
PHYSICAL REVIE%' A VOLUME 26, NUMBER 5
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Expressions have been derived that relate the stopping power and energy-loss straggling
in a medium with internal motion for penetrating charged particles to the corresponding

quantities applying to the equivalent medium at rest. These expressions have been based on

a general binary-encounter picture and apply to nonrelativistic velocities and arbitrary mass

ratios. Convenient expansions have been found in the limits of very high and very low pro-

jectile velocity. The results are applied to both nuclear and electronic stopping of charged
particles. The capability of the scheme is tested upon the degenerate free-electron gas, for
which accurate expansions at high and low projectile speed are known, with regard to both

stopping and straggling. The scheme allows evaluation of shell corrections to stopping

power and straggling of atomic and molecular gases beyond the range of validity of the

leading terms in an expansion in inverse powers of electron velocity. A seeming disparity
between high-speed straggling parameters calculated for the Fermi gas on the one hand,
and an atomic target on the other hand, is attributed to different ground-state properties of
the two systems in zero order. An essential difference is pointed out between the predic-
tions of the dielectric theory and the present scheme with regard to the velocity dependence

of energy-loss straggling in the low-speed limit.

I. INTRODUCTION

This work deals with the stopping of fast parti-
cles such as protons, alpha particles, and heavy ions
or atoms in matter. The particular problem ad-
dressed is the effect of internal motion in the
penetrated medium on the statistics of the stopping
process, especially on the magnitude of stopping
power and straggling.

Elementary stopping theory (cf. Ref. 1, Chaps.
1 —3) deals with the slowing down of a projectile
moving faster than all the constituents (atoms, mol-

ecules, electrons) of the penetrated medium. In that
case, it is a valid starting point to disregard the ini-
tial motion of the target particles in the analysis of
the stopping process. This applies to the classical
theory of electronic and nuclear stopping' and,
with some modification, to the simplest form of the
quantum theory of electronic stopping of swift
charged particles (Ref. 3 and Sec. 2 of Ref. 4).

We note that if the stopping medium is in ther-
mal equilibrium, a particle slows down until its ki-
netic energy has approached the equilibrium value.
This means that if the projectile is heavier than at
least part of the constituents of the stopping medi-
um, slowing down may go on at projectile Uelocities

well below thermal or zero-point velocities of the
target particles. Therefore the neglect of the inter-

nal motion of target particles is a severe limitation
of elementary stopping theory.

This is particularly important for electronic stop-
ping of ions. Shell corrections to the simple Bethe
formula (Refs. 5 and 6 and Sec. 4 of Ref. 4) are
known to be significant at all but the highest
heavy-particle velocities, in particular for heavy tar-
get atoms where inner-shell electron velocities ap-
proach the velocity of light. For low-velocity ions,
the stopping power is known to show a quite dif-
ferent behavior from that predicted in the high-
velocity approximation. For the same reason, the
stopping power of a high-temperature plasma be-
comes temperature dependent.

Internal motion of the stopping medium may also
be important for nuclear stopping; this is obvious in
case of heavy ions slowing down in light target ma-
terials, but must be true more generally at velocities
not too far above equilibrium velocities. Note that,
due to generation of high-density atomic collision
cascades (spikes), heavy ions slowing down in solids
may move through regions of particularly high lo-
cal temperature (kT &10 eV). While thermaliza-
tion problems have been treated extensively in case
of neutrons' and electrons, " the problem seems to
have received little attention with regard to atomic
particles, except for small deviations from thermal
equilibrium, i.e., in the regime of kinetic theory. '
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The main purpose of the present paper is to ex-
plore the possibility of extending the range of valid-

ity of elementary stopping theory to lower velocities

by incorporating features of kinetic theory. In the
regime of kinetic theory, collisions take place, in
general, between mouing collision partners; the col-
lision dynamics is described in the proper frame of
reference, usually the center-of-mass frame. This
increase in complexity, as compared with the case
of collisions where one partner is initially at rest,
may be compensated by the lack of significance of
external forces.

There are at least two model systems that have
been studied extensively with a similar purpose in
mind. One is the stopping of a point charge in a
free-electron gas' '; this forms the basis of the
dielectric theory of stopping. In view of a consider-
able amount of rigor in that treatment, its results
have served as a very useful tool in electronic stop-
ping of atomic systems' ' (for a summary cf. Ref.
17). The other model system, often called the
binary-encounter approximation, ' deals with
binary collisions between moving point charges.
There are well-known difficulties inherent in such a
model; in addition, it appears that its potential is
difficult to assess on the basis of existing treat-
ments ' because of other model assumptions
entering simultaneously.

In elementary stopping theory, it is usually suffi-
cient to keep within one or two frames of reference,
the laboratory system and, possibly, the center-of-
mass system. In case of a moving target, it is con-
venient to consider four frames of reference, called

CL, Co C~ and Cq, respectively:
(i) CL, is the laboratory frame in which stopping

parameters are measured.
(ii) Co is a system in which an individual target

particle is at rest; expressions for stopping parame-
ters from elementary stopping theory apply to this
frame.

(iii) C~ is a system in which the projectile is
momentarily at rest; the frequency of individual
collision events is conveniently determined in this
frame.

(iv) Cs is the center-of-mass frame in an indivi-
dual binary collision event; the dynamics of binary
elastic collisions is treated readily in this frame

The aim is to derive expressions for stopping
parameters in the CI frame, involving stopping
parameters in the Co frame and only one additional
characteristic of the target material, the velocity
spectrum of the target particles. Neither the type of
particle nor their mutual interaction are specified in
the general treatment.

Frame of
Reference Before Collision

c„

After Collision
I

V2 rr
r~%~rr

cs

CM

W2~V -V
2 1

'o
2

V —V 0
2 ~8 ~

FIG. 1. Illustration of frames of reference used. Cl is
I

the laboratory frame, projectile velocity v ~ and v~ before
and after collision, respectively, vq and vz corresponding
target velocities. C, is the center-of-mass frame, projec-
tile velocity u& and u~ before and after collision, u2 and

I
~ ~ ~ ~

u2 corresponding target velocities. V is the center-of-
mass velocity. CM is the frame of reference moving with
v ]. Cp is the frame of reference moving with v2.

II. GENERAL

A. Differential cross section

up= V2 —V,
~l ~l
u2 ——v2 —V

before and after a collision, respectively, where

V=(m&v&+mzvz)/(m~+mz) .

(2a)

(2b)

Consider a random, infinite stopping medium
composed of only one type of particle with mass m2
and a velocity spectrum f ( vz) such that

Jd vzf(vz)=1,

and a uniform density of n target particles per unit
volume. Consider a projectile with mass m& mov-

ing with velocity v i, and let it interact with the tar-
get particles via binary collisions. Let the (nonrela-
tivistic) velocities in the laboratory frame CI after a
specific collision be v

&
and vz, respectively (Fig. 1).

In the center-of-mass frame Cq, a target particle
has the velocities (Fig. 1)
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Let us assume that the collision is elastic in Cz, i.e.,
& 2 2

Q2 =Q2 (4)

Then the energy loss T of the projectile in the labo-
ratory frame CL, is'

tion for a scattering event (O,dO) involving the pro-
jectile and all target particles within ( w2, d w 2),

W2 f(W2+ V 1)d'w2doo(w2&8) ~

ui

or, in terms of Cl velocities,
T= (U2 —U2)™2V(u2 —u2) .

2
(5)

In the system CM moving with the projectile, a tar-
get particle has the initial velocity (Fig. 1)

W2=V2 —Vi .

