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An earlier paper by the same title recast the treatment of an electron in the field of an
ionic core [quantum-defect theory (QDT)] into a form largely independent of the character
of the long-range field. Analytical complexities and limitations of that paper are eliminat-
ed here by further reformulation. Qualitative aspects are highlighted. A WKB analysis in-

terprets the QDT parameters as phase integrals over certain ranges of the radial coordinate;
the limitations of the %KB analysis are then removed through the Milne approach to wave
equations. The QDT analysis is connected to Jost s formulation of scattering, extended to
long-range fields by explicit treatment of the relevant singularities. The effects of interac-
tions confined to an internal many-body core are represented by QDT parameters wholly

independent of the external region.

I. INTRODUCTION

Quantum-defect theory' (QDT) served initially
to exploit a characteristic feature of an electron ex-
cited into a discrete or continuum state of an atom-
ic system: The electron moves prevalently outside
the residual ionic core, under the simple inAuence
of the core's Coulomb field. The motion in this
external region, which determines most of the spec-
tral and scattering observables of the excited sys-

tem, can be described with reference to standard
Coulomb eigenfunctions. The motion within the
multiparticle ionic core is, instead, more complicat-
ed, but is confined within a small region of space of
the order of a molecular diameter. Owing to this
confinement, the mutual influence of the motions in
the internal and external regions can be represented

by a few QDT parameters only —akin to scattering
lengths —which can be determined either by fitting
to experimental data or by ab initio calculations re-
stricted to the core. QDT predicts spectral and
scattering data on the basis of (1) this connection at
the core's boundary and (2) the connection between
the amplitude and phase of the outer-field wave
function at the core's edge and at r~ ao.

These two connections differ characteristically in
their dependence on the excitation energy: Since
strong interactions prevail in the core, the connec-
tion parameters at the core's edge depend on energy
on a rather coarse scale; that is, it is generally suffi-

cient to evaluate them at intervals of -1 eV. Far
outside the core, on the other hand, the forces are
weak and the wave-function behavior may depend
very sensitively upon energy. The connection be-
tween the wave functions at r ~ ao and at the core's
edge has then to be studied analytically.

The success of the QDT program in spectroscopy
and scattering suggests an extension of its approach,
not only to the electron motion in non-Coulomb
outer potentials but also to the motion of any pair
of fragments released by the breakdown of a com-
pound system. With this aim an earlier paper, to be
referred to as I, has developed the QDT analysis
for long-range interactions proportional to 1/r
("dipole field" ) or constant ("zero field" ). The
former occurs notably in electron plus excited hy-
drogen and electron plus polar molecule combina-
tions, the latter in electron plus neutral scattering or
in photodetachment from negative ions. Paper I
dealt briefly with more gener@ potentials in its Sec.
IIE.

QDT procedures were then extended to the 1/r
polarization potential and to the interatomic poten-
tial in molecular dissociation. ' More recently a
QDT procedure has been applied to photoabsorp-
tion in a Stark field whose long-range potential does
not vanish at infinity. We underscore this further
evidence of the flexibility of QDT's procedure
without treating it explicitly.

Paper I considered different long-range fields
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separately. Its analysis and its choice of parameters
remained rather cumbersome owing to limited ap-
preciation of several relevant factors. It now seems
worthwhile to return to the subject, redeveloping
most of Secs. II and IV of I, while its Introduction
and its analysis of relevant Green's-function proper-
ties (Sec. III) remain serviceable. Notation will fol-
low historical precedents except where new con-
siderations recommend departures to be noted expli-
citly.

The present paper intends to be self-contained ex-

cept for occasional references to paper I. The struc-
ture of QDT and the problems faced in implement-
ing it, particularly in the definition and construc-
tion of its parameters, are reviewed in Sec. II. The
results of paper I for the QDT parameters of specif-
ic long-range interactions are rederived in Sec. III in
a unified way and combined into Jost functions. A
general treatment is then developed in Sec. IV, hav-

ing in mind potentials that may be known only nu-

merically. A WKB procedure serves to identify the
QDT parameters in terms of phase integrals over
classically allowed or forbidden ranges of r. A
phase-amplitude treatment, free from approxima-
tions, affords then a constructive procedure for the
parameters. Finally, Sec. V replaces Sec. IV of pa-
per I, which combines the parameters of separate
fragmentation channels in the external region into a
single multichannel treatment. The combination in-
volves the QDT parameters discussed in previous
sections, as well as those that arise from the internal
region and provide the connection at the core's
boundary.

II. MAJOR ELEMENTS OF QDT

B—i/2f (p) (2.1)

The function f(r) is identified here as the real su-

perposition of f+ and f normalized per unit ener-

gy in atomic units and proportional to f .
The amplitude factor B ' arises as follows:

Our development rests on the following cir-
cumstances.

(a) The QDT parameters serve to interconnect
different solutions of a Schrodinger equation, iden-
tified by their behavior at short and large radial dis-
tances, respectively. Scattering phase shifts i/ are
thus defined at positive energies e= —,k by con-

necting a solution f (r), regular at the origin, to a
pair of solutions f+(r) having the basic -structure
exp(+ikr) at r~ao,

f (r)=B '~ (2Ark)' (f+e'" f e '")l2i—
sinP =0 . (2.3)

(c) In the presence of a multiparticle core con-
fined to radial distances r &ro, the radial function
of an electron (or other fragment) excited out of the
core is analogous to f (r) at r &ra. However, this
function differs generally from f by a phase shift
determined by its normal logarithmic derivative at
ro. We represent the function with a phase shift 5
by

The solution f (r) of a single-particle Schrodinger
equation is generally controlled at small r by the
centrifugal term of the potential /(/+1)lr, which
causes f (r)~r +' as r~0. Since the energy term
of the equation is dwarfed here by /(/+1) lr, f (r)
is appropriately normalized independently of e.
The factor B '~ of (2.1) serves thus to connect the
normalizations of f and of f+—or, r-ather, of f
which are controlled by different considerations; B
is generally a function of e, as the phase r/ also is.
As we will see, the two functions f and f are each
useful in its own particular context. The depen-
dence on wave-function behavior at large distances,
introduced into f through B, makes f the more
useful form when the focus is on dependences at
small r On. the other hand, for an item in (d) and
(e) below and in Appendix B, it is more convenient
to work with f. [The specification of f (r) at small
r differs in the presence of an attractive potential

air—~ with p & 2, which dwarfs in turn the centri-
fugal potential and causes f (r) to oscillate faster
and faster as r~0 In th.is event f (r) is identified
adequately by an arbitrary, but energy-independent,
standardization of its amplitude and phase at an ap-
propriately small value of r (see, e.g., Ref. 4).]

(b) In the bound-state part of the spectrum we
have e &0 and the corresponding wave number is
imaginary, k =is., whereby f+has the e-ssential

form e+"'. The amplitude corresponding to B
is indicated here by A ' and the complex phases
exp(+ii/) are replaced by real coefficients
(D cosP, D 'sinP). The factors D +' are monoto-nic
functions of e which adjust the scale off+-, respec-
tively, while the oscillating factors (cosP, sinP) cor-
respond more closely to exp(+ii/) as we shall see.
The counterpart of (2.1) is thus

f (r) =A ' (ma. )
' (sinPD 'f cos13Df+)—

(2.2)

Bound states occur at energies for which (2.2)
remains finite at r~ Oo, as expressed by the condi-
tion that the coefficient of the rising exponential

f (r) vanishes,
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F (r) ~f (r)cos5 —g (r)sin5 (2.4)

where g (r) is an independent solution of the same
equation as f (r), to be identified appropriately.
The value of 5 is fitted to experimental data or cal-
culated by solving the Schrodinger equation within
the core and fitting (2.4) to the excited electron's
wave function at the core's edge. The considera-
tions that underlie the definition of g (r) are central
to the present paper.

