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Within the framework of the many-body Green's-function method we present a new

approach to the polarization propagator for finite Fermi systems. This approach makes

explicit use of the diagrammatic perturbation expansion for the polarization propagator,
and reformulates the exact summation in terms of a simple algebraic scheme, referred to
as the algebraic diagrammatic construction (ADC). The ADC defines in a natural way a
set of approximation schemes (nth-order ADC schemes) which represent infinite partial
summations exact up to nth order of perturbation theory. In contrast to the random-

phase-approximation (RPA)-like schemes, the corresponding mathematical procedures are

essentially Hermitian eigenvalue problems in limited configuration spaces of unperturbed

excited configurations. Explicit equations for the first- and second-order ADC schemes

are derived. These schemes are thoroughly discussed and compared with the Tamm-

Dancoff approximation and RPA schemes.

I. INTRODUCTION

The various many-body methods' for the excita-
tions of finite nucleonic and electronic systems
may be classified according to a few basic con-
cepts. Perhaps the most prominent concept is the
method of the many-body Green's functions. '

Here, the interesting entities are the two-particle
Green's function, the related particle-hole (p-h)

response function and the polarization propaga-
tor, ' also known as p-h propagator. The Fourier
transforms of these functions have poles at the ex-
citation energies of the system under consideration,
while the transition moments are related to the
corresponding residues. The advantage of the
Green's functions is that there exist well-defined

perturbation expansions in terms of Feynman dia-

grams which are very useful for the construction
of approximation schemes. There also exist exact
equations, which allow for various approximative
solutions, e.g., the hierarchy of equations of
motions introducing a coupling to higher Green's
functions, and the Bethe-Salpeter integral equa-
tion ' for the p-h-response function introducing
the diagrammatically defined effective p-h-
interaction.

As an alternative concept, we mention the equa-
tion of motion method (EOM). ' Its basic equa-

tions are formulated in terms of ground-state ex-
pectation values of exact excitation operators.
Here, approximation schemes result in a straight-
forward but increasingly complicated way by ex-

panding the excitation operators and the ground
state in terms of basic operators and unperturbed
configurations, respectively. It is interesting to
note that equivalent equations result from the so-
called superoperator representation of the polariza-
tion propagator considered by several authors. "'

Certainly, the fundamental approximation
scheme, deriving from the many-body concepts
mentioned above, as from several other approaches,
is the random-phase approximation (RPA)' '
which has long been applied to nuclei, ' atoms, '

and molecules. ' The RPA can be viewed as an in-
finite though only partial summation of terms in
the perturbation expansion of the polarization pro-
pagator. It is recognized that the RPA excitation
energies and transition moments are exact up to
first order of perturbation theory (with respect to
the two-particle interaction). However, the correc-
tions introduced by the RPA in second and higher
order are selective and, so far as the excitation en-

ergies are concerned, may lead to poorer results
than obtained in the simpler Tamm-Dancoff ap-
proximation (TDA). Mathematically, the RPA
represents a non-Hermitian (pseudo) eigenvalue
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problem, ' where the configuration space consists
of the single or particle-hole (p-h) excitations with
respect to the unperturbed (Hartree-Fock) ground
state plus the "unphysical" hole-particle (h-p) exci-
tations. As a consequence of the non-hermiticity
there may occur complex solutions' for the ener-

gies of low-lying excited states (Hartree-Fock "in-
stabilities"} which, of course, is a rather undesir-
able feature.

The RPA has successfully been applied in nu-

clear physics (for an overview see Ring and
Schuck' ). Since here a precise nucleon-nucleon in-
teraction potential is not available, one usually em-

ploys model potentials with adjustable parameters.
For atoms and molecules, on the other hand, the
electron-electron interaction is given by the fami-
liar Coulomb potential being well amenable to a
numerical treatment. Here the comparison of the
RPA calculations with experimental results allows
a direct conclusion about the accuracy of the
method. As the early applications' ' have already

demonstrated, the RPA gives rather disappointing
results for the excitation energies. Typical devia-

tions from the experimental results for small mol-

ecules (N2) are in the order of magnitude of 1 eV

(see, e.g., Rose et al. ' ). Clearly, this accuracy can-

not match the outcome of an even moderate con-

figuration interaction (CI) treatment. For the tran-

sition moments the situation is more satisfactory:
the RPA achieves a significant improvement with

respect to Hartree-Fock (HF} and TDA results.

Actually, most RPA applications in atomic and
molecular physics are concerned with transition

properties (for a recent review and references we

refer to the article of Oddershede' ).
Various attempts have been made to develop ex-

tended approximat, -ons 9,20—2s Most of these
schemes have in coinmon that they follow the lines

prescribed by the RPA, that is, they maintain the
pseudo-eigenvalue problem in a space comprising
both physical and unphysical configurations. For
example, in the EOM approach, one may extend
the expansion of the basic operators to include the
physical 2p-2h excitations plus the unphysical 2h-

2p excitations. ' In order to be consistent
through a finite order of perturbation theory one is
forced to take further unphysical excitations, e.g.,
p-p and h-h excitations into account, and to use a
larger expansion of the ground state. i3 27'~s This
introduces nonorthogonality for the basic excita-
tions necessitating rather complicated formulas.
The explicit consideration of the unphysical excita-
tions leads soon to undersirably large configuration
spaces and actual calculations become very expen-

sive. On the other hand, the results of the extend-
ed RPA-like approximations (a useful compilation
for atoms and molecules is given by Oddershede' )

are, in general, not as rewarding as one might ex-

pect from the effort involved.
It is the purpose of this article to present a new

approach the spirit of which is completely dif-
ferent from that of the RPA as are the resulting
mathematical procedures. For reasons which mill