There is a particle flux of

nw2f(w2+vi)d w2

target particles per unit area and time with velocity
( w2, d w2) passing the projectile in this system.

Let dop(W2, 8) be the differential cross section for
a scattering event leading to a scattering angle

(O,dO) in the center-of-mass system Cs. This quan-

tity depends on the relatiue speed w2 and on the re-
duced mass mo,

do = f (v2)d U2dop(
I vi —v2 I,O}

by means of Eq. (6).

(10)

B. Stopping cross section

The specific energy loss of the projectile is given

by 1

dE = —nS,
dx

where

mp ——mlm2/(m) +m2) . (7) S=JTdo, (12)

From the conventional definition of the cross sec-
tion, ' one finds the expected number of collision
events (O,dO) undergone by target particles with
velocity (wl, d w2) with the projectile in a time in-

terval dt to be given by

nw2dtf(w2+ v ) )d w2doo(w2, 8) .

Dividing by nUidt, one finds the apparent cross sec-

with der the differential cross section for energy loss
(T,dT). [This notation does not by any means ex-
clude negatiue values of the energy loss T, i.e., an
energy gain in a particular collision. Indeed, the
derivation of Eq. (12)—as well as Eq. (21) below—
does not preclude this possibility. ]

Combining (12) with (5) and (10) one finds for the
total stopping cross section

S(Ui }=m2 d U2 f( V2) d(ro(
I

v i
—v2 I,O)V (u2 —u2) .

u)
(13)

By definition, the center-of-mass scattering angle is
given by

COSO = ( ll2 u2) lQ 2 (14)

for elastic collisions, and therefore, in case of az-
imuthal symmetry of do.o around u2,

J do'()(
I

Vi —V2 I,O)(112—ll2)

where

= —u2 o'"(
I

vi —v2
I
), (15)

o'"(U)= f dop(U, O)(1 —cosO)

is the transport cross section of first order. Insert-
ing (15}into (13) and making use of (2a) and (3) one

I

finds

S(Ui)= I d U2 f(v2)moV'(vl v2)

x i 2 I (])

(17}
This type of connection between stopping and trans-
port cross section is well known. '

Let us consider (17}in the limit of U») U2. This
defines a function Sp(U, ) given by

2

Sp(U) ) = d U2 f( v2)mp3
m ]u i ( i )(Ui)

mi+m2

m ]m2 2 (])
2 m)Uio' (U(),

(mi+m2)
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in view of Eq. (1). Eliminating the transport cross
section from (17) and (18), one then finds the rela-
tion

S(ui)= f d u2f(v2)

[v 1+(m2/m 1)v2] ( vi —v2)
X

XSp(
I

v 1
—v2

I
)

between the effective stopping cross section S in the
laboratory frame Cq and the stopping cross section
in the system Co where the target particle is initially
at rest (Fig. 1).

It may be appropriate to stress the main assump-
tions entering Eq. (17):

(i) nonrelativistic velocities u 1 and u2,
(ii) binary collisions,
(iii) elastic collisions, and
(iv) azimuthal symmetry of the differential cross

section.

No specific assumptions enter concerning the in-
teraction potential between the collision partners,

nor is it assumed that the individual collision be
classical or semiclassical.

C. Straggling parameter

For a random medium, the energy-loss straggling
of the projectile over a path length Lb& is known to
be given by'

((b,E (b—.E)) ) =XbxW, (20)

T =m 2V 1l2[cos $(1—cos8)

+ —, sin P sin 8] (22)

in the average over all azimuths, where iI) is the an-

gle between V and u2. Thus, (21) takes on the form

where 8', the straggling parameter, is given by

W=f T do. (21)

This expression is evaluated on the basis of Eqs. (5)
and (10). Introducing spherical coordinates with
the polar axis along u2, and noticing again the az-
imuthal symmetry of the cross section do(U„8), one
obtains

W(u, )=m,' f d'u2 f(v2) uzV [(, cos p —
2

)o' '(
I

vi —v2
I
)+sin 4o'"(

I vi —v
U1

where

o' '(u) =fdop(u, 8)(.1 cos8)—

is the transport cross section of second order. For a target at rest, (23) reduces to

Wp(ui)=m2u2V o' '(ui)=
2 (mivi) o' '(ui) .

(mi+m2)

(23)

(24)

(25)

After eliminating the transport cross sections in (23) by means of (18) and (25) one finds

W(vi)= f d u2f(v2) 1+
fPl 1

3
—,[(vi —v2) V] ——,(vi —v2) V

Ul V1 —V2
Wp(

I
vi —v2 I

)

(v, —v2) V —[(vi —v2).V]
+Pl2 sp(

I
vl —v2I )

U1 V1 —V2
(26)

which is the analog of Eq. (19) for the straggling parameter. Depending on the specific application, the fol-
lowing variant of Eq. (26) may be easier to deal with:

I(vi V) 2[4 +—1(m . 2/m) iV]J2' i m2 (vi V2)' —viv2
W(ui)= d u2 f(v2)

&
Wp(

I
vi —v2

I
)+ —, 1+

U1 V1 —V2 m1 U1 V1 —V2

X Wp(
I

Vi —V2
I

)
( V 1 V2) U1U2

Sp(
I

vi —v2
I

)
U1 V1 V2

(26')
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D. Isotropic velocity distribution

Although Eqs. (19) and (26) could readily be used to determine the Doppler shift in stopping parameters for
a medium with a drift ueiocitY, the most obvious application appears to be the Doppler broadening in a medi-
um in random internal motion, i.e., with an isotropic velocity spectrUm

f(vz)=—f(u, ) .

Introducing the variables uz —— vz
~

and v'=
~

v& —vz
~

in (19) and (26') one finds

(27)

and

m2 m2
$(v) )=—,f f(uz)uzduz f dv'Sp(v') (u, —v, ) 1+ +u' 1—

U) m] m)

00 dV, 2 2 m2
W(v&)= z f(vz)uzdvz, 'Wp(u') (ui —uz) 1+ +u' 1—

2Ui U'2 mI

m2
2

(28)

m2
+ —, Wp(v') 1+

m~
—mzv' Sp(u')

& [(v' —vf —vz)' —4V iuz] (29)

Of particular interest will be the case of small target mass, mz «m ~, where (28) and (29) simplify to

$(ut)= —
z f f(uz)uzduz f~ dv'Sp(v')(uf uz+u' )—

V)
(28')

7T "~+"2 du'
W(ui ) = z f f (uz)uzduz f, ,

[ Wp(u')(u f —uz+u' )
2vi

+[ 2 Wp(u ) —mzv Sp(v )][(V —V ~
—Vz) —

4V fuz] I (29')

E. Stopping cross section at high projectile speed

1 2m
1+

3 m&

Let the projectile speed v~ exceed the highest target speed u2. Then, Taylor expansion in terms of the
parameter vz/u& up to fourth order of (28) yields

2(v2) 2. 1 m2
$(u~) =Sp(u~)+ So +—1 — u ISO+ —,u )So'

U) 3 m)

where

(uz)
+

U)

4m 21+ UiSO +
m~

m2
l — V )So"+ &&&

U ]So'" +
m&

(30)

= d
Sp —— Sp(ui ),

du)

and similarly for the higher derivatives. In (30), (vz ) is given by

(uz)= f f(uz)d vzuz =—f 4trvzdvzf(uz)

and (uz ) correspondingly. In particular, for low target mass, mz «m &, (30) reads

$(v])=Sp+ 2 ( —3$p+ 3 u]Sp+ 6 V]Sp )+ 4 ( —30 u&Sp + 30 V]Sp + )zpu)Sp )+
V) V)

(31)

(30')
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while in the opposite case, m~ &&mz,
2 4m2(u2) 2 1 q

m2( 2) 2 2 pg I 3 mS(vi ) =Sp+ 2 ( —3 Sp —
3 uiSp )+ g ( —ig viSp' —

3p v 1Sp )+
m~u~ m)U)

(30")

F. Straggling parameter at high projectile speed

4 mz 2 mz
1+ Sp — V~@ p+ 6U]8p'+ 3mzv~Sp + .

