.597 64( —11)
4.556 70(—8)
4.525 95(—6)
1.108 86(—4)
0.001 245 33
0.00S 465 17
0.040 43S 2
0.148 546
0.445 061
1.13302
2.525 01
5.038 29
9.16051

15.3902
24.1650
35.793 6
50.4066

—18.7620
—10.796 5
—7.341 35
—5.34429
—3.955 12
—2.904 72
—2.07236
—1.393 21
—0.828 138
—0.351 580

0.054 237 5
0.402263
0.702 283
0.961 920
1.18724
1.383 19
1.553 81
1.70249

0.90
0.95
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00

67.9323
88.1022

110.478
209.923
296.492
346.933
358.989
342.121
308.268
267.237
225.553
186.892
152.932
124.117
100.220
70.7008
64.9162
52.2329

1.83208
1.94499
2.043 28
2.32206
2.472 01
2.54025
2.555 08
2.534 18
2.488 93
2.426 90
2.353 25
2.271 59
2.18450
2.093 83
2.00095
1.906 88
1.812 35
1.171 94
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FIG. 2. Universal curve for 1s~1s capture from Eq.
(5.8).

FIG. 3. Universal curve for 1s ~3s capture from Eq.
(5.8).

proper limit to shell. We have seen that a correct
treatment in the severe peaking case results in a
factor

~
M„(v)

~

. Clearly then, neglect of this

term leads to an error of order (Zz/U) . Moreover,
since the origin of this term, in general, is indepen-

dent of the peaking approximation, although the
specific form here is dependent on it, we can ex-

pect this error to persist. That is, one cannot
validly go beyond the severe-peaking approxima-
tion without first incorporating the off-shell factor.
Indeed, the basic result of Briggs contains errors of
order v, which will be large for U &Zr.

From the foregoing considerations, we think it
useful to present the universal curve, except for

~
M„(v) ~, in tabular form. Table I lists these

values in the range v=0.01 to 4.0. For ease of
reference we also list the base 10 logarithms of
these values. The numbers in the table were ob-

tained from Eq. (5.8) after numerical integration of
the integral. The code was checked against an ex-

plicit analytic evaluation v=1, where the integrand
simplifies considerably, and against the asymptotic
formula Eq. (6.1). One can easily calculate the
cross section in a.u. for the desired charge states by
multiplying the table value by
(Zp/ZT) ~M„(v)

~
n

A. Effects of the off-shell factor

Consider the effects of
~
M„(v)

~

on the capture
cross sections. First note its effect when multiply-
ing the n-independent universal curve. In the limit
v~0, ~M„(v)

~
=(1+n v)&1. Then, when v=n

we have
~
M„(v)

~

=1 and for v& n the factor
n /(n + v ) dominates giving M„(v)

~

&1. For
v very large, the factor (Zp/U) is not small and

the theory is invalid, thus
~
M„(v)

~
passes

through unity in the range of validity only for the
smallest n values. For these n values,

~

M„(v)
~

enhances the capture cross section when 0& v & n

and reduces it when n & v. The effect is clearly
shown in Figs. 2 and 3 for n =1 and 3, respective-

ly. For higher n values,
~
M„(v)

~
always in-

creases the cross section in the allowed range of v.
The off-shell factor also influences the excited-

state capture probability. The total cross section
for capture into excited s states, which is defined
as

~n&1 ~n

n&1

is given in the IA by

0 iA =0.202+)A

while for SPB one has

n&1 10 SPB ~(V)+SPB

with E=0.204, 0.242, 0.344, and 0.615 for v=0.1,
0.5, 1.0, and 2.0, respectively. For the IA, about
17% of the s-state capture is into excited states.
In the SPB this percentage increases as v increases.
It is 17%, 19%, 26%, and 38% for v=0.1, 0.5,
1.0, and 2.0, respectively. This behavior is in ac-
cord with the qualitative idea that as the velocity
decreases the interaction time increases allowing
the final excited states to play a more important
role in the exchange process.

The effects of the off-shell factor have been
treated previously in the calculations of Macek and
Shakeshaft. ' Their method implicitly included
this factor without the explicit factorization
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TABLE II. Comparison of the cross sections cr2, of Macek and Shakeshaft from Ref. 10
with the SPB cross sections derived from Eq. (5.8). The charge scaling of the SPB results is
evidently not present in the 02, values.