become clear below, this approach will be called
the algebraic diagrammatic construction (ADC).
Here, one starts explicitly from the diagrammatic
perturbation expansion of the polarization propaga-
tor (more precisely, of the so-called transition func-
tion being equivalent to the polarization propagator
for a general transition operator). We present a
simple algebraic scheme by which (in principle)
this expansion can be summed. This scheme al-
lows immediate definition of approximations
which represent infinite partial summations being
exact up to a finite, say nth, order of perturbation
theory. We shall present the explicit construction
of these "nth order ADC schemes" for n =0, 1,
and 2. The important feature is that the resulting
mathematical procedures involve only Hermitian
eigenvalue problems within limited spaces of physi-
cal excitations, i.e., p-h, 2p-2h, . . . , excitations.
For example, the first-order ADC scheme is for-
mulated in the space of the p-h excitations. Since
this approximation yields the excitation energies
and the transition moments (for singly excited
states) consistent through first-order it can be
viewed as an analog to the RPA. The second-
order ADC employing both the p-h and 2p-2h exci-
tations is clearly beyond the capabilities of the
RPA. It gives results which are exact up to second
order for the singly excited states. It also yields

higher (2p-2h) excited states which can be treated
consistently through first order. These properties
give rise to the expectation that the second-order
ADC scheme will represent a very useful approxi-
mation for actual applications.

The plan of this article is as follows. In Sec. II
we shall give a short review of the theory of the
polarization propagator and provide for the essen-

tial definitions. The general ADC scheme and the
explicit construction of the zeroth-, first-, and
second-order approximations are presented in Sec.
III. Section IV is devoted to a discussion of these
schemes. Here the ADC results are analyzed by
comparing them with the TDA, the RPA, and the
first orders of Rayleigh-Schrodinger perturbation
theory. A short summary is given in the final Sec.
V.
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II. THE PARTICLE-HOLE (p-6) PROPAGATOR

2397

A. Definitions

Within the many-body Green s function approach the central entity for the excitation problem is the
particle-hole (p-h) response function

R 12, 1'2' 612,1'2' 611'622' &

(2a)

(2b)

0, ~(0
e(~)= '

where the one- and two-particle Green's functions are defined according to
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Here,
~

0'o& denotes the exact ground state of the considered fermion system, c; (t) [c;(t)] are one-particle
creation (destruction) operators in the Heisenberg representation associated with suitably chosen one-particle
states

~

i &, e.g., Hartree-Fock states. Throughout this article we shall make no formal distinction between
discrete and continuum one-particle states. T denotes the time-ordering operator introducing step functions
of time arguments, on the right-hand side of Eqs. (2),

which include a positive infinitesimal g in order to guarantee the convergence of the Fourier transforms.
The p-h-response function R is subject to the Bethe-Salpeter equation '

R12 12 — 612 621 l61364]~I( 43~ 34'R32 42 ~

p-h (3)

In this shorthand notation, summation and time
integration for doubly occurring indices is implied.
The effective p-h interaction E~ " can be defined
diagrammatically as the irreducible p-h vertex ' or
by functional derivatives of simpler entities. 7 Since
the exact Kt' " depends on four time arguments (or
three time differencies), Eq. (3) represents, both in
time and in co space, a very complicated integral
equation. Many attempts to solve Eq. (3) by intro-
ducing approximations for K~ " as well as for the
one-particle Green's function 6 have been reported
in the literature. ' Certainly, the most fundamen-

I

tal approach is the RPA, ' which is obtained by
employing the first-order approximation (with
respect to the two-particle interaction) for Ki' " and

by replacing the one-particle Green's functions 6
by the "free" (zeroth-order perturbation theory)
Green's functions 6 . We shall discuss this ap-
proximation in more detail in Sec. IV.

Whereas for the Bethe-Salpeter equation (3) the
full p-h response function with its dependence on
three time arguments is needed, its physical infor-
mation is already contained in the simpler p-h pro-
pagator5 6 (or polarization propagator) defined by

IIJkqk(t&t')= lim iRJk kj(tj&tk, tk&tj ) .
fptk ~f

f-&, fk&~t'

(4)

As one may ascertain from the definitions (1) and (2) the result of the right-hand side does not depend on
the time ordering of the limits. For a time-independent Hamiltonian the p-h-propagator is a function of the
time difference t —t' only. Its Fourier transform

00

IIJk j k (m) = d(t t)e'"~' ')IIJk-J'k (t, t )-
has the spectral representation
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Here E and
I

qi ) denote, respectively, the ener-

gies and the wave functions of the excited states.
It should be noted that the summation on the
right-hand side of Eq. (6) does not include the
ground state

I
%p). This is due to the subtraction

of the product G» G22 in the definition of R ac-
cording to (1). From the spectral representation (6)
it is clear that, II(io) (employing a compact matrix
notation) is the sum of two parts

where

T(io) =DtII+(io)D

is referred to as the transition function of the
operator D.

B. Diagrammatic perturbation theory
for the polarization propagator

(15)

(16}

i.e., II (co) and thus II(io) are given once II+(co) is
known. In particular, the entire physical informa-
tion is already included in each of the two parts.
It should be noted that, by the contour integration

(9)

II+(co) can be projected out of the full propagator
II. The contour, here, closes in the upper complex
plane.

We finally discuss the physical information con-
tained in the polarization propagator II(cp). Ac-
cording to the spectral representation (6) the exci-
tation energies hE =E —Ep are given by the
poles of II+(co). The corresponding transition mo-
ments

T =tv IDIep)

for a general one-particle transition operator D
reading in second-quantized notation

(10)

which are analytic in the upper and lower halves of
the complex plane, respectively. These parts are
interrelated by

As is widely known, there exist well-established
perturbation expansions for the n-particle Green's
functions which may be formulated in terms of
Feynman diagrams. ' These perturbation expan-
sions make use of the usual partitioning of the full
Hamiltonian

H =Ho+HI =Ho+ 8 + V

Hp=+E;c; c;, (17)

HI =g 8 ij Ci Cj + 2 p V&jklci Cj Cl'ck

into a diagonal one-particle part Hp and an in-

teraction part HI consisting of a nondiagonal one-

particle part 8' and the two-particle interaction
part V. Here

VIJkl = (y;(1)yj(2)
I
V(1,2)