3 m) 3 m)

The same procedure applied to Eq. (29) yields the straggling parameter

W(ui ) = Wp+ 2
V)

(32)

where terms of higher than first order in (v2~)/u 1 have been omitted. For low target mass, m2 &&mi, (32}
reads

W(ui) = Wp+ 2 ( —Wp+ 6 v 1
Wp'+

3 m2uiSp)+ ' ' '

V)
(32')

The last term in the square brackets has been kept, since it turns out to become significant for cases of in-

terest.

G. Stopping for cross section at low projectile speed

Let the projectile speed vi now be small compared to the typical target speed u2. This situation is of in-

terest mainly for the case of small target mass, mz «m &. It is well known that for isotropic distribution of
target velocities, the stopping power is linear in u& in this limit. ' '

Within the present scheme, this result can be derived either from Eq. (28 ) or, slightly more convenient,
from Eq. (19) directly, which, for m2 «m 1, reads

v1 ( —V2+ vl)
S(v, )=f d u2f(u2) Sp(

I

vl
I

Taylor expansion in powers of u 1 /u2 yields

S(ui )=ui f 4rru2f(u2)dv2

2 dO

W(ui)= —,m2vi 4mv2 f (v2)dv2'v2Sp(v2)
0

(34)

2 1

X Sp(u2)+ 3 Sp(u2)
3vz

(33)

for the leading term, provided again that f(u2) and

Sp(u2) are well-behaved at small values of u2. Note
that Wp does not enter into Eq. (34).

for the leading term, provided that f(u2) aild Sp(u2)
are well-behaved near v2 ——0. (In subsequent appli-
cations, Sp will actually be zero below some cutoff
velocity. )

H. Straggling parameter at low projectile
speed

Similar considerations apply to the straggling
parameter (26') or (29'}. Taylor expansion of (26')
in powers of u~/uz yields

III. NUCLEAR STOPPING

I.et us consider the stopping of an atom or ion of
mass M~ in a monatomic gas with atomic mass Mz.
The aim is to estimate the significance of the ther
mal motion ofgas atoms on the stopping process.

Equation (30') indicates that for Mi »M2, the
velocity ratio (uz )/v 1 is the primary quantity deter-
mining whether or not the thermal correction is
small, while for M& «Mz, the energy ratio

(M2vz )/Miui appears to be the crucial parameter.
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Sv(v) =constXv, (35)

where indeed Eq. (30') would predict S (v i )=So(v i ).
Straight evaluation of Eq. (28) yields, however,

M, (v22 }
S(vi )=So(vi ) 1—

M) Ui
(36)

However, the mass-independent correction terms in
Eq. (30'} may cancel for specific forms of the stop-
ping cross section Sii(v). In that case, (30") applies
even to the case of M»&M2.

An important case is that of a frictionlike
energy-loss function,

If Wo and So are related according to Ref. 2,

8'p 3 4M)M2
2E for a=1 .

So 7 (M, +M, )' (40}

it is readily seen that for M»)M2 and M& (&M2,
the term containing Sp is the leading correction to
Wo in (39). Thus, the straggling correction tends to
be positive.

For arbitrary values of a, Eq. (32) yields

as an exact result. In terms of energy, this reads +TM2(V2)Sp(vi) . (41)

S(E)=SQ(E)
3kT
2E

(36')

where E=Miv i/2 and k is Boltzmann's constant.
It is evident that this correction is significant only

at very low projectile energies.
One may note that the stopping power in the eV

region is in general a rather uncertain quantity.
However, most recent investigations point at a
power law

Sii(v)=const)& v

with 1 &a & 2. In that case, Eq. (30) yields

S(vi)=Sii(v, } 1+
2 M)

(35')

Wo(v)=Constxv +2, (38)

with a constant differing from that in Eq. (35) [cf.
Eq. (40) below)]. Again, for a = 1, a rigorous result
can be derived from Eq. (29), i.e.,

10 M2(v2 & M2(v~ &

8'(vi ) = Wo(vi ) 1 —
2 +

Mivi (Mivi)

(37)

Obviously, for a& 1 and M»&M2, the stopping-
power correction becomes positive, unlike in (36),
and velocity rather than energy dependent. Note,
however, that (37) only holds in the limit of
vi »(v', ).

Unlike (37), Eq. (36') is rigorous, provided (35) is
valid. Therefore, the stopping power becomes nega-
tive for E & 3kT/2, i.e., the projectile is accelerated

up to its equilibrium energy.
The straggling function corresponding to (35') is

easily shown to have the form

Some results of this section have been utilized in the
analysis of stopping measurements of very slow
recoil atoms in gases.

IV. STOPPING IN A FREE-ELECTRON
GAS

A. General remarks

and

U2 (Up (42a)

The stopping of a point charge in an electron gas
can be described at different levels of sophistication,
as far as the many-body nature of the electron gas is
concerned. In I.indhard's self-consistent descrip-
tion, ' the interaction is essentially that of a dynam-
ically screened point charge and individual electrons
on the one hand, as well as plasma modes on the
other hand.

Although the present theory cannot be expected
to describe the stopping in an electron gas with a
similar amount of rigor as the dielectric theory, one

may find it useful to compare the predictions of the
kinetic description with those of the dielectric
description in order to determine the limitations of
the former.

In order to ensure a meaningful comparison, we
must include the Pauli principle in our considera-
tions. Note that no limitations were imposed on the
range of final electron velocities in Eqs. (17) and
(23)

For simplicity, as well as for the sake of compar-
ison with the results of Refs. 13—15, we shall con-
sider mainly the degenerate Fermi gas in this sec-
tion. Then, the Pauli principle requires that

+ 3 M2 (v2 }So(vi ) . (39) V2 +Up (42b)
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for allowed scattering events, where vz is the Fermi
velocity. While the requirement (42a) is well ac-
counted for by the factor f (v2) in Eq. (10), which
means

3
for 0& U2 & vpf (v2) = 4~UF

0 otherwise

(43)

T do

(44)

respectively. These expressions will be evaluated
subsequently.

for a degenerate Fermi gas, Eq. (42b) needs to be
considered separately. This can be achieved most
readily by addition of a set of correction terms hS
and 68' to the stopping cross section S and the
straggling parameter 8', which read

aS= f—, Td~, am= f-
V2 (u+ U2 (UF

S. Stopping cross section
at high velocity

I.et us first evaluate the stopping cross section
from Eq. (30') disregarding the Pauli principle. The
stopping cross section for an electron gas at rest is
given by'

4me 1e
2 2

mv1
2

S0 ——
2 arccosh for mv1 ) ffQ)0 &

mv1 0

(45)

where co0 is the plasma frequency and m =m2 the
electron mass.