(d) Briefly, the structure of Eq. (2.4) suggests that

g (r) should lag f (r) in phase by 90', in order that
5 combine additively with i) in Eq. (2.1}. Howev-

er, neither f nor g oscillates in general as r~0.
[This difficulty does not arise in the case noted at
the end of (a} when a strong attractive field caused

f (r) to oscillate rapidly as r~0.] QDT tradition-
ally identifies an oscillation 90' out of phase with

reference to oscillatory behavior at r~ oo for
e & 0. One might thus define g (r} as
~B'~ (f+e'v+f e '"), where the + sign in the
parentheses provides the desired phase lag and the
exponent —, of B is adjusted to remove B from the
Wronskian W(f,g ). However, the presence of the
phase shift g in this tentative definition of go(r) in-

troduces an unwanted dependence of g on phenom-
ena occurring at large r and an equally unwanted
sensitivity to the energy near the threshold e=O.
Accordingly one includes in g (r) an additional
term proportional to f, which does not contribute
to W(f,g ), with a coefficient 9(e}designed to re-

move the unwanted dependence on large-r and
threshold effects, setting

g (r)= B'~ (2—Ink)'~ [f+(r)e'"+f (r)e '"]i2—Sf =B' g(r) Sf, e—&0

=—A' (na) '~ (cosPD 'f +sin13Df+) —Sf =A'~ g(r) 9'f, e&0—. (2.5)

[The function g(r) is normalized like f(r) in (2.1)

and lags it by 90' at r +ao.]-
It remains awkward to define a solution to be uti-

lized at small r starting from its behavior at r~ oo.

There is indeed in general a second independent

solution besides f near the origin, but the linear in-

dependence fails at just the physical values of the
orbital angular momentum as we shall see in Sec.
III. This complication is well known in the theory
of special functions but the standard remedy will be

seen to lead back to Eq. (2.5).
(e) The definition of g, and the actual construc-

tion of the coefficient 9, are but a part of a broader

problem that has emerged in the QDT development,

namely, that an irregular solution of a wave equa-

tion is not readily identified because addition of a
regular solution fails to modify it appreciably near

the singular point. This difficulty of defining a
function through boundary conditions at a point of
singularity bears as well on the identification of f
at @&0. Inadequate appreciation of this fact has
been troublesome in the past (see I, Appendix A);
dealing with it occupies much of the present paper.
Two different avenues will be pursued for this pur-

pose in Secs. III and IV, namely, reliance on analyt-
ical forms of the initial Eqs. (2.1) and (2.2), where

this form is available, and alternative approaches
akin to the %KB analysis under more general cir-
cumstances.

(f) QDT treatments have been expressed in terms

of the six parameters B, i), A, P, D, and 9, origi-

nally for the Coulomb field and in the extensions of
paper I. More compactly, however, solutions speci-
fied at small r are connected to those specified at
large r by Jost functions J+-(e, l), which embody all

those parameters,

fo J+f++J f— (2.6)

Section III will concern itself particularly with J-+.
The two Jost functions are related by the symmetry

property

(2.7)

For e & 0, i.e., k real, Eq. (2.7) amounts to the obvi-

ous complex conjugation symmetry of the two
terms of (2.6), J =J+', but the meaning of (2.7) is
nontrivial for e &0.

The Jost functions pertaining to the wave func-
tion I" (r), Eq. (2.4), embody as well the additional
parameter 50, which represents the effect of core in-

teraction and is equivalent to the quantum defect p,
the namesake of QDT. The calculation of 5O is
essential to QDT applications, of course, but is re-

garded as a problem of core dynamics to be pursued
separately. The excitation of an electron (or other
core fragment) by photoabsorption is similarly re-

garded as a core phenomenon to be studied
separately; QDT itself takes into account the events
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at large radial distances subsequent to photoabsorp-
tion.

(g) We have dealt thus far with radial wave func-
tions of a particle, or fragment, at r & r0 pertaining
to a single mode of excitation (i.e., to a "single
channel" ). In fact, QDT deals generally with mul-
tichannel situations. Paper I's approach to a mul-
tichannel process started from the close-coupling
representation of a system's complete wave function
0'=g,. {M;(r)4;(co)],and reduced its Schrodinger

equation laboriously to Eq. (IA.14) for a reaction
matrix E' ', which represents the effect of short-
range interactions. It then directed attention to the
eigenvalues tan5' ' and eigenfunctions U~' ' of the
matrix E' ', which combine with the QDT param-
eters for the several excitation channels i to predict
observable results. Viewing the problems of core
dynamics as a separate problem, we shall indicate
instead, in Sec. V, how an 8-matrix treatment of
the multiparticle interactions at r &rO determines
the parameters 5~

' and U~ ' without reference to
circumstances prevailing at large radial distances.
These parameters serve then as input for QDT
treatments of outer-region phenomena.

a ) l(l+1)+ —,, i.e., A(A, +1)~ ——,, because A, be-

comes complex

(3.3)

[This convention differs from that of (I.2.5}.]
The familiar solution of (3.1} with the boundary

condition (3.2) is

f (e,A,,b, r) =r +'e "~"F(k+I v, 2A—+2,2b, r/v);

(3.5)

for real values of A, , with

(3.6a)

b/a. , e= ——,a. ~0. (3.6b)

In this case the solutions of (3.1) oscillate at r~0,
as noted in Sec. II at the end of (a); since
A, (A, + 1)=A, *(A.*+1), we shall utilize the real
standard solution

, [f (e—,k,,b, r)+f (e,A, *,b, r)] ~ r'~ cos(a lnr) .
r~0

(3.4)

III. QDT PARAMETERS
GF ANALYTIC WAVE FUNCTIGNS

We consider here the QDT properties of solutions
of the radial Schrodinger equation

+— ———e f(e, l, ,b, r)=0,1 d A(A+1) b

2 dr 2r

For complex values of A, , the combination (3A) of
solutions (3.5) applies.

The solutions f+ introduced —in Eq. (2.1) are
characterized by their asymptotic form

(3.7)

(3.1)

in atomic units. This equation applies to a free par-
ticle for {A,=l, b =0], to an electron in a Coulomb
field for {A,=l, b =Z], and to an electron in a
combined Coulomb and dipole field for

with the notation (3A) and for either sign of e. The
connection (2.6), or (2.1), between f and f+takes-
now the explicit form

f'(&,~,b, r) =&+(e,&,b)f+(e,k, b, r)

Its analytic solutions thus contain al1 the elements
developed in Sec. II of paper I, whose Eq. (I.2.1) is
analogous to (3.1).