I
yk(1)y/(2) )

denote the matrix elements of the two-particle in-
teraction (e.g., Coulomb interaction) with respect to
the one-particle states

I P;). For simplicity we
shall assume a formulation in terms of Hartree-
Fock (HF) one-particle states. In this case the E;
are the HF orbital energies and the matrix ele-

ments 8';J are given by

D=gD c„c,
~ij g Vik [jk]nk

k

(19)

are obtained from the matrix of residues

P~ = lim (co+Ep E~ )II+(pj), —
E —Eo

according to

Here, D denotes the column vector of matrix ele-

ments D~. In a notation which also applies for
transitions to continuum states the spectral func-
tion,

(14)

may be written as

Here nk denote HF occupation numbers, i.e.,
nk ——1(0) for

I pk ) occupied (unoccupied) in the
HF ground state. It is also useful to define

n~ ——1 —nk. The antisymmetrized matrix element

Vij(ki] = Vijki —Vijik is used in Eq. (19). We stress
that the choice of the HF one-particle Hamiltonian

Hp =H~F does not restrict the generality of the
following considerations. The formulation for
non-HF one-particle states is, though more
lengthy, a straightforward extension of the HF
case.

The diagrammatic perturbation expansion for
the p-ji propagator II(t, t') may be derived accord-
ing to the general procedure (see, e.g., Fetter and
Walecka ) from the expression
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~
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I
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I
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which follows from Eqs. (1), (2), and (4). The second part on the right-hand side, simply cancels a certain
class of diagrams stemming from the first part, namely, all "disjoint" diagrams which are characterized by
the structure shown in Fig. 1. The diagrammatic expansion for II(t, t ) up to second order (using the Abri-
kosov notation) is shown in Fig. 2. The precise rules for drawing and evaluating the diagrams are given in
Appendix A. A pictorial explanation of the graphical symbols is given in Fig. 3. The solid lines represent
(zeroth-order) free one-particle Green's functions

(21)

This expression follows from the definition Eq.
(2a), when the free (HF) Hamiltonian Ho and the
corresponding unperturbed (HF) ground state

~
Po&

are employed.
The evaluation of a nth order Feynman diagram

A (t, t ) requires n time integrations over the inter-
nal time arguments t&, . . . , t„. The result of these
integrations and of the Fourier transformation

A (co)=J e'~" ' 'A (t, t')d (t t')—(22)

FIG. 1. Disjoint diagrams contributing to the first
term of the right-hand side of Eq. (20).

can be read directly off the (n +2)! so-called Gold-
stone diagrams which result from the graph of A

by drawing all different orderings of the n +2 ver-

tices t, t i, . . . , t„,t'. Again, the rules for evaluat-

ing the Goldstone diagrams are listed in Appendix
A. The (n +2)! time-ordered Goldstone diagrams
for a given Feynman diagram can be divided into
two separate classes of diagrams according to the
ordering of the external times t & t' and t & t',
respectively. It is easily established that the first
class (t & t') contributes exclusively to the part
Il+(co) of the p-h propagator and the second class
(t & t') contributes exclusively to II (to). There are
no mixed terms and one can calculate II+(to) and
II (co) independently, as might be expected from
the fact that both parts contain identical physical
information. In Figs. 5 and 6 the first- and
second-order Goldstone diagrams contributing to
II+(co) are displayed.

III. THE ALGEBRAIC DIAGRAMMATIC
CONSTRUCTION

In the following we present a new approximation
scheme for the polarization propagator, which will

be referred to as the algebraic diagrammatic con-
struction (ADC). We will start by discussing the
general idea of the ADC in Sec. III A. In Sec.
III B we present the explicit construction of the
first- and second-order ADC schemes, that is,
schemes which are exact up to first and second or-
der of perturbation theory, respectively.

A. The basic concept of the ADC

The basic function considered in the following is
the transition function

T(co)=D"II~(co)D

introduced by Eq. (16). As we have seen, this
function contains the complete spectral informa-
tion for the excitation process associated with the
transition operator D. Furthermore, there is a for-
mal equivalence between the transition function
T(to) and the polarization propagator 11(co), if the
transition operator D is taken to be completely
general. Clearly, the matrix elements D„ofD
may be considered as variables and T(to) represents
a quadratic form of these variables. A specific
matrix element of the polarization propagator, for
example, II~& q, is immediately obtained by set-
ting D~ Dr q

1 and D~——=0, els——e in T(co)
As has been discussed above, the index space of

the vector D and the matrix II+ comprises all
pairs (r,s) of one-particle quantum numbers. Ac-
cording to the distinction between occupied (hole)
and unoccupied (particle) one-particle states the in-
dex space may be partitioned into p-h, h-p, p-p,
and h-h subspaces. This partitioning of T(co) ac-
cording to Eq. (23) is visualized in Fig. 4(a).

Via Eq. (23) the perturbation expansion for
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FIG. 2. Graphical representation of the polarization propagator as a sum of Feynman diagrams (in Abrikosov nota-
tion). All diagrams up to second order are shown.

II+(c0) immediately induces a perturbation expan-
sion for T(r0)

T(ro) = y T'"'(C0),
n=0

T'"'(co)=D tII+'(ro)D .

(24a)

(24b)

(1) The exact transition function T(ro) can be
written in the form

As has been discussed in Sec. II, the terms of the
perturbation expansion for II+(ro) are most con-
veniently formulated within the diagrammatic ap-
proach. The diagrammatic rules can readily be ex-

tended to the terms T'"'( )ro(see Appendix A).
Now, the basic assertions of the ADC are stated

as follows:

Within the terminology of the second quantization
we shall also refer to these configurations as p-h
(particle-hole), 2p-2h, 3p-3h, . . . , excitations.
The matrix L(. denotes the diagonal matrix of the
zeroth-order excitation energies, e.g.,

+jkjk =~j &k ~ QjDk 1 (26)

&JkI, jkI =& +&j—&k —&I (27)

etc.
(3) The elements of F and of C (the matrix of

the "modified" interaction) are defined by pertur-
bation expansions in the two-particle interaction
matrix elements. We denote the total contributions

up to nth order by

T(ci)=FtI'(r0)F .