For later purposes, it will be convenient to evalu-
ate Eq. (30') for the more general form

4'lTe 1e
&o(v))= 2 f(v)) . (46)

mv1

One then obtains

2 2 2 4
j ( 2) 1 1 2 „(U2~ 1, 1 2 „1 3 „, 1 4S(vl)= 2 f+ 2 ( ——,u~f'+ —,ul f")+ 4 ( —»ulf'+»vl f"——

30vl f~"+», v~ f"")+
mv1 V1 V1

(47)

where f'=df (u~ )/dul, etc. Now, inserting (45), or

2mv1f(u, )=ln
0

'2
Scop

2mv1
(48)

one readily finds

S(vi)=
41re]e 2mu (U2)

ln
mv1 ~0 U1

'2
fK00

2mv1

(49)

up to terms of order vl . Equation (49) is a well-
known result. It has been derived rigorously for the
Fermi gas at absolute zero. ' Indeed, in that case

(U2) VF (U2) Uf (50)

with v~ being the Fermi velocity. After insertion of
these averages into (49), one obtains exactly the re-
sult given in Ref. 14. It is thus found that the
present formalism, which is based on the assump-
tion of scattering of individual electrons on the
self-consistent Hartree potential set up by the
penetrating ion, correctly describes the stopping

I

power including all known orders of "shell correc-
tions. "

In addition, one may conclude that Eq. (49) can
also be applied to a Fermi gas at nonzero tempera-
ture. This result has been derived rigorously up to
the term proportional to v1

C. Correction for Pauli principle:
general procedure

In order to evaluate the corrections for the Pauli
exclusion principle, Eqs. (44), we need to explicitly
write down the scattering cross section do. in veloci-
ty variables v2. This can be accomplished by start-
ing in the center-of-mass system, C„where we can
write

for elastic collisions and azimuthal symmetry.
Since we deal with the case m2 «m1 only, we have

V= V1~ W2 U2 V2 —V1 ~ (52)

5(u 2
—u2)

do'o(
I

v& —v2
I
~H)=do'o(u2~H)d u2

u2

8( ( ll2 ' 112)/u 2
—COSH)

X (51)
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These relations will be used throughout the rest of
this section.

Through the use of Eq. (2b), Eq. (51) can be
transformed to v2 variables.

Q2d U2
dorp ——do.p(u2, 8)

X5(V2 —2v2. v1+ v1 —u 2)

and that the bounds in Eq. (44) do not contain the
angular variable, we can integrate over the latter
and obtain

du2 1
dop=dop(Q2, 8) 4[b —(V2 —a ) ]

(55)

with

X5( ll2' v2 —ll2 v 1
—Q 2 cos8) ~ (53)

a =u
& +g 2+2v &.u2cosg,

b 2= 2[v lu z
—( v1 u2) ]'~ sin8

(56)

(57)

T=—(u2 —u2),
m )2
2

(54)

Noting that T, according to Eq. (5), can be written

as
in the range where the square root in (55) is real,
and zero otherwise.

Combining (54) and (55) and carrying out the in-

tegrations over u2, one finds

m d crp(u2, 8)—,(a —u 2 ) for a +b & VF

f Tdop= ' 2 2
(u' ) m dcrp(1/2 8) (0 V2)a—rccos [b —(a —UF) ]

1 F 4 2 221/2
2m b

for a b&uF—&a +b

(58)

and

m dop(u2, 8)—,[b l2+(a —u2) ] for a +b &vF

4 2 2 2
a —Uf

2 2

f T dop mdop(u——2, 8) ([b l2+(a u2) ]are—cos
(u2 ) 4m

+(2V2 ——,vF ——,a )[b —(a —UF) ]' ) for a' —b'&UF &a2+b2 .

(59)

From here one could, in principle, proceed along
the scheme applied in Sec. IID. For present pur-

poses, it is sufficient to go over to the low- and
high-velocity limits in order to estimate the signifi-
cance of these corrections.

UF &a —b2 2 2 (60c)

Now, at high velocities, u1 «VF, the condition (60a)
is obeyed for small values of 8 only; expansion up
to second order in 8 shows (60a) to be equivalent to

Q. High-velocity limit:
Role of plasma resonances

8 & 8c = [ [U1VF —( V
1'V2) ]

U)

Note that the upper choice of the stopping cross
section in Eq. (58) applies to unrestricted scattering
events [uF ——oo in Eq. (44)]. Thus, one may con-
clude from Eq. (58) that the Pauli principle cuts
away all stopping contributions from the range

—[VIU2 —(Vl'V2) ] j

i.e., all energy transfers

T & Tc—2 mu lee (62)

a +b &uF,

it provides a correction within the range

a —b &u &a +b

(60a)

(60b)

and it does not affect the stopping cross section (nor
the straggling parameter) for

are suppressed. Obviously, T, is of the order of
magnitude of the Fermi energy —,muF. The limit-

ing energy transfer between the regimes of Eqs.
(60b) and (60c) is slightly higher than T, but of the
same order of magnitude, i.e., independent of u ~.

It follows that the Pauli principle does not affect
those contributions to the stopping power that stem
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Straggling obeys quite different partition rules.
They have been derived and are listed in the Appen-
dix. One finds that large momentum transfers
dominate. Let us, therefore, consider the regimes of
large and small energy transfers separately.

Take first large momentum transfers, and disre-
gard the Pauli principle. According to Eqs. (A5)
and (A13b), we have

r

p
Wp ——4n.e &e 1 —const &(—

2mu I

(64}

with

const=[1+(e'/fuoo) ]'

+lnI [1+(ftcoole*) ]'~ ficoole* J, (64a)—

from energy transfers within the range
T,' & T & 2mu ~, where T,' is of the order of the Fer-
mi energy.

Note that T, is intermediate between the
minimum energy transfer'

(%coo)
(63)

2mu i

and the maximum energy transfer e2 ——2mu ~. Ener-

gy transfers between e~ and =fuup are known to be
due to plasma resonance excitation. ' ' Such exci-
tations have been disregarded from the very begin-

ning.
One may thus conclude that in the high-velocity

limit, only those portions of the stopping and strag-
gling integrals are affected by the Pauli principle,
which stem from low momentum transfers, i.e.,
from plasma resonances. These contributions are
not described properly in the present description
from the very beginning.

The reader may ask why the present theory, al-
though applicable only to high momentum transfer
(individual particle) scatterings, was able to deliver
correct shell corrections to the total stopping power,
cf. Sec. IVB. The reason is the equipartition rule
for the stopping power of the electron gas, ' from
which follows that shell corrections proportional to
(u2" ) /v f" to all orders n ) 1 receive equal contribu-
tions from energy transfers to plasma resonances
and single-electron excitations, respectively. Since
single-electron processes are described with a
reasonable degree of rigor in the present treatment,
the validity of the calculated shell corrections is just
a manifestation of the equipartition rule. Some as-
pects of the equipartition rule are discussed explicit-
ly in the Appendix.

E. Straggling at high velocities

where e~=fi k /2m defines the lower limit for
high momentum transfers, flak )Ak*. Moreover, we
have

with

477e )e
Sp ——

2 Lp
mu)

2mu i
2

Lp ———,ln

(65)

(65')

if we disregard terms of order U
&

. Insertion of (64)
and (65) into Eq. (32') yields

1 (v', ) 2mu',
( W) & 4me ~——e 1+—

2 ln
3

ACOp

2
—const &(

u& 2mu i

(66)

up to terms of order u
&

. Here, the shell correction
terms

, , (u', ) 1 2mv f
4~e &e 2

—ln —1
3 E

(66a}

must be compared with those following from the
dielectric treatment, Eq. (A14b),

2 (V2) 1 4IU] 74' &e 2
—ln ———Const
3 iL)p 8

with

4
1 e*Const=-

p

(66b)

1 e* 1

3 scop 2

(67)

The difference between the parentheses in (66a) and
(66b} amounts to 0.2130 for e~ =fuue. Note in par-
ticular that the logarithmic terms in u~ are in agree-
ment with each other.