%e depart from I, however, by normalizing the
basic solution f of (3.1) as

+J (e,k, ,b}f (e,k, b, r); (3.8),

(3.9)

when A, is complex, J-+is defined as

—,[J+-(e,l,b)+J+-(e,i,*,b)] .

f (e,A, ,b, r) ~ r +', A, )——,
r —+0

(3.2)

because the coefficient ao(A, ) introduced in I proves
unnecessary here. The normalization (3.2) does not
apply for a strongly attractive dipole field, with

The Jost functions in (3.8), which are equivalent to
the %ronskians utilized in paper I, have explicit ex-
pressions obtained by comparing Eq. (3.8) to the
asymptotic representation at r~ ao of the confluent
hypergeometric functions in (3.5),
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J+(e-,l, b) =+W(f+,f )/2ik

I (2K+2) 1

r(X+1+v) 2k
&i (1/2)n [v+(A, + 1)] (3.108)

1.(2g+2) 1
+ +' cos[n(A.+1, —v)],

I'(A, + 1+.v) 2z 1, e'&0. (3.10b)

Whereas (3.10a) explicitly satisfies the general ana-
lytic condition (2.7), it is clear that (3.10b), in gen-

eral, does not. However, for all physically meaning-
ful values of v, i.e., at the bound-state eigenvalues
when e & 0, the relation (2.7) is indeed valid. J+(e,k, ,b)

J (e,A, , b)
(3.11a)

I

with (2.6) and (2.7). The phase shift contributed by
the potential of Eq. (3.1) over the whole range
0 & r & oo is obtained from

A. Connections of J+—across the e =0 threshold

Equations (3.10) are connected, in the main, by
analytical continuation of the various E-dependent

parameters, indicated by (3.6) for v and by k~iir
Indeed the ratio of I functions maintains the same
form as a function of v. The factor (1/2k) +'+
spins off a coefficient exp[ —i —,n. (A, +1+v)] as

k —+i~. This coefficient merges into the last factor
on the right of Eq. (3.10), but the result of this
merger is nontrivial for J+ and has given rise to
misunderstandings in the literature as detailed in
Appendix A of I. The key element here is that the
function f should remain real. Accordingly the
last factor of (3.10b), resulting from this merger,
has been set at ReI exp[ im(A+—1 —. v), ] I in the ex-
pression of J+ as it was in paper I. This nontrivial
aspect of the connection from e &0 to e &0 relates
to the branch point of k =(2e)'~ at e =0 and fur-
ther to the essential singularity of the wave function
at [e=O, r =ac]. The values of J remain, in-

stead, simply connected across e =0, because in this
case the power of i spun off from (1/2k) +'+' sim-

ply cancels the last factor of Eq. (3.10a).
This connection of J+-across the threshold relates

to the broader question of the specification of J+ at
e &0, which has been introduced in Sec. II (e) and
will be discussed extensively in Sec. IV. For the
limited purposes of the present section we have
bypassed the broader question by following the pro-
cedure of paper I.

B. QDT parameters as functions of J+—

where the —sign originates from the sign differ-
ence in Eqs. (2.1) and (2.6). The phase ri includes a
term (b/k)ln(2k), which combines with the factor
r +' of-(3.7) to yield the diverging phase contribu-
tion of the Coulomb field (not included in the usual
phase shift). The counterpart of (3.11a) for e & 0 is

J+(e,A, ,b)
J (e,k, ,b)

(3.11b)

Recall that the ratio J+/J must be replaced,
when A, is complex, by its more general form

J+ J+(e,A, ,b)+J+(e,A, *,b)
J (e,i,b)+—J (e,A', b—),

1

J+(~,A,,b)J-(~, A, ,b)
'

(3.128)

A csc(2 )=,g & 0 .
1

J+(e,k, b)J (e,A,b),
(3.12b)

The separation of the factors D and cotp in (3.11b)
requires an additional consideration relating to their
respective physical interpretations which emerge in
Sec. IV. We note here that P=n (v —A,) when A, is
real.

The amplitude coefficients are obtained, instead,
from the products of J+ and J, utilizing their re-
lation (2.7),

The parameters B, ri, A, p, D introduced in Sec.
II are expressed simply in terms of the Jost func-
tions J+-, as one sees by comparing Eqs. (2.1)—(2.3)

The separation of the factors A and csc(2p) relates
to that of D and cotp noted above. For complex
values of A, one must again substitute
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J+J [J+(e,i,b), +J+(e,l ~,b)][J (e,A, ,b)+J (e,A, *,b)]

(3.13)

Substitution of the explicit form of J , E-qs. (3.10), yields readily the well-known expressions of the ampli-
tudes and phases in the particular cases of the Coulomb field and zero field. For complex values of A instead
the reduction of the results to manifestly real form is somewhat laborious. A procedure for this purpose is
developed in Appendix A and the combined results are presented in Tables I and II.

Large-r expressions of the standing-wave radial function f in terms of the out- and in-going functions f
and of the QDT parameters are

' 1/2

f (e,k, ,b, r) —+ [8(k,A)] '~ sin[kr +(blk)lnr+ rj], e & 0
r ~ ' ~k (3.14a)

f (e A b r) ~ [A(Ic l)] ' (mx) ' (D 'sinPe r " DcosPe —""r ), e&0. (3.14b)

Because of the similar roles of the parameters A

and 8 and of P and rI at e & 0 and e & 0, respective-
ly, we shall occasionally indicate each of these pairs
by a single symbol, namely,

T

A (a.,A), e (0
8(k,k), e &0

or

P(ir, k.), e &0
g(k, A, ), e&0 . (3.16)

The remaining QDT parameter 9 (e, l, ,b) has
been introduced in Eq. (2.5) to remove from

g (e,k, ,b, r) all effects of propagation at large r. As
indicated in Sec. II (d), a second solution of Eq.
(3.1) identified by an energy-independent boundary
condition at the origin, is avai 1abl e and is general 1y
independent of f (e,A, ,b, r). Since Eq. (3.1) is in-
variant under the substitution A,~—(A, + 1), the
function f (e, —A, —l,b, r) is such a solution. Its in-
dependence is verified by constructing the Wronski-
an II'(f f~~ i), which is seen from Eq. (3.2) to
equal —(2A, + 1). [We have introduced here the
symbol fi for f (e, k, ,b, r) ]The Wronskia. n van-
ishes when A, = ——,. In addition, however, the
power expansion of f ~ i from Eq. (3.5) shows
that the coefficients of all terms beyond the one in
r are divergent for critical values A, =A, In gen-
eral, the values of A,, are integers or half-integers,
but only the half-integers occur for b =0. This
divergence was formally avoided in paper I by in-
troducing a coefficient ao(A, ) in the definition (3.2).
This meant, however, that ao(A, )f ~ i ~f~ at
A, =i,„whereby its linear independence was lost
anyhow. In addition, the coefficients A and 8,

which reflect the dependence of f on large r, ap-
pear automatically in the power expansion of
f ~ i, a function identified by an energy-
independent boundary condition at the origin. The
definition of the irregular function g with a
smooth dependence both on e and A, thus requires
an appropriate subtraction from f x i of its singu-
larities in A, and of its nonanalytic dependences on e
at e =0. Details of this subtraction are given in
Appendix B. The result takes the form given in Eq.
(2.5) with

9'.i ———4' i cot(5~ —5 —i —i ) (3.17)

except at the critical values A, =A,, where the above
expression becomes singular. We refer to Appendi x
B for the result in those special cases and for the de-
tails of the derivation.