Here, the matrix I (co) is given by

I'(co) =[col E C]——

(25a)

(25b)

(28a)

(28b)

where L and C are constant (co-independent) Her-
mitian matrices specified below and F denotes a
vector of "modified" transition moments, i.e.,
linear forms of the original transition matrix ele-

ments. We note, that, strictly speaking, the infini-
tesimal +iq should be added to the variable ~ on
the right-hand side of Eq. (25b). However, for no-
tational brevity the +ig is dropped, whenever
unessential.

(2) The vector F and the matrices I, L, and C
are defined within the familiar space of singly,
doubly, triply, . . ., excited configurations with

respect to the uperturbed (HF) ground state.

0 p-h " h-h

t
p-h 2p-2 h 5p-5h

p4 h-p p-p h-h

p h Rp-2h 5~h

t k

i Go,(t, t')
t' k'

2p-2h

&p-5h

k l

= —l Vijk(
~ — i ~ij[klj

FIG. 3. Definition of the graphical symbols in the di-

agrams.

(b)

FIG. 4. (a) Graphical representation of the transition
function T(co) according to Eq. (23). (b) The transition
function T(co) according to the ADC scheme of Eq.
(25).
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We note, that C starts with the first-order term.
The matrix E can be considered as the zeroth-
order term.

(4) The perturbation expansions for F and C can
successively be determined by requiring that the
"nth order transition functions"

T„(co)=Ft(n)[co I K—C(—n)] 'F(n), (29)

which are obtained when F(n) and C(n) are used

in Eq. (25), are exact up to nth order, that is,

T„( )=g T'"( }+O(V"+') .
v=o

(30}

It should be mentioned that this requirement is
still not sufficient to construct unique expressions
for F(n) and C(n) Ho.wever, there is a dis-

tinguished choice, suggested by the diagrammatical
perturbation expansion, as will be discussed below.

It is clear that each pair F(n) and C(n),
n =0, 1,2, . . . , constructed in this way defines an

approximation for the transition function T(co) and

for the polarization propagator D(co). These ap-
proximations referred to as the nth order ADC
schemes represent infinite partial summations for
the diagrammatic perturbation expansions being
exact up to nth order perturbation theory. For a
given F(n) and C(n) the matrix inversion in Eq.
(25b) is equivalent to the (Hermitian) eigenvalue

problem

(K+ C)X=XQ, (31)

where 0 and X denote the diagonal matrix of
eigenvalues and the eigenvector matrix, respective-
ly. The corresponding transition functions [ac-
cording to Eq. (25a)], reads

have not been justified and we shall shortly discuss
the questions of a general proof. It may appear
quite astonishing that all terms of the complicated
diagrammtic perturbation expansion for T(co) can
be collected within the simple matrix scheme of
Eq. (25). Actually, however, the first three asser-
tions are almost trivial. To see this one may con-
sider the expression for the exact transition func-
tion

T(co) =Tt[co1 b, ] —'T, (33}

which is obtained from the spectral representation
(6) of the polarization propagator. Here b, denotes
the diagonal matrix of the exact excitation energies

~Em =Em —EO (34)

and T is the vector of the exact transition moments

T =(e iDiq, ). (35)

is diagonal. It is also clear that in accordance with

point (3), both the components of T and of C~

have perturbation expansions, namely, the familiar
Rayleigh-Schrodinger perturbation expansions for
the excitation energies hE and the transition mo-
ments T, respectively. The general form of Eq.
(25) for T(co),

We note that the space of the exact excited states

~

'0 ) is isomorphic to the space of the unper-
turbed excited configurations. Obviously, Eq. (33)
represents a special case of the form which has
been postulated for T(ro) in Eq. (25), namely, a
form where the modified interaction matrix C~ ac-
cording to

(36)

T(a) ) =FtX(co1 Q) 'XtF . — (32) T(co)=Ft[a)1 K C] 'F— — (37)

The required configuration space for the nth order
ADC scheme is restricted to the lowest excited
configurations. As will be seen in Sec. III 8, the
(trivial) zeroth-order ADC is formulated within the
space of p-h excitations (singly excited configura-
tions). This is also the case for the first-order
ADC. For the second-order scheme, in addition to
the p-h excitations, one has to include the space of
2p-2h excitations. The highest excited configura-
tions which have explicitly to be taken into ac-
count for the nth order ADC are mp-mh excita-

1

tions, where m = —,n +1 for n even and

m = —,(n —1)+1 for n odd. Figure 4(b) is a
graphical representation of the ADC scheme for
the transition function.

So far assertions (1}—(4} of the ADC scheme

with a nondiagonal matrix C, is readily obtained
from Eq. (33) by replacing T and b, by
"transformed" entities

(37a)

and

K+C= YhY~, (37b)

respectively, where Y is a unitary matrix

Y~Y=1 . (37c)

Assuming that Y can be expanded formally in a
perturbation expansion, the components of F and C
have perturbation expansions as well, as is stated in
point (3).
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From the above discussion it is apparent that the
modified transition moments F and the matrix C
of Eq. (25) are not uniquely determined. Indeed,
any choice of the unitary matrix I'yields, via Eq.
(37), compatible expressions F and C. Thus, it
turns out that the nontrivial part of the ADC
scheme is connected with the determination of I'
and C up to a certain order according to point (4).
Indeed, as we shall see explicitly up to second or-
der, the comparison of the nth order transition
function T„(a)) of Eq. (29) with the perturbation
expansion of T(to) up to nth order [Eq. (30)] does
not yield an unique result for F and C, thus reflect-
ing the nonuniqueness of the expressions (37}for F
and C. The decisive point, however, is that the di-
agrammatic perturbation expansion of T(a))
represents a distinguished form, which, in turn, in-
duces a well-defined choice for F(n) and C(n}. We
shall demonstrate this up to n =2 by the explicit
constructuion of the zeroth, first- and second-order
expressions for F and C in Sec. III8. A general
proof of this diagrammatic construction and, in
particular, closed analytical expressions for the re-

sulting entities I and C are not yet available.
We note that another distinguished choice of F

and C results if one requires C to be diagonal. In
this case one arrives necessarily at Eq. (33), where
F is the vector T of the exact transition moments

[Eq. (35)] and C is determined by Eq. (36}. Here,
the comparison of the nth order transition func-
tions with the perturbation expansion of T(co}
yields directly the Rayleigh-Schrodinger expansions
for the transition moment T and the excitation
energies AE up to nth order. This procedure
may be regarded as a diagrammatic construction of
the Rayleigh-Schrodinger perturbation theory for
excited states.