Let us, next, consider low momentum transfers.
From physical considerations, one would expect this
straggling contribution to be insensitive to electron-
ic motion, i.e., the shell correction ought to be zero.
W is then given by Wo only, i.e., according to Eq.
(A 13a),
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~0 4mu
( W), =4ire ie ln —1+const

2mu %co

UF is large, i.e., in the limit of high electron density.
By differentiation of (45) one finds

(68)

Comparison with Eq. (A 14a) shows that a shell

correction

Const X (u,' & Iu i

1 4me&e 2mU2
2 2

3 0+3 0=3 2

2
'2

mU2 —1
AC00

—1/2

fin)0
1 ——ln

3 2m*

ficop

2mU )

has been disregarded in this manner. Combine,
then Eqs. (66) and (68) to obtain the total straggling
parameter

r

(v~ & ~0 4mv8'=4me ~e 1+ —
2 + 2 ln

U& 2mu~

and hence

4mee u mvF
S(ui )= i arccosh

mUF 0
(71)

at low velocity, v~ ((UF.
Before analyzing this result, we need to consider

a possible correction due to the Pauli exclusion
principle. It is convenient to work in u2 rather
than v2 variables. With spherical coordinates,

(69)

(69')

by

which differs from the result derived recently,

~0 4mu8'=4me ~e 1+ —
2 + 2 ln

2mu ] ~0
7 (u', & fico()

+
v) 2mu(

u 2 ——
u z (cos8, sin8 cosg, sin8 sing),

(51}reads

d
d o'0 =d o 0(u g ~ 8 ) 2' '

while

T=mu i v i [ cosX(—1 —cos8)

+sinX sin8 cosP]

(72)

(73)

(74)

, , (ui & 1 1 fico()———In . (70)
8 3 2e~

The value of the parentheses is 0.3S60 for e*=ficop.
It could be brought to disappear with the choice
@*=0.3436fmp. Since the logarithmic terms dom-

inate in Eqs. (69) and (69'), this difference is con-
sidered insignificant. Its origin is assumed to be
caused mainly by scattering events in the region
specified by Eqs. (59) and (60b).

F. Stopping and straggling at low velocity

Let us next evaluate the stopping cross section
S(vi) in the low-velocity limit. According to (33),
we need So(u) in the velocity range 0 & u & uF. Since
Eq. (45) is a high-velocity result, we can expect to
obtain valid results by inserting (45} into (33) only if

I

+2v2ui sinX sin8cosf) v~, (75)

where terms of second order in ui have been

neglected. We note that v2 must be close to uF, i.e.,

V2 =UF —5U,

hence Eq. (75) reads

5v &ui [—cosX(l —cos8)+sinX sin8cosg] .

(76)

(77)

Thus, the leading term in the stopping cross section
takes on the form

to the lowest power in u& ( «uF), where X is the an-

gle between v2 and v~. The condition v2 )VF reads

u~ —2u~ui cosX(1—cos8)2

S=fd ui f(vi) fTdoo
U)

=—,mvi;vi f dcTO(vz, 8}fdcosX f [—cosX(1 —cos8)+sinXsin8cosg]dP 2 (78)
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—cosX(1—cos8)+ sinX sin8 cosP & 0 .

After (79) is rewritten in the form

(79)

8 . I9 . 0
2 sin ——cosX sin —+sinX cos—cos1( & 0,

2 2 2

with a boundary condition arising from (76) and
(77) as well as uq & vF,

the Pauli principle. Note in particular that Eq. (82)
predicts a v

~ dependence while (34) shows a linear
behavior in v&.

The integral in Eq. (82) is not readily expressible
in terms of o'"(uF) and o' '(uF), i.e., of Sc(uF) and

Wc(v~). In order to find a qualitative estimate, in-

sert the unscreened Coulomb cross section,

(80)

one may evaluate the integral (78}easily to obtain

2~e te d (sin8/2)
dcTO(upIH) =

(mu~ ) sin Hl2

which yields

(83)

S(ut)=mupu&cr'"(uF) . (81)

After insertion of (18), (81) reduces to (71). Thus,
the Pauli exclusion principle does not generate a
correction in the leading term of the stopping cross
section. This result is well known.

The straggling parameter is found in the same
manner after another factor T, Eq. (74), has been
added to the integral (78). One finds

W(vt)=3( muFu~) fdoc(u~, 8) sin — (82)
2

to the leading order in U~. This result is in striking
contrast with Eq. (34), which was found by ignoring

2

W (u t ) =4n.e &e—23 V1

2

4me~e V~
S(ui)= 3 Ct(X),

mUF
(85)

while the following result must be compared with
Eq. (84):

Figures 2(a) and 2(b) show the results obtained in
the present approach compared with those of the
dielectric theory.

Instead of Eq. (71), Lindhard and Winther'~ ob-
tained

(a}

2

JY(ut)=4ne, e —
2 Cp(X),223 V&

2 VF
(86)

C~ and C2 being functions of the density parameter

2 ex =
MUF

(87)

or

0.001 0.01 0.1
X

2m' ~3
~o (87')

C2(X)

1.0
Eq. (84)

0.5

I I I I I I I

0.001 0.01 0.1 X2

FIG. 2. (a) Low-velocity stopping power for free-
electron gas. Solid curve: C~(g) according to Ref. 14, re-
lation to stopping cross section specified by Eq. (85).
Dotted curve: Present result, Eq. (71). P' is the density
parameter specified by Eq. (87). (b) Same as (a) for strag-
gling. Solid curve: C2(X} according to Ref. 29 [cf. Eq.
(86}]. Dotted curve: Present result, Eq. (84}.

Figure 2(a) shows that Eq. (71) overestimates the
stopping cross section at all but the lowest electron
densities, but that the relative difference decreases
with increasing electron density, in accordance with
the expectation expressed in the beginning of this
paragraph. The main physical reason for the differ-
ence is thought to be the insistence on dynamic
screening implied by Eq. (45), rather than the static
screening entering into Eq. (85}.

Figure 2(b} shows a similar discrepancy for the
straggling parameter, although the relative differ-
ence is less pronounced at high density but more
pronounced at low density. Note, however, that
(84) has been evaluated under the additional simpli-
fying assumption of unscreened Coulomb scatter-
ing.
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G. Discussion

It was the purpose of this rather extensive discus-
sion of stopping in an electron gas to test the capa-
bility of the present approach against accurate pre-
dictions on the basis of a well-defined model. With
regard to the stopping cross section, it was found
that Eq. (30'), i.e., the high-velocity expansion,
predicts shell corrections of both first and second
order correctly, even when applied to excitation of
plasma modes where the binary-encounter picture
cannot be expected to be valid. This behavior was
ascribed to the equipartition rule. At low velocities,
Eq. (33) overestimates the stopping cross section of
an electron gas by -25—100%%uo in the density
range in question [cf. Fig. 2(a)], the difference being
most pronounced at low electron densities. There-
fore, the accuracy of predictions of the stopping
cross section based upon Eq. (28') must be expected
to deteriorate as the velocity decreases, unless the
estimate (45) for So is improved.