IV. GENERAL TREATMENT

The analytical representation of QDT parameters
in Sec. III relates the amplitude and phase of wave
functions in the asymptotic range, r~ oo, to the
corresponding values at shorter distances. Indeed
w e had noted in Sec. I that weak long-range interac-
tions have great influence on the motion of slow
particles and that the energy dependence of this in-
fluence has to be studied analytically. It was a
main point of paper I that the long-range field of
Eq. (3.1) encompasses all the characteristic asymp-
totic situations. A broader range of potentials that
are relevant at shorter ranges was considered briefly
in Sec. II E of I, namely, potentials that depart from
the form (3.1) at intermediate ranges of r,
ro (r ( 00. Here we deal with QDT parameters of
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We take advantage here of the WKB approxima-
tion which is appropriate to the treatment of long-
range fields including the Coulomb field, at least in
the absence of sharp field variations. The break-
down of WKB near a nucleus can be bypassed by
the Langer procedure; one first avoids the singular-

ity by replacing r by Inr and then shows that the
correct phase is obtained in any case in the r vari-
able by adding a mock-centrifugal potential 1/4r
and then following the WKB routine. '

Note that the WKB method is generally applica-
ble in the outer region of atomic fields, barring only
sharp irregularities. In particular, the analytic con-
dition for applicability of WKB is seen to hold for
the potential (3.1}, even as @~0, particularly for
large r Consider th. at the rate of change of the
wavelength k

dk
dr

d
2

2b A(A+1)
dr r r

a general medium-range potential regardless of its
very long-range behavior.

It should also be contemplated that different por-
tions of radial range external to the core may be
treated separately. For example, an electron at very
large distances from a neutral atom can be regarded
as moving in a zero, or purely centrifugal, potential.
Yet, down to much smaller radii, the electron-atom
interaction is well represented by a 1/r polariza-
tion potential. Consequently, the phase shifts re-
ferred to the zero-field basis (spherical Bessel func-
tions) can change fairly rapidly over a small range
of energies near a threshold, even after the standard
k +' dependence of the centrifugal potential is re-

moved; phase shifts referred to the exact Mathieu-
function solutions of the Schrodinger equation with
an r potential vary far more slowly and smoothly
with the energy. This has been demonstrated clear-

ly in both single-channel and multichannel prob-
lems. '

Indeed the QDT procedures apply even when the
potential does not converge to zero at large dis-
tances. For example, in the theory of the Stark ef-
fect, these procedures have been applied with great
success by expressing the wave functions (f+,f )

or (f,g) in terms of Airy functions. We shall not
concern ourselves here any further with this flexi-
bility of QDT, but concentrate instead on refining
and implementing the remarks of Sec. II on identi-

fying, interpreting, and interrelating the QDT
parameters.

A. WKB analysis

vanishes at sufficiently large r, irrespective of the
value of e. For A,+0 any centrifugal barrier can
also be treated within a WKB framework.

Accordingly we combine here a long-range poten-
tial of interest with the centrifugal term and with
the "Langer correction" into the effective potential,
setting

U(r)=(A, +—, ) /2r +V(r) (4.1)

in a.u. For definiteness A, will be considered real in
this section, and U(r) will be assumed to have a sin-

gle potential minimum and to vanish as r~cc.
Three regions of interest, I, II, and III, are separat-
ed by two classical turning points ri(e) and r2(e)
with r2 taken to be infinite for e&0. (Additional
turning points may' be considered, when relevant. }
The regular solution, with behavior near r =0 of
the form f +r +' c—an be found immediately
within the WKB approximation.

Region I, 0&r &&r&

' &/2

O
+ 2 q»(~)fi= 8 (42)

where

yi(r) = dr'~i(r'), (4 3)

and as usual

~i(r) =[2U(r) —2e]'~ (4.4)

When the centrifugal potential dominates near r =0
we can be more explicit about t'ai(r),

(4.5)

These results adequately describe fo(r) in the
classically forbidden region near r =0 and well in-
side the first turning point r «ri. For r=ri,
where a.i(r) approaches zero, this WKB wave func-
tion is a very poor approximation. Here the radial
solution is replaced by a linear combination of Airy
functions which are exact solutions to the
Schrodinger equation for a linear potential. The ex-

plicit form of f (r) near r =ri is not required here
but will be needed to connect the approximate solu-
tion (4.2) at r «ri to an analogous expression at
r »ri in region II. These connection formulas are
given in standard texts. ' Their use requires a tran-
scription of (4.2):
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fr(r)=

' 1/2
k+2

Ki

+I(~1)
e exp — ar(r )dr

and

K»r(r) = [2U(r) —2E] (4.15)

Region II, r1 &&r &gr2

(4.6) To extract the asymptotic form of fo(r) and the
negative-energy Jost functions, we cast once again
y»r(r) into the form

A+-,
' '"

frr(r)=2
kiI

e ' ' sin f krr(r')dr'+—
"1

The continuation of (4.6) into the classically al-

lowed range is
T

q&»r(r) = lim as (bl—a)lns
S~ rm

S—f a „,(r')dr' +w (a ) (4.16)

(4.7)

where the wave vector is now

krr(r) =[2E —2U(r)]' (4.8)

At positive energies the outer turmng point r2
goes to 00 and the asymptotic form is given by Eq.
(3.14a), with 8 and ll given in the WKB approxima-
tion by

r

w (a ) = —lim as (b /a )—lns
S~ oo

S

a»r(r )« ~

P2
(4.17)

q»r(r) ~ ar (b la )lnr—+w (a.), (4.18)

Most importantly for our purposes, the large-r limit
of q„,(r) is simply

'=n (2K+1)exp, [2yr(rr )],

r) = llm f krr(r')dr' kr —(blk)—lnr +—.
r~~ 4

(4.9)

whereby the functions exp(+y»r) in Eq. (4.13) are
now identified with the exponential solutions f+ of-
Eq. (3.7)

(4.10)
For negative energies the wave function is extend-

ed into region III through the second turning point
rl, again using the WKB connection formulas.
First we rewrite Eq. (4.7) as

t 1/2

0 ~+ 2 y)( ))frr(r)= —2 I 1

~II D =(—, )'~ exp[ —w(a. )] . (4.20)

(4.19)

The connection (2.2) between f and f+-accordingly
takes the form given in Eq. (3.14b) with P(a) given
in Eq. (4.12) and 3 coinciding with 8 in Eq. (4.9).
Finally the rescaling amplitude D is given by

l'2

&& sin f k„(r')dr'+ —,n. —P

with the phase shift

p(a ) =f krr(r')dr'+ —,m .

(4.11)

(4.12)

1/2
0 '+ 2fm(r)=2

KIII

(r, ) . y,n(r) —q'm(')Xe ' ' (sinpe "' ——, cospe "'
) .

The exPonerlt qr»r(r) is liow defined through
r

y»r(r) = am(r')dr'

(4.13)

(4.14)

Region III, r2 « r & oo (e & 0 only)

The connection formulas give, for r not too near

These results represent the QDT parameters in
terms of %KB phase or tunneling integrals. The
essential physical origin of each parameter is thus
identified, and, in particular, the range of integra-
tion that contributes to it, regardless of the accura-
cy of the %KB approximation. Accordingly we
have gathered the parameters and will discuss each
in turn.

8(k). The amplitude coefficient 8 '~ of the
asymptotic form (4.13) of f represents the ratio of
this function, normalized as r + at r~o, to the
energy-normalized wave function (2/m-k)'~
sin(kr +. . .) for e & 0. For our potential with a sin-
gle minimum, 8 involves only the tunneling integral
from r =0 to r = r r, Eq. (4.9). The centrifugal bar-
rier at large r would introduce an additional factor
near threshold in the absence of a countervailing
long-range attraction. Tunneling under this second
barrier would then add to 8 the additional factor
k +' which appears in signer's threshold law.
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21(k). The positive-energy phase measures the
number of half-wavelengths off between r =0 and
r =00. As this would be infinite at all e)0, g is
given by Eq. (4.10) as a finite complement to the in-

finite term represented by the phase kr +(b/k)lnr
of f+. Together with the usual phase shift, 2) in-

cluded the centrifugal contribution —A,~/2.
A (s). This amplitude parameter is the negative-

energy extension of 8, which relates f to an
energy-normalized form in the classically allowed

range. For our potential with a single minimum, A

and 8 coincide, both of them representing the am-
plitude of tunneling under the centrifugal barrier
from r =0 into the oscillatory region II. The WKB
expression for A and 8 can be evaluated analytically
for the potential of Eq. (3.1). The WKB result is
not exact except in the limit of large A, , in contrast
to Eq. (4.21).