B. Explicit construction of the
ADC schemes

1. Zeroth and first order

The zeroth-order diagram for T(o)) [or II+(to)]
is given in Fig. 2. The corresponding analytical
expression reads

Ct) +Ek —6j

Here, j and k denote particle and hole states,
respectively. Clearly, the right-hand side can be
written in the form of Eq. (29}

To(co) =Et(0)[a)1—K] 'F(0),

where

(38)

(39)

Kjkj 'k' ~jj '~kk'(&j &k ) ~ (40a)

Fj (k0)=Djk . (40b)

Ti(co)=F(1) [o)1—K—C] 'F(1) (41)

where according to definition (28)

F(1) F(0)+F(i)

C(1)=C(') .

(42a)

(42b)

We now expand T)(to) up to first order:

Here, the configuration space is the space of singly
excited configurations (p-h excitations), i.e.,
nJnk nJ nk ——1.

In first order we have to consider the expression

Ti(o))=L (l K) F' '+F"—'t(a)j K) 'C"'(o)1 —K) 'F' '—
+F'' "t(~1 K) 'F'"+F('—"(m 1-K) 'F(')+0(2—} . -

(43)

The first term on the right-hand side is the zeroth-order term which has already been identified with T(o)(a))
above. The remaining three first-order terms have to be compared with the diagrammatic first-order contri-
bution T" (co)). According to Fig. 5 there occur three first-order diagrams X(1)—X(3) for T(to). The expli-
cit expressions can easily be read off these diagrams.

nJ nk nJ nkX(1)= yDjk ( ~jk'[j'k}) Dj'k'
Js

(co+e'k —e ) co+Ek~ k~—J Jj',k'

(44a)

'k r,s ~j+~s &k &r CO+&k &j
(44b)
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X (1) X(2) X(3)

It is apparent that these terms fit directly into the
general algebraic scheme of Eq. (43), defining F(1)
and C(1):

Cjk,j'k'(1)= —Vjk (j kl, (45a)

Fjk(1)=Djk+g D~,
r,s J6- +E' —6'k —ET

(45b)

where

njnk ——nj nk ——1 .

FIG. 5. First-order Goldstone diagrams (in Abriko-
sov notation). The first three diagrams (out of six) con-
tributing to the +ig part II+ are shown, the other dia-

grams are obtained by turning round these. The dotted
lines indicate the external vertices.

These expressions together with Eq. (41) constitute
the first-order ADC scheme. This approximation
represents an infinite partial summation for T(co)
being exact up to first order. The required config-
uration space is the space of the p-h excitations.
We mention here that the eigenvalue problem of
the first-order ADC is identical with the TDA
eigenvalue problem. Accordingly, both methods
render the same excitation energies. In contrast to
the TDA the ADC also yields the transition mo-
ments exact up to first order, which is not the case
for the TDA. In the latter respect the first-order
ADC scheme has to be compared with the RPA
which provides both the excitation energies and the
transition moments consistent through first order.
This is discussed in more detail in Sec. IV.

Here, it is appropriate to return to the
nonuniqueness problem discussed in Sec. III A.
First we note that, the form of the expressions (44)
emerging from the diagrams gives a unique result
for F(1) and C(1). However, one may deviate
from this form by transforming quadratic terins,
i.e., products of two co denominators, into a sum of
single co denominators:

(8+Ek —e' ) (ro+&k' —Ej') =(Ej—Ek —tEj'+&k ) '[(~'+ek ~, ) ' (~+kk ~—; ) '] for (j,k)A(j', k') .

(46)

Cjk,jk ~jkI)k] ~

and the modified transition moment F(1),

(47a)

Performing this partial fraction decomposition for
all quadratic terms [except for the "genuine" qua-
dratic terms where (j,k) =(j',k')] of the contribu-
tion X(1) [Eq. (44a)] the comparison with Ti(co) of
Eq. (43) yields a diagonal modified-interaction ma-

trix C(1),

cording to Eq. (46) allows to "transfer" contribu-
tions of the modified interaction matrix C of Eq.
(4Sa) into the modified transition moments F of
Eq. (4Sb). Conversely, as is easily seen, it is not
possible to transfer contributions of F of Eq. (45b)
into the modified interaction matrix C. In this
sense, we may say that the modified interaction
matrix C of Eq. (45a) is "maximal, " and, thereby,
uniquely determined.

~jk'f j'k]n j'nk'
Fjk=Fj + g Djk

)',k ~(j,k) ~) ~k ~j'+~k'
(47b) 2. Second order

where Fjk is given by Eq. (45b). Clearly, the ex-
pressions (47a) and (47b) can be identified as the
first-order Rayleigh-Schrodinger expansions for the
excitation energies and the transition moments,
respectively. We note that this does not represent
the only additional possibility, since, e.g., one may
perform the partial fraction decomposition accord-
ing to Eq. (46) not for all but for selected quadrat-
ic terms. The partial fraction decomposition ac-

Similarly, we may now attack the second order
problem. A glance at the second-order diagrams in
Fig. 6 finds 5 Feynman diagrams A, 8, C, D, and
E, each generating 24 time-ordered Goldstone dia-
grams of which 12 diagrams contribute to T(~).
Altogether this constitutes a manifold of 60 dia-
grams for T(co), which looks somewhat discour-
aging. However, after some inspection, it is possi-
ble to classify the various contributions within the
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context of the ADC scheme quite easily. In order
to do so it is helpful to remember (see the rules in
Appendix A) that each cut between two interaction
points represents an energy denominator being of
the type