ZT Elab

(MeV)
ZT/u
(a.u. )

0'2c

(a.u. )

&spa
(a.u. )

20
20
10
20
10
10

2.5
5.0
2.5

10.0
5.0

10.0

2.003
1.419
1.005
1.005
0.7097
0.5038

130
210
110
92
26

2.0

136.3
201.1
111.9
111.9
22.20

1.850

achieved in this paper and in Macek and Taul-
bjerg. " The calculations made use of a peaking
approximation similar to that employed here
though part of the term

qFi(1, 1 r;2 —r; I /p—+) /[p+(1 —r)]

in Eq. (2.29) was retained. This term was neglect-
ed in the present work. Table II shows a compar-
ison of the 1s~ ls capture cross sections of Macek
and Shakeshaft with those derived from Eq. (5.8).
The differences between the two sets of values are
everywhere less than 20%%uo', however, the lack of
charge scaling in the earlier results is apparent in
the two cross sections for v=1.005. This lack of
scaling is consistent with keeping the 2Fi term
which destroys the dependence of the cross section
on v only.

B. Asymptotic form of the capture
cross section

In the limit V~O, that is for large velocities, the
IA cross section criA (we drop the superscript on o.

here) for 1s~1s capture takes the form (in a.u.)

o iA
——ogg(0. 295+5m/2 "ZT), (6.1)

where osK 2' n——ZpZz. /(Su' ) is the asymptotic
Brinkman-Kramers cross section. The coefficient
of the u

" term in Eq. (6.1) differs by a factor of
2 from the coefficient of the U

" term of the
second Born approximation. Briggs has shown
that this discrepancy is not inherent to the IA but
is due to the peaking approximation. ' Thus, the
above asymptotic form Eq. (6.1) is strictly valid
only for highly asymmetric captures.

In all previous derivations of Eq. (6.1), an ap-
proximation has been made that is not justified.
Considering Eq. (5.8) except for

~
Mi(v) ~, the in-

correct derivation goes as follows: In the limit
v~O both

~
N(v)

~

and the exponential term tend
to unity. Setting them equal to one and using

v/[(» —xp )'+4v'] —~—5(x —1),
2

the second term of vo&A results in o&A
~27ri ZpZrlu" and the u

' term is gained from
a straightforward evaluation of the integral as
v—+0. In effect, one writes

+v2 1
~LA ~ dX '

6 +
X (X —Xp ) +4V

2xp(x —xp ) —8v

X4
+ x' =C iv '+Cp+Civ+ . - .

—2v tan [2v/(x —xo)]with C i, Cp, etc., constants. One assumes that on retaining
~

N(v)
~

e ' only the coeffi-
cients C„, n &0, are modified. But since the expansion has a 1/v term,

~
N(v)

~

=1+rrv+0(v ), and the
v dependence of the exponential factor is not clear, this assumption is not readily apparent.

To justify the derivation and to clarify the relative errors, consider the integral L (v):

L(v)= I dxx "[(x—xp)2+4v2] 'e

IN

dx x "(x —xp+2iv)+'" '(x —xp —2iv)
xm
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where the second form is true by definition. The integrand has two branch points at x=xo+2iv and a pole
at x=0 in the complex x plane. To evaluate L (v), we close the contour in the upper half plane by adding
the contour y= I x =x + iy:0 &y & oo ] and by going around the branch cut taken from xo + 2iv to
xo + i ao as shown in Fig. 4. We can write L (v) =J(v) + lt (v) where

J(v)= —f dx
branch cut

and

E(v)= —f dx
y

The integration along the other parts of the closed contour gives zero contribution.
The branch point and thus the integration around the cut arises from the exponential factor and does not

exist if the latter is set equal to one, instead, one has a pole contribution at x=xo + 2iv. When setting
-2vtan ~[2v/(x —x )]

~

N(v)
~

2=1 and e ' =1, one assumes that
~
N(v)

~

cancels the contribution from the

branch cut. Actually, one has

J(v)= i [n—/2 tIN(v)
~

(xo+2iv)"]X,F, [n, iv;—n +1 iv;(—xo 2iv—)/(xo+2iv)] .r( —iv) r(n +1)
I (n+1 —iv)

Since the pole contribution is 2m.i(xo+ 2iv) "(4iv) ', we get equality because

I ( —iv)I (n +1)
2F~[n, iv;n +—1 iv;(x—o 2iv)—/(xo+2iv)]= —+O(v) .l

I (n +1—iv) V

As the integrand of E(v) is analytic everywhere

along y, we immediately deduce that the leading
term of E(v) is a constant independent of v [E(v)
and J(v) have imaginary constant terms of equal
magnitude but opposite sign so that L (v) is real as
it must be]. The x term of ot~ can be integrat-
ed by parts with the integrated part giving O.q~,

'

the remaining integral is of the form v L (v) and
does not contribute to order less than v . E(v)
provides the modification of the 0.&~ coefficient
from 1 to 0.295. The above observations validate
the derivation of Eq. (6.1).