With regard to straggling, quite accurate results
have been found at high velocities on the basis of
Eq. (32'), although it was crucial to consider the
partition of the straggling parameter into high and
low momentum transfers. Unlike in the case of the
stopping cross section, the straggling parameter at
low velocities is strongly affected by the Pauli ex-
clusion principle, even to the extent that Eq. (34)
predicts a linear velocity dependence while the Pauli
principle generates a quadratic velocity dependence.
For the intermediate velocity regime, a similar
statement applies as the one made above on the
stopping cross section.

V. ELECTRONIC STOPPING IN GASES

give some consideration to the question of what
values of S() and Wo have to be adopted. Since (18)
followed from (17) in the limit of

u2 ((u) (88)

logI = g f oln(E„—Eo) g f 0=1 (89)

with the atomic or molecular levels E„
(n =0, 1,2, . . . ), and the associated dipole oscillator
strengths f„o is, of course, not a purely static quan-

tity. On the other hand, it enters only logarithmi-
cally into the Bethe expression of the stopping cross
section.

Writing the stopping cross section of an atom in
the form

4m.e ~e
S(U)= ZL (U),

mu
(90)

where Z is the atomic number, one may expand L
in powers of e&, i.e.,

Sp and 8'p ought to be understood as the leading
terms in the respective expansions in powers of
v2/u). Note that this convention does not preclude
the presence of higher-order terms in u~

' in either
Sp or 8 p. Indeed, in case of the Fermi gas, a term
proportional to (ficoo/2mu) ) occurs in So besides
the Bethe logarithm, according to Eq. (49); similar-

ly, a term proportional to fuoo/2mu) was found to
contribute to Wo [cf. Eq. (64}]. Both terms refer to
the static properties of an electron gas. In case of
an atom or molecule, the mean excitation energy I
takes over to some extent the role of the plasma fre-
quency. ' This quantity, defined in the convention-
al way'4

A. Stopping cross section
at high velocities

Before applying the present scheme to the stop-

ping of particles by atoms or molecules, we must with

L (U) =L' '(U)+L'"(U)+L"'(U)+ .

(91)

2

2

4

+ 2
(

) L(i)i+ ( 2L i)n() 3L(i)iii+ ) 4L(i)iris')+
4 15 P 15 P 30 P 120

u
(92)

according to Eq. (47), where the index 1 has been

dropped from u~. Inserting the Bethe expression

2mup (93}I
into (92) we find immediately that

2mu (U2 }
=ln I

1 (()z)
~ ~ ~

2 u4

(94)

in agreement with the kinetic part —i.e., the main
contribution —of the conventional expression for
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shell corrections. In contrast. Bohr's classical for-
m ula31

3

L,'"=ln '
const

would yield

3 (v', ) 3 (v', )
const 2 q2 4 U4

(95)

detailed discussion of higher-order e1 corrections to
the Bethe stopping formula. This point was made
some time ago.

With regard to the range of validity of expan-
sions like (94), (97), and (99), one may notice that
the averages (V2) and (V2) receive contributions
from widely different velocity ranges, in accordance
with the atomic shell structure. Splitting the mean
excitation energy (89) into contributions from the
individual shells,

i.e., a S0% increase in shell corrections.
The Barkas correction L0" can be written in

the form34 with

logI = g wk logIk (100)

(1) 3m e1eI
L0 —— ln

2AmU3
(96)

Wk =1

Then, Eq. (92) yields an order of magn-itu-de esti

mate of the shell correction L'1" to the Barkas
correction, so that

L (1) L (1)+L (1)
0 1

3~e1eI
ln

2A'mu'

(V2) 2mv+3 2
ln

~2

we may write (93) in the form

(0) 2mU 2

Lo = g wkln
Ik

so that (94) reads

L"'= g w„ ln
Ik

1( ')"
2

2)k

U
2

(93')

(94')

(97)

e2e2
L 0 = —1.202

Au
(98)

at not too low velocities. Equation (93) yields a
shell correction L1 ' so that

L (2) L (2) +L (2)
0 1

efe' 5 (v,')= —1.202 1+—
flv 3 v

i.e., again an enhancement in comparison with the
bare Bloch correction (98).

It appears likely that terms like L'1" and L'1 ' in
Eqs. (97) and (99) need to be taken into account in a

While the accuracy of this result is limited due to
deviations from equipartition, the main conclusion
to be drawn from Eq. (97) is that shell corrections
in the Barkas effect are positive and significantly
more important on a relative scale than in the Bethe
term, i.e., the leading power of e1.

The Bloch correction can be written in the
form3'

where (V2) is the average square velocity of an
electron in the kth shell. Obviously, (94') ceases to
be va1itd as soon as the conditions v ))(v~),
v &&(vz) are no longer valid for the innermost
shell.

An evaluation of the complete expression (28') for
the stopping cross section based on Eq. (93') has
been performed recently, with promising results.
A discussion of relativistic effects on the stopping
cross section of inner-shell electrons has been
presented separately.

B. Stopping cross section
at low velocities

%hen evaluating the stopping cross section at
low velocities from Eq. (33) on the basis of the
Bethe formula for S0, we should note again the
high-velocity nature of S0. This implies that such
an estimate may be valid for fast atomic electrons,
i.e., inner-shell electrons. It appears appropriate,
therefore, to start from Eq. (93') rather than (93).

Equations (33), (90), and (93') yield

4m.e 1e
2 2

S(v)= Z —,v g wk(V2')k, (101)
m
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where

(up')k= 4mugdug fk(vg)vp'
/Ik /2m

(101a)

cross-section equation (101), which is of the order
of magnitude

4me, e2 2

AS= Z
m

and fk(vz ) is the (ground-state) velocity distribution
of electrons in the kth shell, normalized according
to

2 3me )eIk 6, 2mu2
2

'

X —, VgWq Uz 1 ——, In )k,2' m
' Ik

o0
2

fk(ug)4aupdvp ——1 .
0

(101b) (102)

3rre
&
eIk 2mv i

Lo= wk, ln
2fimu3

(96')

Since low velocities contribute substantially to the
average in Eq. (101a), it appears appropriate to in-
clude deviations from the first Born approximation,
i.e., to extend (93') by a term analogous to (96),

the average ( )k being defined in analogy with
(101a). Introducing the variable g=vq(2m/Ik)'
one may rewrite (101) and (102) in the form

4me]e2 2
dgS(u)= . Z —, u awk f 4n. fk(g+Ik/2m )

m

Evaluation of Eq. (33) by insertion of Eqs. (90) and
(96') yields a leading correction b,S to the stopping

I

and

(101')

4me &e
2 2 37M ie m

M(u)= Z —,v g wk f 4' 4 fk(g+Ik/2m )(1—31ng) .
ri I, /2m

(102')

It is evident that the integrals over g exclude a large fraction of the electrons in the respective shells from con-
tributing to the stopping power; it appears also that even the E shell contributes to low-velocity stopping, and
that the Barkas correction is most pronounced for stopping due to outer-shell electrons, as it is well known for
velocities beyond the stopping power maximum.

A numerical evaluation of Eq. (101') will be attempted separately. It is noteworthy, however, that the first
correction term to (101 ) is positive, i.e., that S bends upward when leaving the linear regime. Indeed, in the
case that Sp(u') drops to zero at some velocity up, Eq. (28') yields the following expansion, valid for
v & —,(Ik/2m)'~,

4m 2'S(u) = v f f(vz)vidual[2Sp(uq)+uqSp(vq)]+ u f f ( qu)vied qu[4Sp'( pv) +pupS(ui)]
3 0 15

+ "f, f(u2)u2du2[6So'"(vz)+vzSo""(vz)1 . (103)

After insertion of (93'), the term proportional to u

in Eq. (103) reads

4n.e )e
2 2

00 duZ —,u awk f 4m.
3
fk(v'),

which is positive definite, and becomes comparable
with (101) as 2mu /Ik increases toward 1 for the
outermost shell.