T2(co) =F(2) [col —K —C(2)] 'L(2) (48)

together with the assignation of the corresponding
diagrams. As we have already seen from inspec-
tion of diagram A (1) the configuration space now
has to be enlarged by the 2p-2h excitations. Ac-
cordingly, it is possible to further partition the
terms of Eq. (48) into p-h terms, 2p-2h terms, and
p-h —2p-2h coupling terms. A corresponding dis-
tinction for the diagrams is introduced by Table I.
Except for the 12 diagrams A (7)—A (10),
8(7)—8(10), C(7)—C(10) which will be dis-

cussed below, the classification of diagrams ac-
cording to Table I is straightforward. Since I" ',
I'"', and C"' for the p-h space have already been
determined in zeroth and first order, many terms
have simply to be verified. For example, the con-
tribution (I) for the p-h space is just given by the
diagram C(4) as can easily be checked.

There are four new entities which are to be
determined in second order, namely, I'J'k' and

C~q J'k for the p-h space, F~k~ for the 2p-2h space,
and C-k;;- k I for the p-h —2p-2h coupljtng. Befog(1)

presenting the final result we shall give a few corn-
ments on the individual terms. According to Table
I, the coupling matrix elements Cjk'; J'k I are ob-

(+&k+&~+ —&I —& — . )
—1

if the cut lies between the two external vertex
pairs, or, of the co-independent-type

(6k+Fr . . —. E —6. . . ).
—1

if the cut lies above or below the two external ver-
tex pairs. Here k, I, . . . and i, j, . . . correspond to
hole and particle lines, respectively. By inspecting
the cuts of each diagram one obtains a useful clas-
sification scheme which will facilitate the intended
analysis. For example, the diagram 3 (1) starts
with a p-h denominator (co+ok —ej ) ', continues
with a 2p-2h denominator (co+el e,„E~——e;)—
and ends again with a p-h denominator
(co+E k

—ej ) . Obviously, this diagram is associ-
ated with the coupling between p-h and 2p-2h exci-
tations and its contributions can readily be traced
within our matrix formalism.

In Table I we have listed all second-order terms
of the transition function
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(1) (2) (3) (&) (5)

0„

l ~

(6) (7) (8) (9) (10) ()~) (&2)

9~9
0 Q,o,

0

~1\

E (P„ II'
g II Q'g ll ll

ll

FIG. 6. Second-order Goldstone diagrams {in Abrikosov notation) contributing to LI+, the other 12 diagrams contri-
buting to II are obtained by turning round these. The dotted lines indicate the external vertices.

tained from comparison of the contribution (III}
with the six diagrams A (1),B(1),D(1), D(7),
E(1), and E(7) Although . a single diagram, say
A (1), contains terms which correspond to Pauli-
forbidden configurations, e.g., (jikk), these terms
cancel out if all six diagrams are taken into ac-
count. Thus, one may readily introduce the re-
striction i &j and k ~ / for the space of 2p-2h exci-
tations (ijkl) This al.so applies for the contribution

(1)(I) by which the modified transition moments Fzkl
are obtained, as well as for the contributions (II)
and (II)'. The latter contributions give no new in-

formation once C"' and F"' are determined; al-

though, one does have to check that they are
indeed consistent.

As has already been mentioned, there are 12 dia-
grams A, B, C(7)—(10) which do not fit as
straightforwardly into the matrix scheme as the
others. Each diagram has a cut corresponding to a
3p-3h denominator

(co+6k +6k +6'g —ej —Ej —e„)

and one might conclude that this introduces an ex-

plicit coupling to the 3p-3h space. However, this is
not the case, since these denominators are cancelled
if one takes all four time orderings (7)—(10) for
each species 3, 8, C into account. We shall
demonstrate this for the diagrams C(7}—C(10).
The explicit contributions read

10

g C(I)= DJ'kDJ'k g vj„(k,)v„;(,'„)n„n, h, (49a)
I =7 n-n„=n n„.=1l k J

I', S

where

—1 —1 —1 —1 —1 —1 —1 —1 —1ih &12 (Nl N2 +Nl el +&2 e2 +el E2 ) (49b)
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and

~12=(~+Ek+Ei '+Es Ej Ej'

C01=(CO+Ek —'Ej ),
C02 = (CO+ Ek~ E& ),—
Ei=(Ek+Eg Ej—Er—) p

E2=(E'k +Eg —Ej' —E„) ~'

(49c)

The four energy-denominator products in h correspond to C(7), C(8), C(9) and C(10), respectively. As is
apparent, h simplifies to

1

] ) 2 1 ] 1 l
—(E1+E2)

I 2 El E2 2 I E1+E2+~1+ 02 I=l C02 + g (C01 +C02 )
~i~2

(50)

where the 3p-3h denominator m~2 is canceled. Inserting the last expression for h into the right-hand side of
Eq. (49a) one obtains

10
0 CJk,J'k nJnkni nk ITjnk
jk j'k'+g (DjkF k+F kD k), . .