Now we consider the effect of
~
M„(v)

~

on Eq.
(6.1). The asymptotic form for 1s~1s capture in

the SPB is derived from ospa —
~

M~(v)
~

Q'tp,

|Im x

&m Rex
FIG. 4. Integration contour used in justifying the

derivation of the asymptotic form for the capture cross
section Eq. (6.1).

which on approximating
~
M, (v) = 1 + n v and us-

ing Eq. (6.1), becomes

spB
——0'gg(0. 319+5m v/2 "Zy ) . (6.2)

Here we have a constant change in the v
' term

of about 8%. This is apparently rather small con-
sidering that the v

" term remains unchanged.
But for large v, (Zp/v) «0.08 and we conclude
that this 8% change is meaningful and greater
than the error limitations of the SPB approxima-
tion. The nonuniform approach to the energy shell
of P'k ', has affected even the large velocity

behavior of the cross section. This difference of
asymptotic forms between the second Born theory
(free Green's function) and the SPB theory
(Coulomb Green's function) implies that third-
order effects of one theory are needed to gain
equality with the other. Shakeshaft has considered
the problem of third Born contributions to the
asymptotic cross section. If we use his cross sec-
tion Eq. (4.21) which contains contributions from
the first three Born terms, keeping in mind that
for asymmetric processes terms of the order
Zp/ZT can be neglected, we arrive at exactly Eq.
(6.2). But Eq. (6.2) does not contain contributions

from the third Born term VT, GO+Vp, GO+Vp, which
are of higher order than the SPB theory. Here Go
is the free Green's function.
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C. Application to inner-shell capture

We have thus far considered only capture from a
hydrogenlike atom. To apply the theory to inner-
shell capture, we need to introduce a more realistic
atomic model. We want to incorporate this model
into the present framework and Eq. (5.8), in partic-
ular, without major modification. Several restric-
tions on the model allow this to be done. (1) Take
the captured inner-shell electron's motion as in-
dependent of the other electrons. (2) Represent the
electron's wave function by an unmodified hydro-
gen wave function of effective charge Z~. {3)Use
the experimental binding energy eq for the initial
bound state.

Restriction (1) is the approximation of consider-
ing a single active electron in the process. For the
initial state, the use of this independent-particle
model is justified by the wide separation of binding
energies for the inner subshell electrons. ' And
since the exit velocity of the active electrons in the
final state is large, the "core" of inactive electrons
can be taken as frozen in the initial configuration.
Thus, we take the active electron as moving in a
potential of the Hartree-Fock type, e.g., a Hartree-
Fock-Slater (HFS) potential for the K shell.

The complete inclusion of this HFS potential

VHFs within the present framework would be quite
difficult to execute. However, following the lead
of previous calculations on ionization, we
represent VHFs by a scaled hydrogenic potential Vq

which is shifted by a constant amount Vp.

Zs
VHFs = Vs—:— + Vp

T

The value of Zq is obtained following Slater's em-

pirically derived rules, viz. , Z~ equals ZT —0.3.
Preferably, the experimental binding energy ez
should agree with the ground-state energy of Vs.
This condition gives Vp equal to e~ + —,Zq. For
large radial distances, Vq is not a good representa-
tion of VHFs. Because P;(r ) appears in the coordi-
nate integral of Eq. (2.11), which implies that the
major contribution to the capture amplitude comes
from radial distances of the order of 1/Zq or less,

I

Z5
~SPB 7 2 ~v

I
+(v)

I I
~n(v)

I

Zs n

1
v K= —

2 mU +E'g —E'y,

K +2m@& ——J +2m'~ .