P(1~). This phase function measures the number
of half-wavelengths of f between r =0 and r = ao

for e &0. Bound states are identified by the condi-
tion P=(n+1)m. , n =0, 1,. . . . For a long-range
Coulomb field, the WKB integral gives exactly the
value obtained in Sec. II, namely,

P(x ) =n. ( A+b/~—) ., (4.21)

1/2

g (e,k, r) = —A ', 2

+kgb

r
X cos J kn(r')dr'+—

(4.22)

D(~). This is a "rescaling parameter" which
multiplies and divides f+ and f, respectively, at
e &0, so that the resulting solutions (Df+,D 'f )

have a comparable amplitude near the outer classi-
cal turning point r2. As Eq. (4.17) shows, D is
analogous to A in that it depends on a tunneling in-

tegral from r2 outward to infinity. The WKB ex-

pression for D(a) is again not identical to the exact
expression in Table II for a Coulomb field, but the
agreement becomes exact as the energy approaches
threshold for all A..

We conclude this WKB analysis with the identifi-
cation of the function g (r) which was introduced
in Sec. II (d) as a second element of a base set

If,g I. No difficulty arises in selecting g (r) "90
out of phase" with respect to f urithin the 8'EB
approximation, whose phase function q&t(r) is com-
mon to all solutions in the classically allowed range.
We set then simply

Continuation of g into region I or III is provided
by connection formulas. An energy-normalized
base pair is now obtained from Ifo,goI as

f A 1/2fo g A
—1/2go e &0 (4.23)

where A is replaced by B at e & 0. The parameter 9
of Eq. (2.5) vanishes in the WKB approximation
when b is nonzero in Eq. (3.1). For potentials hav-

ing a single minimum, the parameter S of Eq. (2.5)
vanishes in the WKB approximation. However, 9
is generally nonzero when there are more than two
classical turning points. Physically this results
from the fact that two solutions which differ in
phase by 90' in one potential well (e.g., at small r)
will no longer differ in phase by exactly 90' after
tunneling [see Eq. (4.41)].

B. Full treatment by a phase-amplitude method

y(r)=a(r)sing(r) . (4.24)

A subsidiary relation, necessary to determine the
amplitude a(r) and the phase P(r), can take dif-
ferent forms, characteristic of alternative methods.
The most familiar of these methods, described by
Babikov" and by Calogero, ' originates from classi-
cal mathematical physics. ' lt reduces the wave
equation to a pair of first-order nonlinear equations
which are readily interpreted. For our purposes it
presents two shortcomings, namely, that it does not
conserve the phase difference of a base pair of solu-
tions If,g I as r varies and that its phase function
P(r) becomes imaginary in the classically inaccessi-
ble regions. These difficulties are avoided by an al-
ternative method, which we shall follow even

though it is more complicated numerically.
Its key element is a transformation of the Sturm-

I.iouville differential equation first discovered by

The WKB approach has illustrated the interplay
between the amplitude and phase of a wave func-
tion and its contribution to the determination of
QDT parameters. This approach is developed into
an exact, if generally numerical, treatment by
phase-amplitude procedures which yield the phase
and amplitude of a wave function as solutions of a
pair of coupled differential equations. These
methods preserve the features that have afforded a
direct and interpretable construction of QDT
parameters.

The common element of these methods is to
represent the solution of a wave equation in the
form
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Milne, ' but interpreted and greatly clarified in later
papers by Young' and Wheeler. ' The present
treatment relies heavily on the recent study by
Korsch and Laurent. ' In 1930 Milne showed that
all independent solutions y (r) to an equation

y"(r)+k (r)y(r)=0 (4.25)

can be expressed in terms of any particular solution
of the nonlinear equation

a "(r)+k (r)a(r) =
a (r)

The general solution y (r) is given by
r

y(r)=aa(r)sin I a (r')dr'+b

(4.26)

(4.27)

where a and b are arbitrary constants. Observe that
the phase and amplitude of (4.27) are related pre-
cisely as they are in the WKB approximation by

P(r) =J a (r')dr' . (4.28)

The fact that a (r) is the rate of phase accumula-
tion prompted the labeling of

K(r):a(r)— (4.29)

as the "quantum momentum". ' Once a and P
have been calculated from Eqs. (4.26) and (4.28), it
is quite clear how to find two solutions 90' out of
phase. That is, we can simply choose them to be

f=(2!n )'~ a sing,

g = —(2/n. )'~ a cosP .
(4.30)

(2A. )'r a(r)=(f +g )'~,

while its phase is expressed as

(()(r)= —tan '(f/g) .

(4.31)

(4.32)

Equation (4.28) implies that the complex number

rotates at a speed proportional to a (r). In this
representation two solutions 90' out of phase are
mapped onto points at right angles which rotate at
equal speed.

There is, of course, no unique way to require two
solutions to differ in phase by 90', although this

This formulation lends itself to a geometrical in-

terpretation of pairs of independent solutions to any

such Sturm-Liouville differential equation. The in-

dependent solutions (f,g) can be thought of as the
real and imaginary parts of a complex number

—i(2/ir)'~2a(r)exp[i/(r)] .

The modulus of this function is just the amplitude

Moreover, comparison with the definition of P in

Eq. (4.12) shows that P is simply

(4.35)P=P(oo), e(0.
Now we have the tools to construct (possibly nu-

merically) the alternative base pairs of independent
solutions (f,g ), (f,g), and (f+,f ), and the coeffi-
cients B, il, A, p, D, and 9 which interrelate
them. Section II emphasized that f (e,k,,r) can be
determined at all energies by taking the small-r
form f =r +' and integrating outward to larger
radii. When this is done at positive energies, the
amplitude B ' and phase il of the asymptotic os-
ci11ations can be extracted. The energy-normalized
regular solution f is then simply

f=B'~f ~ (2/m. k)' sin[kr+(b/k)lnr+i)] .

(4.36a)

phase difference implies orthogonality of solutions
that extend to large distances r~ ao at e &0. This
ambiguity appears in the Milne approach through
the fact that a(r) in Eq. (4.27) can be any solution
to the nonlinear Eq. (4.26). Accordingly the defini-
tion of (fg) is not complete until the boundary con-
ditions used to find a(r) are spelled out. One sensi-

ble way to do this, though far from the only one, is
to let our classical ideas guide us by choosing
a(r, )-k ' (r, ) at some critical radius r, Th.is
boundary condition was used by Korsch and
Laurent' in their treatment of potentials with a sin-

gle minimum at r =r„and they showed that the re-

sulting amplitude and phase functions vary quite
smoothly with r as desired. Caution must be exer-
cised if a much different boundary condition is

adopted to define a, as it may result in a highly os-

cillatory amplitude which is usually not the desired
behavior.

In any event, once a(r) has been chosen and P(r)
determined also, then each of the three QDT basis
pairs of independent radial functions can be calcu-
lated at once. In the following we stipulate that the

phase function P vanishes at r =0, which yields the
explicit form

P(r)= I a (r')dr' (4.33)

to be entered in (4.27). The condition for a bound

level in the purely long-range potential then resem-

bles the Bohr-Sommerfeld quantization condition

P( oo ) =(n +1)vr

a (r')dr', n =0, 1,. . . .
0

(4.34)
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Next the energy-normalized irregular solution, g is
constructed for e&0 by integrating inward from
r = 00, starting from the larger-r form of g:

g(e, k, ,r) ~ (—2/m. k)' cos[kr+(5/k)lnr+ri] .