(C0+Ek —
E& )(CO+Ek Ej )— , k Cgi+Ek —E.

j',k'

where

(51)

1

2 (Ek+Ek Ej Ej }+—Eg ——E„)
Cjk j'k' gI jr[kg]I k's[j'r] risrir

rg (Ek+Eg Ej Er)(ek'+Eg —Ej' —Er)

1 Vjr[ks] ~k's[J'r] s r j' k'
Fjk = —,' „, (Ek+E, —E —E, )(Ek+E, —E, —E, )

'
j',k'

(52a}

(52b)

The first part on the right-hand side of Eq. (51)
has the form of contribution (V) in Table I and

CJk J'k represents a contribution to CJk J'k . The(2)

second part fits in contributions (IV) and (IV)* of
Table I. Here, I'Jk represents a contribution to the
second-order modified transition matrix elements
F'2'. By analogy, the diagrams A, B(7)—(10) con-
tribute to C' ' and I' '

We now collect the final results C and I' of the

second-order scheme. The configuration space
consists of all p-h excitations (j,k) and 2p-2h exci-
tations (i,j,k, I} where the restriction i &j and k & l
is maintained. The p-h interaction matrix elements
C read

C(A) (a) (c)Cjkj'k' ~jk'[j'k]+ Cjkj'k'+Cjkj'k' +Cjkj'k'

where

1

Eu +E„E„(Ej+Ej)—
Cjk j'k' 2 QI jr[us]t uu(j'r]ririiuiiu (E„+E„E„Ej)(—E„+—E„—E„—Ej )

1

(B) —,(Ek+Ek )+E„—E„—E,
Cjk,j'k =

2 QI rs[ku)I k'u[rs]riu+r~s ~jj' ~(Ek+E„—E„—E, )(Ek+E„—E„—E, ) " ' (53a}

1

(&) (Ek+Ek —E —E )+E—E'' .
2 J J s r

Cjk,j'k' =g Vjr [ks] ~k's[j 'r]nr as
(Ek +Eg Ej E„)(E—k'+Eg —Ej~——E„)'
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Here, the superscripts A, 8, and C indicate the origin of the respective contributions in the second-order dia-

grams. The p-h —2p-2h coupling matrix elements read

Cjk,ij''k'1' ~ji' Vk'1'fkj '] ~jj ' ~k'1'[ki'] ~kk'~jl'[ij'') +~kl' ~jk'[i'j'] ~ (53b)

and the 2p-2h interaction vanishes (in the strict second-order ADC)

Cij kl, ij''k'1' (53c)

The indices in these equations are restricted according to

njnk=nj'nk'=ninjnkni=&i'nJ'nknl =1, and ~ &j, i'&j', k &l, k'&l'.

The expression for the modified transition moments Fjk for the p-h space are somewhat lengthy, since the
second-order contribution consists of 13 terms

10

„,ej+e, —ek —e,
(54a)

The individual second-order contributions are listed in Appendix B. The modified transition moments I',Jkl
for the 2p-2h space read

ul(6„+6( e; E) ) ——(e'k +6„—6; —&J )

~j[kl] 4 ~ [kl]n
D;, — Dp

s 6'k +E'1 —E&
—6s ~k +~l ~i ~s

1fgnjnknl ——1, i &j, k & I (54b)

The expressions (53) and (54) for F and C employed in the basic equation (48) define the second-order ADC
scheme. Again, this approximation constitutes an infinite partial summation of the perturbation expansion
of T(co) being exact up to second order. A thorough discussion of the properties of this approximation is

given in Sec. IV.
We mention, that it is straightforward extension to take into account the (first-order) 2p-2h interaction-

matrix elements

Cij kl, i'j 'k'1' ~kk'~ll' Vij [ij'']+ ~ii'~jj ' ~k'1'[kl]

~jj '~ll' ~ik'[i'k] +~jj '~kk' ~il'[i'1] +~ii'~ll' ~jk'[J'k] +~ii'~kk' ~jl'[J'1]

+[k'~I']+ [i'~j '] [k'~l', i'~—j '] . (55)

Thus an important class of third- (and higher-) or-
der diagrams is included. As a result, the excita-
tion energies for (2h-2p) excited states are obtained
consistent through first order. This is discussed in

i

Sec. IV.
We note that the equations (48), (53), (55), and

(54) of the second-order ADC reflect the symmetry
properties of the considered Hamiltonian H and
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the transition operator D, respectively. If, for in-

stance, the Hamiltonian is spin independent, one
easily arrives at a spin-free formulation for the di-

agonalization of the modified interaction matrix C,
where singlet and triplet states are decoupled a
priori.

IV. DISCUSSION OF THE FIRST- AND
SECOND-ORDER ADC SCHEMES

cally different procedure and it is interesting to
demonstrate this difference explicitly. We start
with a short presentation of the essential RPA and
TDA equations in Sec IV A. A comparison of the
second-order excitation energies is given in Sec.
IV B. In Sec. IV C we consider the transition mo-
ments and in Sec. IV D we shortly discuss the
ADC results for higher excited states.

Until now the discussion of the ADC scheme
has concentrated upon formal aspects, but in order
to obtain some physical insight it is useful to in-

vestigate the ADC approach within a wave-
function description for the ground and excited
states. As a tool for this analysis we shall use the
comparison with the lowest-order expressions of
the familiar Rayleigh-Schrodinger perturbation
theory for the excitation energies and transition
moments. In addition, we shall compare the first-
and second-order ADC with the TDA and RPA
schemes. Both the RPA and the first-order ADC
represent infinite partial summation for 1(co) [and
II(co)] being exact up to first order. However,
these methods achieve this result by a mathemati-

A. The polarization propagator
in the RPA and TDA

IIRPA(~) [Ll(0) ~(~) ( RPA] —i

where II'o' is the "free" polarization propagator

(56)

As is well known, there are many ways to derive
the RPA-polarization propagator IIRP~(co). Within
our context one may start from the first-order
Bethe-Salpeter equation which is obtained from
Eq. (3) by replacing the full one-particle Green's
functions 6 by free functions 6 and the irreduci-
ble p-h vertex K&" by its (constant) first-order con-
tribution. Making use of Eq. (4) one arrives at the
simple algebraic equation

(o) ~png np~g
II „,(co)=5~ 5,g

CO+6s 6r+l'g N+6s 6r l 7/
(57)

and C is given by

(5&)

where

&gk, ~ k =5J~ 5kk «» &k»—
Here, the configurations space (r,s) comprises in
addition to the p-h excitations, also the "unphysi-
cal" h-p excitations where r denotes a hole and s a
particle state, respectively. Diagrammatically, the
RPA polarization propagator represents the infin-
ite partial summation of a special class of Feyn-
man diagrams, namely, the RPA diagrams shown
in Fig. 7. The first-order irreducible p-h vertex
CRP~ of Eq. (58) is actually derived from the
first-order diagram. By partitioning the matrix
C into p-h and h-p parts one arrives at the fa-
miliar notation' for Eq. (56)

~jkj 'k' ~jk'[J'k] ~

~jkj'k' ~jj'tk'k] ~

njnk ——nj nk ——1 .