C. Straggling at high velocities

Wp =47Te )e Z (104)

A superscript has not been included since higher-
order e~ corrections have not yet been evaluated, al-

though one source of such a contribution, geometric
correlation between target electrons, has been shown
to be significant.

If (104}and (90), in conjunction with (93), are in-
serted into Eq. (32'), one obtains

2 (uz & 2mu' &» &

W(u)=4ne ie Z 1+— ln

The leading term in an expansion of the strag-
gling parameter 8' in powers of u2/u is Bohr's
straggling expression, 42

(105}

If, on the other hand, the stopping cross section is
split into contributions from the individual shells
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[cf. Eq. (93')] one finds

(„2)k
W(v)=4m. eie Z 1+ awk

V

x' 3nIk

+
U 2PlU

for the electron gas [cf. Eq. (69')], and

2 (v2&

3 U
2

(109)

(110)

, (~ )
W(v) 4mefe Z 1+—

ZU

2P72V
ln

1

(105')

where

lnI )
——

g (E» —Ep )f p ln(E» Ep)—
g (E.—Eo)f.o

(107)

(106)

(v2) being defined as in Eq. (94').
Equation (105) can be compared with the expres-

sion given by Fano (Sec. 5 of Ref. 4)

for the atomic case [cf. Eq. (105)], the common fac-
tor 4me]e Z being omitted in the comparison. Ob-
viously, (109) and (110)are, in general, not identical.

Now, the first term in Eq. (109) arises from high
momentum transfers [cf. Eq. (A14b) in the Appen-
dix] while the second is due to plasma resonances
even for the static electron gas [cf. Eq. (A13a) in the
Appendix]. On the other hand, inspection of Pano's
procedure for deriving Eq. (109)—which also shows
a factor —, in front of the logarithm, like Eq.
(110)—indicates that low and high momentum
transfers each contribute a term proportional to
(v2)/3v to Eq. (110). Thus, the remaining differ-
ence is in the contribution of low momentum
transfers to the straggling correction, where the
electron gas yields a term

and ( )p indicates the ground-state expectation
value.

Equation (106) may be brought into the form

%coo

2IU 2Plv

while for an atom, one finds

(109')

2 (v2& 2mv'
W(v)=4me~e Z 1+— ln —1

U I]

(106')

3 U
2

(110')

apart from correlation terms.
Qn the other hand, the following sum rule is sa-

tisfied for atomic systems (correlation terms still
being ignored):

lnI )
——

g wk(v,')"lnI,
k

(107') g (E„—Ep)f„o———,m(vz),

k

which has a similar structure as ln I~ [cf. Eqs. (107)
and (111) below]. Equation (106') differs from
(105') by the absence of correlation terms of the

type

v)'VJ 0 ~ (108)

an obvious consequence of the assumption of binary
scattering events. The term —2(v2)/3v is absent
in Eq. (105'), since corrections of this order have
been deliberately omitted in Ref. 4.

Let us now compare the present results with
those found for the free-electron gas, and concen-
trate on the terms containing lnU . The coefficient
of that term reads

i.e., Eq. (110') can be approximated by

g (E.—Eo)f.o
2EP1U

(112)

which is strikingly similar to, although not identical
with (109') since I is found by a different averaging
procedure than the numerator in Eq. (112) [cf. Eq.
(89)]. However, the two quantities must have simi-
lar scaling properties and may be close in magni-
tude for a reasonably narrow excitation spectrum.

It appears justified, therefore, to conclude that
the seeming disparity between (109) and (110),while
inherent in the different physics of resonance exci-
tations in the two systems, and interesting in princi-
ple, need not be substantial in a numerical sense.
From a more conceptual point of view, one may
draw the conclusion that only the first term in the
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straggling correction (109) is a shell correction—
namely the contribution from high momentum
transfers —while the second term arises from the
static properties of the electron gas. A similar dis-
tinction with regard to static properties is not feasi-
ble in the atomic case.

The presence of a logarithmic term like that in

Eq. (106') was first pointed out by Williams 7 and
was discussed subsequently by Livingston and
Bethe, who also gave the correct factor —,. The
seeming discrepancy in the terms containing (uz)
in Eqs. (69) and (105) was observed in Ref. 44, and
ascribed to the application of approximate sum
rules in Ref. 4. This latter assertion has not been

I

confirmed by the present work.
Interestingly enough, if Bloch's expression for the

stopping cross section of an atom,

4me ~e
2 2

Sp —— Z ln
mv

+Re g(1)—P 1—
tv

(113)

is inserted into Eq. (32'), together with Bohr's ex-
pression for Wo, Eq. (104), one finds

z z 2 (uz) 2mu ice&
W =4' e~Z 1+— ln +Re g(1)—1( 1—

2 fiv

(')
2

(114)

where 1((g)=d lnI (g)/dg. The middle term in the
square brackets of Eq. (114) is identical with that
found by Titeica after a thorough application of
Bloch's treatment to the straggling problem.

Although the present scheme appears to con-
sistently reproduce the leading corrections to the
straggling parameter at high velocities, some cau-
tion is indicated with regard to terms like
—(vq)/v in Eqs. (106) and (114). Indeed, a bind-

ing correction of relative order -I/2mu ought to
be applied to Bohr's straggling expression 8'p, in

analogy with the occurrence of I in the Bethe ex-
pression So. According to Eq. (32'), such a term
yields corrections of higher order in the terms pro-
portional to (uq ), but due to its occurrence in the
leading term 8'p, it competes with other corrections
proportional to v . It is not obvious at this stage
how the precise magnitude of this correction can be
determined within the present scheme in a con-
sistent manner.
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behavior predicted for the free-electron gas [cf.
Eq. (86) and Ref. 29]. Moreover, it is readily
shown, by the same procedure as applied to S in

D. Straggling at low velocities

At low velocities, Eqs. (34), (90), and (93') yield

W(u)=4me~e Z

C4

V4)
D

2 2

x —,v awk( 1n )k, (115)

0.1

ilail

the notation being the same as in Sec. IVB. The
magnitude of this quantity will be evaluated along
with the corresponding stopping-power values. At
this point, the most noticeable result is the linearity
of 8'in velocity, in distinct contrast to the parabola

10 100 1000

E (keV)

FIG. 3. Straggling parameters measured for protons
penetrating gas targets. Replotted from Ref. 45. (a) xe-

non; (b) neon.
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Sec. VB, that the next term in an expansion of
8'(v) in powers of v, is of third order. Thus, the
velocity dependence of the straggling parameter of a
point charge in an atomic gas appears to be a useful
test on the validity of a free-electron gas description
to the stopping parameters of an atom, i.e., the basis
of the dielectric theory of stopping.

Figure 3 shows measured straggling parameters
for protons on Xe and Ne, taken from Ref. 45, in a
double-logarithmic plot. There appears to be evi-
dence in favor of a linear dependence at low veloci-
ties of 8' on vdocity in case of xenon, and a qua-
dratic dependence in case of neon. The evidence is
not compelling in either case. Extension of the
measurements down to even lower energies, and
elimination of charge-exchange straggling by
measuring on very thin gas layers, might shed some
more light on this point. For heavier ions, a clear
bendover toward linearity in velocity was already
documented in Ref. 45.