(4.36b)

The construction of f+is t-hen trivial. Each of
these functions is thus determined in a straightfor-
ward manner without any reference to the phase-
amplitude method.

At negative energies a phase-amplitude procedure
serves to define all the QDT functions and parame-
ters unambiguously. Once Eq. (4.26) for the ampli-
tude function a(r) is solved with suitable boundary
conditions at small radii (as discussed above), P(r)
is given by quadrature in Eq. (4.33). The energy-
normalized solutions (f,g) are then defined by Eq.
(4.30) for e &0 only. The coefficient A is thus de-
fined as the ratio

boundary condition (3.7). On the other hand, we
know the rescaled solutions are expressed in terms
of (f,g) by

Df+, cosP sinP f
D 'f —sinP cosP g

(4.42)

with the value of p given by Eq. (4.35). The con-
stant parameter D and the radial solution f (e,l, , r)
are thus obtained from (4.42) in terms of the known
solutions f, g„and f+, and of P.

This completes the phase-amplitude specification
of the radial solutions and of their QDT parame-
ters. To illustrate these ideas further, we show in
Appendix C how they are applied to a specific
problem.

V. QDT PARAMETERS
AT THE CORE BOUNDARY

A =(2/m. )a (r)sin P(r)/[f (e, l, ,r)], (4.37)

which can be evaluated at any convenient radius.
The second function of the base pair If,g I is

now taken to be proportional to a cosP at all ener-

gies, with the coefficient required to yield the
Wronskian

W(f,g )=2/m. .

We have

(4.38)

g (e,A, r)= (2,/rr) ~A'r a(r)cosP(r) —. (4.39)

This amounts to setting 9'=0 below threshold, as
in the WKB approach. At positive energies g and

g need not be proportional and hence 8'+0 in gen-

eral. Since the Eqs. (4.36) and (4.38) imply that

gP(e, z,,r) ~ —8'r'(2/nx)'r' sec(i)P —il )

Xcos[kr+(blk)lnr +q ], (4.40)

the parameter 9 is expressed in terms of the
asymptotic phase difference between g and g:

9 =8 tan(q —i) ), e & 0 . (4.41)

Finally, we determine the exponential solutions
f+ and the reseal-ing parameter D for e&0. The
decaying solution f+ is identified as the result of
numerical integration of the radial Schrodinger
equation inward from r =oo, starting from the

Sections III and IV have dealt with the construc-
tion of the QDT parameters that relate the ampli-
tude and phase of radial wave functions at short
and at very large radial distances. This section
deals, instead, with the characterization and con-
struction of the parameters that serve to match a
radial wave function at the core boundary r =rp to
the wave function of the whole system, inclusive of
the core. As noted in Sec. II (g), the system of in-

terest has generally several alternative channels of
excitation. Its wave function at r-ro takes, ac-
cordingly, the general form

ql =X; IM;(r)4;(co) I, (5.1)

where M;(r) is the radial function of the particle (or
fragment) that separates from the core residue in
the ith channel and 4;(co ) represents the ith state of
the core residue as well as the spin of the particle
and the angular motion of particle plus residue
about their center of mass. The braces in (5.1)
represent the appropriate antisymmetrization.
Equation (5.1) coincides with (1.4) of paper I, whose
description includes additional details.

Parameters that connect the system's wave func-
tion 0 at r &rp with the wave function (5.1) ap-
propriate to r & rz, can be determined in two steps:
One should first calculate %' by a procedure that re-
quires it to be regular at the origin and to take the
form (5.1) at r-rp and then cast each M;(r) in the
form (2.4),

M;(rp)=C;[f (r;)cos5; —g (rp)sin5;],
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5 lnM '(r)
ly2p ~ o e

r =ro
(5.2)

in all channels. The value of the boundary parame-
ter (5.2) can be determined as the eigenvalue of the
variational procedure for any given total energy, in-
stead of the familiar procedure that seeks an energy
eigenvalue for a fixed value of the boundary param-
eter. Channel amplitudes

with an amplitude C; and a phase shift 6; to be
determined by matching the value and derivative of
M;. The values of C; and 6; depend here, of course,
upon the definition of the irregular function g (r),
which is not unique, as noted in Sec. II (e) and else-

where in this paper. However, any arbitrariness in
the definition of g (r) is compensated in the deter-
mination of the corresponding 9'(e) function and
has no effect upon the physically significant relation
ship between qi and the observable QDT parameters
at rico, namely, p; or il;. That is, the QDT
parameters pertaining to the pairs If,g J serve
only as standard stepping stones for connecting
parameters of qi at the core boundary, r =ro, to ob-
servable parameters at r~~.

The R-matrix variational methods' ' of calcu-
lating energy eigenfunctions within a limited
volume of space represent 'II as a superposition of
Slater determinants akin to those of multiconfigura-
tion (analytical) Hartree-Pock calculations. These
wavefunctions are readily cast in the form (5.1) near
the volume boundary r =ro. In particular, the ap-
proach of Ref. 19 seeks eigenchannel solutions qi

characterized by having identical values of the nor-
mal derivative

shifts 6; to be equal in all channels i, instead of re-
quiring the derivatives (5.2) to be equal. The repre-
sentation (5.4) of the eigenchannel radial functions
takes then the form

M '(rp)=U; [f;(e;,ro)cos5

—g; (e;,ro)sin5 ],
=U; [f;(e;,ro)

g;—( e;,r o)tan 5~]cos5~, (5.5)

where the sets of coefficients U;~, with fixed a and
different i, represent an eigenvector of a modified R
matrix, E' '. In the last expression (5.5) the factor
cos6 has been separated out as a normalization
coefficient, while tan6 is an eigenvalue of the reac-
tion matrix that was indicated by —~E' ' in Sec.
IVC of paper I. [Reference 20 did not in fact
proceed as indicated here, but represented M~ '(ro)
in terms of radial wave functions If,gj normalized
per unit energy at rico instead of If,g I. The
corresponding eigenphases are then indicated by 5,
eigenvalues of tan '( —n.K"), and the eigenvectors
by U;~; the parameters p~=5~/ir are the usual
eigenquantum defects of QDT.]

The eigenfunctions qi, with the structure (5.1),
serve in QDT as a base set whose elements are su-
perposed with coefficients A to generate eigenfunc-
tions

X; I4';(co)[„~;(e;,r)cos5

—g; (e;,r)sin5 ]IU, A, r)ro (5.6)

(5.3)

M '(ro) =C '[f; (eo, ro)cos5~~;

—g; (e;,ro)sin5;] . (5.4)

The parameters 6~; and C ' can then be deter-
mined to fit simultaneously the values of Mi' '(ro)
and of its derivative (5.2).