(6.3)

(6 4)

The amplitude squared appearing in the cross sec-
tion Eq. (5.8) is steeply peaked near the minimum
value x, thus, the correct minimum momentum
transfer is critical for a proper treatment. Using
Eq. (6.3) we get x equal to (1—2es/v ) /4.
Equation (6.4) is used to substitute for J in Eq.
{S.1) after the p differentiation. Following the
derivation of Sec. V with the above modifications
and replacing Zz with Z~, we arrive at the 1s~ns
SPB peaking approximation for inner-shell capture.
Formula (5.8) becomes

this deficiency is not a major flaw. Comparison of
VHFs and Vq in the inner region shows good agree-
ment, in fact, at r=1/Zq the fractional error be-
tween V~ and VHFs for the K shell is 0.019 for car-
bon, 0.022 for neon, and 0.015 for argon.

The effects of the inclusion of Vp in V~ needs
some discussion. Vp arises from the outer screen-
ing of the core in contrast to the 0.3 of Zz which
arises from inner screening. The undesirable
consequence of Vp is a shifting upward of the con-
tinuum threshold of Vz with respect to VHFs.

'
Thus, the lower-energy continuum states of VHFs
are represented by bound states of Vz. This
bound-state modeling in effect would not even al-
low electronic escape. But here once again, only
the large-e region is a problem; the wave functions
of Vq must necessarily be of similar form to the
wave functions of VHFs for r & 1/Zg, since the two
potentials agree well in this region. Moreover, for
the captures considered here the final electronic en-

ergy is relatively high in the continuum away from
the threshold as shown schematically in Fig. 1.
We conclude that restriction (2) does not seriously
limit the theory and is well justified for our pro-
cess. Note that the picture of capture as a momen-
turn weighting of ionization is fundamental to the
above discussion.

Since we have incorporated ez into Vz, we must
also alter our kinematic relations. In particular,
we replace Eqs. (2.13) and (2.14) by

X f"dx 1+v 2xo(x —xo) —8v

(x+x~) (x —xo) +4v (x+x, ) (x+x, )
4 + 2 2+ 3

—2v tan 1I 2v/(x —xo)]Xe {6.5)
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FIG. 5. Plot of the integrand of Eq. (6.5) for argon
for two impact energies.

where xL ——v +2'/U and v is given by Zs/U.
The extra factor of 2 arises because there are two
K-shell electrons. The only alteration in the basic
form of Eq. (5.8) as seen in Eq. (6.5) is the appear-
ance of x~. Because it is in the denominator, its
presence acts to reduce the cross section. On the
other hand, the lower limit of integration is small-

er. This, coupled with the steep peaking of the in-

tegrand near the lower limit acts to overcome the
reduction due x~. The net effect of these two
changes is to increase the value of the integral in

Eq. (6.5) as compared to that in Eq. (5.8). Also,
since Zs is less than ZT the multiplicative factors
in Eq. (6.5) produce an additional increase in the
cross section.

We use Eq. (6.5) to calculate the ls ~ ls capture
cross sections for protons on carbon, neon, and ar-

gon. For the K-shell binding energies ez, we use

0.4 1.0 2.0 4.0
ENERGY (MeV)

FIG. 7. SPB and IA cross sections for K-shell cap-
ture from neon by protons. Data are , Cocke et al.
(Ref. 41); k, Rgkibro et al. (Ref. 40).

the values taken from the compilation of Krause
288 eV for carbon; 870.2 eV for neon; and 3206.0
eV for argon. %'e checked the numerical evalua-
tion of Eq. (6.5) against that used for Eq. (5.8)
when Zs =ZT and e~ ————,ZT in the former.

Figure 5 shows a plot of the integrand of Eq. (6.5)
for argon for v values of 0.8 and 1.6. These values

correspond roughly to incident proton energies of
12 and 3 MeV. The lower energy is near the peak
in the capture cross section and here the integrand
is not as steeply peaked. This is in accord with the
decreasing dominance in the capture amplitude of
the "longitudinal" momentum transfer for lower
velocities. From the smoothness of the integrand
shown in Fig. 5, we are assured that numerical er-
rors in the calculations are completely negligible.

In Figs. 6—8 we present the capture cross sec-
tions for protons on carbon, neon, and argon. The
SPB theory is compared with the IA theory and
with the experimental data. It is seen that the

300 9O'
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E 100
Al

0
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M

U
LLJ

100
CL'

E

Al

O

Z0 1P

U

U

2
0.1 0.4 1.0 20

ENERGY (MeV)

FIG. 6. SPB and IA cross sections for K-shell cap-
ture from carbon by protons. Data are from R~bro
et al. (Ref. 40).