VI. SUMMARY

This section summarizes the main results.
(1) On the basis of a binary-encounter description

of elastic scattering events between moving parti-
cles, expressions have been derived that relate stop-
ping power and straggling for a projectile penetrat-
ing a medium in internal motion to the stopping
parameters of an equivalent medium at rest,

(2) These relationships are valid at nonrelativistic
velocities for all target-to-projectile mass ratios.
They involve the velocity distribution of target par-
ticles as well as kinematic factors, but unlike in con-
ventional binary-encounter stopping theory, the in-
teraction is not specified.

(3) The relationships are applied to media with an
iostropic velocity distribution of the constituent
particles. They could also be applied in the pres-
ence of a drift velocity, i.e., to a stopping medium
in macroscopic motion.

(4) A high-speed expansion yields corrections to
stopping power and straggling of order ( vz ) /v &,

where (v2) is the mean square target velocity and

U& the projectile speed. Higher-order corrections
have also been evaluated.

(5) A low-speed expansion yields expressions for
stopping power and straggling that are both linear
in projectile velocity. The next nonvanishing terms
are of third order in velocity.

(6) When applied to problems involving nuclear
stopping, the description yields corrections to the
stopping power, which may be positive or negative,

depending on velocity and mass ratio. Both the en-

ergy ratio and the velocity ratio may be pertinent in
determining these corrections. At low enough pro-
jectile velocity, the stopping power may change
sign.

(7) When applied to stopping of low-speed ions in
a free-electron gas, the description needs to be
modified by inclusion of the Pauli principle. While
this is known not to affect calculated stopping
powers, straggling is strongly affected and turns
from a linear dependence on projectile velocity to
the well-known square dependence. Except at high
electron densities, the calculated values for both
stopping power and straggling exceed those evaluat-
ed on the basis of the dielectric description of stop-
ping in the Fermi gas.

(8) When applied to stopping of high-speed ions
in a free-electron gas, the description yields the two
leading shell corrections to the stopping power in
agreement with dielectric theory and, in accordance
with the partition of energy loss into plasma modes
and single-particle excitations —which is discussed
in detail for the case of straggling —correct shell
corrections to leading order to the straggling
parameter.

(9) When applied to stopping of high-speed ions
in gases, the description yields shell corrections that
agree with literature values both in case of stopping
power and straggling, but if an expansion in powers
of (v2 ) /v

&
is avoided, the description allows to es-

timate stopping powers and straggling down to ve-
locities where even outer-shell corrections become
sizable. The accuracy is expected to be best for the
inner shells.

(10) The description allows order-of-magnitude
estimates of shell corrections to Barkas and Bloch
corrections.

(11) A seeming disparity between the leading
correction terms to the Bohr straggling parameter
evaluated for atomic targets and a free-electron gas,
respectively, is reconciled by means of the observa-
tion that the two systems differ in zero order. The
difference is shown to lie in the low-momentum-
transfer events.

(12) Expressions have been derived for the stop-
ping power and straggling of gases at low velocity,
both linear in projectile velocity, which involve
parameters entering the Bethe theory of stopping as
well as atomic velocity distributions for the indivi-
dual shells. Numerical evaluations have not yet
been reported.

(13) It is shown that with increasing velocity, the
stopping power bends upward from the linear
dependence.
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(14) It is pointed out that an unambiguous deter-
mination of the velocity dependence of the strag-
gling parameter of a gas at low velocity might give
valuable information on the range of validity of the
dielectric theory of stopping when applied to atomic
targets.
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APPENDIX: PARTITION OF MEAN
ENERGY LOSS AND STRAGGLING

IN FERMI GAS

nance excitation and free-electron scattering was
first observed by Bethe; these observations have
been generalized to include shell corrections by
Walske and Fano. Equipartition at a given energy
transfer exceeding a well-defined minimum value
has been established by Lindhard and Winther' for
the special case of a free-electron gas, With regard
to straggling, it is well known that the leading con-
tribution stems from scattering events with high
momentum transfer, ' and more recent work in-
dicated that this may prevail even to the leading
correction to Bohr straggling. This appendix serves
the purpose of deriving expressions for the partition
of the straggling parameter of a free-electron gas on
the basis of a recently developed formalism. As a
check on the validity of the scheme, known results
on equipartition of stopping power' are rederived.

In the notation of Ref. 29, the stopping power of
a free-electron gas reads

—4me ~e
2 2

2 PL (Al)
8x

with"

An approximate equipartition of the stopping
power of a high-speed particle between dipole reso-

I

L"'=I 8(iilku —ak),
~dk

k

and

I (0)+I (I)+. . . (A2)

(A3a)

2 &mui) - dk
3 (~ )~ o k

4@k 4&k
8(fiku —ek ) + -8(iiiku —ak )

(ir o)' (irt o}'

4ak (ficop)—
5(ak —A'ku )

2(xI
(A3b)

where p is the electron density, ek ——iri k 12m, and

ak =ek+(~o)'.
The subscript 1 has been dropped from u~. 8 represents a step function, 8(g)= 5(t)dt

Similarly, it was found that

n'=4~e', e'px(w'"+w'"+ . ),
where

(A4)

(A5)

and

w' '= J ak8(irtku —ak)
mv'

(i) 4 &u2) f dk ek

v2 0 k ~0
2E'k gak —12ak(iricop} +(%cop)

8(irtku —ek ) + 8(iiiku —ak }
(ficop) 4ak(ficop)

(A6a)

4ak —(irtcop)
+ 5(iiiku —ak )
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Noting that the step function e())lkv —ak ) limits the integration in the second term of the integrand in (A3b)
and (A6b) to the interval

mv —[(mv ) —()5cpp) ]' =e) (ek &e2 ——mv +[(mv ) —()rict)p) ]'~,
and that, for swift projectiles,

()r)cpp)
62~2mv

2mU

we split the integrals in (A3) and (A6) into low-k and high-k regimes, ek & e, respectively, with

()r p)' ((2mU
2mU

e*being kept flexible otherwise.
Evaluating (A3) and (A6) in the low-k regime, keeping only terms of order up to v, one finds

(p) ) E' (2mv )

(~p)2

(A7)

(AS)

(A9)

(A10a)
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2U'

(A10b)
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2mU ~p (Al la)

4
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2
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The complementary contributions for ek g e* can be
found easily by comparison with the respective
complete expressions. Equation (A10a) demon-
strates the well-known equipartition of the Bethe
stopping formi. '.la ' ' '; there is strict equipartition
for the choice

(U) ), &,.——1 —constX(p) i6COp

2mU

(A13a)

(A13b)

e~ =~p
Equation (A10b) demonstrates strict equipartition
of the first shell correction, in agreement with a
general result proved in Ref. 14. Note that this
equipartition is independent of the choice of e* so
long as (A9) holds.

The straggling terms depend obviously on the ac-
curate choice of e*. From (Alla) and Ref. 29, one
finds that

('

~p 4mUln- —1+const
2mv ~p

I

where the constant has the value 0.5328 for
e* =Scop. This demonstrates the fact' that the lead-
ing straggling contribution stems exclusively from
high momentum transfers, ek g e*, but that the log-
arithmic correction term for the static electron gas
originates in plasma resonance excitation.

Finally, from (Al lb) and Ref. 29, one finds

(&) (V2)w«, .——Const g 2 (A14a)

()v ),„&,.—— 2
—, ln ———Const

(V2) ) 4mv 7

U RNp 8

(A14b)

where the constant has the value 0.5690 for
E' =ACOp.

This demonstrates that the logarithmic shell
correction to the straggling parameter originates in
high momentum transfers, while both small and
large momentum transfers contribute to the term
proportional to (V2)/v .
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