A variant of this procedure, convenient for QDT
applications, has been utilized by Lee. The vari-
ant selects eigenchannels a by requiring the phase

are provided as eigenvectors of the variational pro-
cedure. At any give~ energy, the number of mutu-
ally orthogonal eigenchannels a equals the number
of channels i As outlin. ed above, QDT represents
each of the amplitudes (5.3) in the form

that satisfy boundary conditions at r~ ~ appropri-
ate to any specific problem. To this end an initial
step replaces the base pairs If;,g; J by If;,g;[ or

If;+,f; I normalized at r~ oo, using the transfor-
mations of Secs. III and IV. This casts (5.6) into an
expression involving superpositions of f; with—
coefficients which are combinations of U~~,5~ and
of the QDT parameters of the external region.
Asymptotic boundary conditions appropriate to a.

given physical situation can then be applied. ' As a
first step, one sets to zero the coefficients of the ra-
dial functions f; (e;,r) in all channels with e; &0,
the so-called "closed" channels. For the "open"
channels with e;gO, outgoing- or ingoing-wave
boundary conditions on the coefficients of their f
will determine, respectively, scattering or photoab-
sorption cross sections in terms of the combined set
of QDT parameters.
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TABLE I. QDT parameters for a general angular momentum ){,=A,s+ia and strength b of the Coulomb field in Eq.
(3.1). The parameters (X,x), ( Y,y), and (Z,z) represent the modulus and phase of ratios of gamma functions defined in

Appendix A and simplify in special cases as tabulated in Table II.

5(e, k, )=

t) {k,A, }=——,m. lii+(blk)ln(2k) ~i)) {k,A, ),

1 Za Z —a 1 1

P =—(z +z )+tan tan[ —z ——z —a ln(2k)]z.+z . for e&0

P{s,k }=rr{b/ir —Aq 1+P{ir,a),
iti =tan '[tanh{ira)tan[y —a ln{2ir}]], for e &0

D (~,A)—=
—X{2@) "{cosxcosh{ira }sin[crib/a —ks)]+sinx sinh{ira }cos[m{b/a .

A,„}]—
+ [sinh~{ira }+sin [ir{b/a. —As }]I '~~}, for e &0 only

%(e,A, ):— B{k,) }={4/m )(2k) s e~~"[Z +Z +2Z Z cos[z —z —2a 1n{2k}]] ', for e &0
3 is, A)={4/Y'}{2i~}" [cosh{2ira)+cos[2y —2a ln{2ir)]] ', for @&0.
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fields with real angular momentum (a =0), respec-
tively. We begin with e &0 and from (3.9) and
(3.10a), and have

A,~+1+v
J-+=— expt+i, ir[v+(Lit+1)]I

1 1 , 1

r

x ""'" "'"""'+( — )r() +1+v) '

APPENDIX A: QDT PARAMETERS
FOR COULOMB AND DIPOLE POTENTIALS

This appendix works out the details of the analyt-
ical reduction of the Jost functions J+(e,A, ,b) to th-e

QDT parameters 8, r), A, P, and D for the poten-
tial in (3.1). It deals, therefore, with the subject ad-
dressed in Sec. II of paper I, but whereas I con-
sidered Coulomb, dipole, and zero fields separately,
we deal with them here as a combined entity. Also,
in amalgamating them into a single whole, we have
found it necessary to depart somewhat from the de-
finitions of these parameters in I, particularly for
the case of dipole and zero fields.

As a generalization of (3.3), we set

)g ——Ag +EQ

so that appropriate choices for (A,z,a) reduce to di-
1

pole (A,it
————,,a+0) and to Coulomb and zero

r(2i(, +2) (i/2) iz

r(X+1+v)
= " (A3)

where Z~ and z~ are real functions of A,it and v.
From (2.1) and (3.8), it follows that the expression
in (A2) coincides with

(2irk) '/ 8 '/ exp[+i (rl ——,ir )] .

Separating out the modulus and argument of (A2)
leads, therefore, to the identification of 8 and g.
Table I records the general form and Table II the
specific expressions in the limiting cases of the
three kinds of long-range fields.

(A2)

where the last symbol in the large parentheses
means that the previous term is repeated with a re-
placed everywhere by —a. It is convenient to
separate the ratio of gamma functions into its
modulus and argument
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For e &0, the unraveling of the two parameters
J+-in (3.10b) into the three parameters A, D, and P
in (2.2) is made unique by specifying that P
represents the accumulation of phase over the whole
range of r This criterion coincides with the con-
ventional choice of P=n. (v —A,) for the Coulomb
field as in paper I. It differs from I for the other
fields. The apparent asymmetry of the last term in
(3.10b) between J+ and J is removed through the
identity

parameter D follows immediately from the terms
involving + in (A4), that is,

D =Re (2a.)"2„r(A,+ I —v)
sin[~(v —A, )]r(X+1+v)

(A5)

In forming the real part when A, is complex, it is
convenient to define

I'(z)I'(1 —z) =m/sinn. z .

Thus (3.10b) can be written

I (1+1—v)/I (A, + 1+v)—:Xe'", (A6)

J'-=+~-'"r(u, +2)
I A, +1+v

X sinn. (v —A, )]
r(a+I —v) .
I k+1+v

+ 1/2

which reduces to unity in the absence of a Coulomb
field, that is, when b =0. The explicitly real form
of D is given in Table I with special forms for
Coulomb, zero, and dipole fields in Table II.

Once D has been so defined, the "rescaled Jost
functions, "J+/D+ 'ar-e equ-al to

1
X

+ +" cos[m. (v —A, )]
sin[n. (v —A, }] . (A4) cosP—(mxA)+ sinP

This form permits a ready comparison with (3.11b}
to identify D and P. In particular, the rescaling

from (2.2). Upon forming the real part of the re-
scaled Jost functions, we have

—(kg +2) —(Ag + 1/2)sinP i [y —a 1n(2~)]K e e
sin[a (v —Xx —ia)]
cos[~(v —4 —ia }1

(A7)

with

Ye'~—:r(2A, +2)[r(v —A, }/r(A, +1+v)]'~

(A8)

Table I gives the general expressions and Table II
the specific values of A and P for the three limiting
cases.

The entries in Table II differ from the results in I
in the following respects. The phase parameters g
and rl are unchanged and B(k,A,) differs only trivi-
ally from paper I because of our removal of the nor-
malization factor ao(A) in (3.2). Likewise, for the
Coulomb field, A(a, A,) differs only in this factor,
and D and P are exactly as before. All three param-
eters are, however, substantially different for the di-
pole and zero fields.

A point to be stressed is that the parameters
A, D, and sinP vanish for the case of zero field

when A, is an integer; their reciprocals appear in

physically significant combinations, e.g., in (2.2),
but these expressions remain finite. Similarly ima-

ginary values of parameters may emerge in the
tables, but their significant combinations are
nevertheless real. The definitions of QDT parame-
ters adopted in paper I may prove to be preferable
for actual calculations when only the long-range di-

pole field or zero field are present.

APPENDIX B: DEFINITION OF g (r)
AND S(e)

The notation introduced at the end of Sec. III,
which sets f (e, l, ,b, r)=fi, etc., will be followed
here. The reciprocal linear relations between the
base pair tfi,gi] normalized at r~0 and the
energy-normalized pair Ifi,gi], implied by (2.1),
(2.5), etc., are then
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f»

0
.gi.

0

(81)

nal results. Since no single convention appears de-

finitely preferable, we treat here separately the two
cases A,QA,„A,=A,„without attempting to blend
the separate results into a unified convention.

Properties of the base pair [f»,f » i [ emerge
by calculating and comparing their Wronskian
evaluated from their limiting forms at r —+0 and
r~ oo,

In accordance with Sec. III, and following the
original approach of Seaton' adhered to in paper I,
we start here from the base pair tf»,f » i ] of in-

dependent solutions of Eq. (3.1). Recall that this
pair's independence fails for a set of values of
A, =i,„as noted at the end of Sec. III, and that the
A,, include (for b+0) the integer orbital quantum
numbers A,,=l of greatest physical significance.
We also recall, from Sec. II (e), that the definition
of g (r) involves rather arbitrary conventions which
serve to articulate the theory but do not affect its fi-

~(f» f'—» —i)= —(2~+1»
from f (r)~r»+',

~(f» f-»—i)

(82)

9F» i(2/m )sin(5» —5», ), (83)

from (2.1). The expression (83) vanishes at A, =A,„
where the phase difference is a multiple of ~. This
phase difference has a simple expression for poten-
tials represented by (3.1) with real A, , namely,

, ———n. A.—tan '[tan[~(X+1)]tanh(nb/k)], e )0

P» —P» i
—— n(2A, +—I ), e (0 .