1 2 5 1P 20
ENERGY (Me V)

FIG. 8. SPB and IA cross sections for K-shell cap-
ture from argon by protons. Data are 0, Macdonald
et al. (Ref. 42); k, Andriamonje et al. (Ref. 43).
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SPB cross sections follow the data more consistent-

ly than do the IA ones up until the peak. For car-
bon, the agreement is quite good up to the peak,
though the agreement is qualified somewhat since
the carbon data were taken with CH4 as the target.
In neon, the scatter in the data around the peak
makes comparison difficult, yet clearly the SPB
curve follows the trend of the data better. The
SPB curve for argon is roughly 5—10% above the
data, but again the trend of the data is followed
more closely.

In the energy range below the peak in the cross
section, both the SPB and IA curves diverge con-
siderably from the data. However, the SPB curve
is much reduced compared to the IA one. In car-
bon the SPB peak is less than a factor of 2 too
large whereas the IA peak is five times too large.
Also, the calculated peak locations for SPB theory
are closer to that of the data. For carbon again,
the SPB peak is a factor of 2 too low while the IA
peak is a factor of 3 too low.

Kocbach has also performed peaking approxima-
tion calculations under similar conditions to those
used here. ' He used the IA theory in the impact-
parameter formalism. From his Eq. (3) we have
the capture amplitude as

AtA(b, u)= f d pPf(p)e'u'bf(p, v, b) .

The peaking approximation is obtained from Eq.
(6.6) by writing

e'u'b f(p, v, b)=f(O, v, b)

so one has

second Born approximation to the cross section de-

creases more slowly than the BK approximation in
the limit of large velocities. This behavior is true
even for the second Born theory without inclusion
of the internuclear potential, here called BK2. The
BK2 cross section stays above the BK one as the
velocity decreases down to as low as 2 a.u. But at
the lower velocities the BK cross section generall
gives an overestimate for the capture probability.
Miraglia et al. have given exact values for the to-
tal cross section for the BK and BK2 theories.
They find that for an incident energy of 1.0 MeV,
where u=6.3 a.u. , the total cross sections are
3.52X10 ' and 1.40)(10 ' cm~ for BK and

BK2, respectively. For 0.1 MeV, where U=2 a.u. ,
their values are 7.04X10 and 1.22X10 ' cm .
This unrealistic increase of the BK2 cross section
over the BK cross section can be ascribed to the
use of plane waves for continuum target states in
the BK2 theory and to the absence of a discrete
target spectrum.

Macek and Shakeshaft' have noted that the use
of the Coulomb Green's function substantially
alters the situation. This is to be expected since
the Coulomb Green's function provides a correct
treatment of the target spectrum. At asymptotic
velocities the SPB approximation to the capture
cross section also decreases more slowly than the
BK one. ' Contrary to the behavior of the BK2
theory, though, the SPB cross section becomes

AfA'(b, u)=(2n) pf(0)f(O, v, b) . (6.7)

A less restrictive approximation used by Kocbach
is

e'u f(p, v, b)=e'~' f(O, v, b)

which gives

A f~ =(2n) Pf(b)f(O, b, v) . (6.8)

The corresponding approximation in the wave
treatment sets k2-m v but retains k&

——p —K so
that J in Eq. (4.1) is replaced by J + p. But since
J =k ~

—kz is an exact result, retaining p is not
justified and A &z is a worse approximation than

P1
~iA

D. Symmetric capture

For 1s~ ls capture in the forward direction by
protons from hydrogen, it is well known that the

0.1 'I.O

ENEROY (MeV)

FIG. 9. Comparison of the BK, BK2, and SPB cross
sections for capture from hydrogen by protons. BK2
denotes the second Born theory without inclusion of the
internuclear potential. The BK2 values, the ~'s, are
from Ref. 46. For the BK curve, Ref. 45 was used.
The SPB curve is derived from Eq. (5.8) with

Zp ——ZT ——1.
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smaller than the BK one. Figure 9 clearly verifies
this behavior down to 0.1 MeV. Moreover, note
that at the lower velocities, where the validity of
the peaking approximation is questionable, a more
accurate treatment of the SPB amplitude Eq. (4.17)

may tend to pull the cross section down further.
Figure 9 thus gives a clear indication of the results

of incorporating a snore accurate treatment of the
target spectrum.
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