[It should be pointed out that (83) is valid at @&0 only if D»=D» i, which is satisfied in Table II.] The
nonindependence of (f»,f » i ] at A, =A,, will manifest itself through the occurrence of the expression (83)
in the denominators of our results. Indeed we shall start from the expression of the solution g»(r) in terms of
[f»f'» il,

f » i(r) —cos(5» —5» i)f»(r
sin(5» —5», )

(85)

an expression that lags 90 in phase behind f»(r) with the Wronskian 8'(f»,g») =2/n. . Formulas applying at
A, =A,, are then obtained by de 1 Hospital s limiting procedure for A, —+A,„which is familiar, e.g., from the de-
finition of the Neuman function

J,(z) —cos(mv )J,(z) (86)
N„(z)= lim N„(z)= lim

v —+n v~n —sin Kv

(a) A,QA, The function g» can now be defined by entering in Eq. (81) the functions f»=%» f» and g»
from (85),

i~2
&'-'» —if'—»—i

—cos(5» —5» i»»"f»
g = —9' f„(r)+A

sin(5» —5» i )
(87)

The function f» is seen to drop out of this expres-
sion upon setting

g»(r) = [ vr(k+ —,)] 'f »—, (r) . (89)

(Bg)

the formula anticipated in (3.17). Comparison of
(82) and (83) permits us now also to eliminate

3P» i from (87), thus reducing that equation
to

II'(f», g») =2/~ . (810)

When A, =A,~+ia is complex in (3.1), the analog
of f» is its real part and the analog off » i is

Recalling Eq. (82), we see that this definition leads

to the appropriate Wronskian
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lmfi'„= —.(fx —f~x. ) .
2l

(811)

( —1) [5f—x-i«)/5~]x —Pfx«)/~~]x

[~(5x—5-x-i )/5~]x

(812)

This function serves then as gx, with the additional
normalization factor required to fit (810). Equa-
tion (88) remains a valid definition of 9'x with the
values of Ax and 5x drawn from Appendix A and
appropriate to the treatment of complex A, . No
complex values of A, belong to the special set A,„
but numerical difficulties may arise for k= ——,

+ia and a « l.
(b) A, =A, The limiting form of (85) for k —+A,,

1s

g~x from the gx in (812) must identify and

separate out the parts of (812) that depend on e
sensitively at threshold. At e &0 such parts include
5x —5 ~ i. Our procedure will be simplified by
defining gx at e &0, with a smooth dependence on

C

e, extrapolating the result to e&0, and obtaining
separate expressions of S~ in the two energy ranges.

To this end we return to the initial expression
(85) of gx and transcribe it, using Eqs. (82) and
(83) at e & 0, into

~x '"f'» i(r) —~i,"cos(Px —P x i)fx(r)
gx(r) =

sin(Px —P ~ i)

e &0 (814)

where

sin(Px —P x, )f'-x-i«)=—,f'-i. i
~(A, + —, )

with

m =(5x —5 x i)/ir . (813)
~A, cos(PA, P A, —i)—fx—

C

[The denominator of (812) would reduce to —2m.

for e &0, according to (84), but its general expres-
sion is preserved in the following. ] The definition of

remains finite as A, ~A,, unlike f x i and gi itself
in (89). The limiting form of (814) at A,„which
will replace (812), is

( —I)-~ "(af', , /5~), —~,'"(af,'/5~), —~ "(a~,/aX)„ f',
[a(P, —P „,)/az]„

(816)

The factor (BA/M. )x in the numerator of (816) is now identified as the only one that depends sensitively on e
near threshold and hence is to be incorporated in 8'x . Indeed Bf&/Bg and Bf x i/BA, are smooth functions
of energy by definition. The same hold for A~ itself which equals ( —1) f x i/fq according to (815) and
for Px —P x i which is energy independent. Hence we define

(BA /BA, )

[a(P,—P, , )/W, ], ' ' (817)

The irregular energy-smooth solution gx is accordingly defined by

( —1) (af x, /OX)x —a„(of', /aX)x
g', (r)=

[a(P, —P, , )/ax], (818)

initially at e &0 and by extrapolation at all e. This extrapolation does not extend to P~, however, which is
C

nonanalytic at E =0. The combination of Eq. (81) with (85) and (818) yields instead

a[a,»n(Px —P x i)/sin(gx —g x i)]/&A,
e~O.

5(Px —P x i)/5~ A.
(819)
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APPENDIX C: QDT PARAMETERS
FOR FREE-PARTICLE %PAVE FUNCTION

B=2k/n, g =0 . (C2)

For e &0, we avoid here the possible ambiguity in
separating D from P by applying procedures from
Sec. IV 8. In general a(r) must be calculated nu-

merically from (4.26), but for the present example a
real solution with the energy-independent small-r
normalization a(r =0)=1 is given in closed form

by

To illustrate the interplay of different elements of
this paper, we identify here the QDT parameters for
a trivially simple example. The wave equation
—,y" +ay =0 has the regular solution

k 'sin(kr), e & 0
(r)= ' (Cl)'sinh(ar), e &0

normalized to f ~r for r ~0
The parameters B and ri are given by (3.12a} and

(3.11a) for e&0 in terms of the Jost functions J+-,
which are in turn read off the representation (2.5) of
(Cl). Thus one finds in our example,

The final parameter D is generally obtained from
(4.42), in terms of f, g, and P (previously found)
and of f+. In our case f+ coincides with e "' at
all r, removing any need of integrating it inward
from r = ao,' Eq. (4.42) then gives

2K

1+a.

1/2

(C7)

The same Eq. (4.42) gives also the singular function

1 —2

f (r) =e"" z—e
(+K

(C8}

which does include a decaying term of specified
amplitude.

In accordance with Sec. IVB we set here 8=0
for e &0, whence

a(r)=v '[sinh (~r)+a cosh (iver)]'

The corresponding phase function (4.34) is then

P(r) =tan '[a 'tanh(xr)], (C4)

g (r)=A' g(r)= —(2A. )cosh(ar), e &0

(C9)

from which follows, by (4.35),

P=tan '(I/a), sinP=(i+a ) (C5)

where 2 =2/~ is obtained using Eq. (4.37). This
function continues smoothly across the threshold
into

f(r)=

The energy-normalized base pair for e & 0 is now

given by (4.30) in terms of a and P,
' 1/2

2
[sinh (ar)+a cosh (ar)]'

77K

g (r)= —(2/m)cos(kr), e&0. (C10)

' 1/2

sinh(iir ),
77K

' 1/2

g(r) =— 2
7T

cosh(ar) .

~ 1 I
)&sin tan ' —tanh(~r)

K

(C6)

Section IVB regards (fg) and (fo,go) at e &() as
connected nontrivially by (2.5), with 9 given by
(4.41); however, 8 vanishes in our example because
g'=0, too.

Som«f the QDT parameters obtained by this
procixlure differ from those that result from Sec. 111
and Appendix A for the same example. The differ-
ences stem in part from alternative specifications of
the singular function f
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