(59b)

As is well known, the matrix inversion problem ac-
cording to Eq. (56) [or Eq. (59)] is equivalent to
the RPA pseudoeigenvalue problem

IIRPA(~ )

col —EC —2
+ + + + ~ ~ ~

(59a)
FIG. 7. Graphical representation of the RPA polari-

zation propagator as a sum of Feynrnan diagrams.
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(K+C" ")X=NXQR ", (60a)

X~XX=1V, (60b)

where X and 0 denote, respectively, the eigenvec-
tor matrix and the diagonal matrix of eigenvalues
and N is a diagonal matrix,

(60c)

Similar to the exact polarization propagator,
II"Pk is the sum of two equivalent parts [see Eqs.
(7) and (8)]

Clearly, Eq. (63) represents a Hermitian eigenvalue

problem within the space of p-h excitations. Di-
agrammatically, the TDA-polarization propagator
of Eq. (63) represents the infinite sum of certain
Goldstone diagrams, namely, the first time-ordered
Goldstone diagram associated with each RPA-
Feynman diagram of Fig. 7.

B. Particle-hole excitation energies

up to second-order perturbation theory

We consider an (singly) excited state
I
%',b &

which derives (in the sense of the adiabatic
theorem) from the unperturbed singly excited con-
figuration (p-h excitation)

e.b&=c.cb I@0& (65)
LIRPA(~ ) LIRPA(~ ) + IIRPA( ) (61)

According to Eq. (16), the RPA-transition function
is given by

Here,
I 40& denotes the Hartree-Fock ground state.

The exact ground-state energy up to second order
Eo(2} is given by the familiar Rayleigh-
Schrodinger expression

TRP+(~ ) D tgap4 (—~ )D (62)

The TDA results by restricting the RPA equa-
tions (59) and (62) to the p-h space:

Eo(2) =Ep(1}

ij [ki] I

n 'n J'nk nl
j E +E —Ek —El

k&l

where

(66)

II (co) =(col —E—A )

TTD&(~) —D tllrD&(~)D

(63)

(64)

Eo(1)=(BOIH
I
40&

is the first-order ground-state energy. The energy
of the excited state up to second order reads

Eab(2) Eo(1)+'4 &b I ah[ah]+ Uab(p-h )+ Ub(2p 2h )+ U,b(3p--3h ) . (68a)

Here, the three terms U,b(np-nh), n =1,2, 3 denote second-order contributions arising, from the interaction
of the configuration

I
Cab & with (other) p-h, 2p-2h, and 3p-3h excitations, respectively:

U.b(p h)= g -n;n, ,
I

I ak[bj] I

'
k Ea Eb Ej+Ek

Q(a, b)

(68b)

U,b(2p-2h ) = I Ibj[ki] I njnkni
I
I ak[ji] I ninjnk

j~ ~b &j+&k +&I i &j ea +'Ek 6i 6j
k&l k+b

~aj [ak] Vbj [bk]+ nJ nk +C.C.
j~ Ej —Ek
k+b

(68c)

U,b(3p-3h) = —g n;n, nkni .I ~ij[ki] I

'

(j~ Ej +EJ 'Ek El
k &l+b

Now the second-order excitation energy EE,b is easily obtained by subtracting Eq. (66) from Eq. (68a):

(68d)
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bEab =Eab(2) —Eo(2}=@a—eb —V b[,b]+ U b(p h-)+ U b(2p-2h)+R, b,
where

(69a)

I V.J[kl] I'njnknj
I VJ[bk] I

'n n;nk

E'a +EI—6k E'j —k; e'; +E~
—kk eb—

I Vaj [kb] I nj nk

~ k Ea+ej 6b Ek
(69b)

(&)
~a ~b ~ab [ab] +ab, ab, +Cab, ab . (70)

The part U,b(p-h) is associated with the interaction
of

I 4,b ) with the other p-h excitations

(J,k)Q(a, b) and U,b(2p-2h) results from the in-
teraction with the 2p-2h excitations according to
the matrix elements (53b). The interesting part
R,b of Eq. (70b) corresponds to the second-order
diagonal matrix element

(2j
~ab Cab, ab (71)

As has been discussed above, C' ' is derived di-
agrammatically from the time orderings (7)—(10}
of the diagrams', 8, and Cof Fig. 6. One may
easily check that the three parts of R,b in Eq.
(69b) correspond to the individual contributions of
diagram 3, 8, and C, respectively.

As we have seen, the second-order Rayleigh-
Schrodinger expression (69) for the excitation ener-
gies includes contributions associated with doubly
excited (2p-2h) configurations in the ground-state
wave function and with triply excited (3p-3h) con-
figurations in the wave function of the excited
state. This means that, within a wave-function ap-
proach, e.g., the conventional configuration in-
teraction (CI), one has to perform a double excita-
tion CI calculation for the ground state and a tri-
ple excitation CI calculation for the excited states
in order to obtain the (p-h} excitation energies con-
sistent through second order. The polarization

is the remainder of a partial cancelation of the 3p-
3h contribution U,b(3p-3h) for the excited states
and the 2p-2h contribution for the ground state.

Now we are in the position to compare the
second-order excitation energies with the second-
order expressions resulting from the ADC schemes,
the TDA, and the RPA. We begin with the
second-order ADC as defined by Eqs. (48}, and
(53)—(55). Here, by construction, the excitation
energies are exact up to second order, i.e., given by
Eq. (69). It is interesting to trace the different
contributions within the algebraic scheme. The
straightforward matrix-perturbation theory identi-
fies the first-order contribution on the right-hand
side of Eq. (69) as the diagonal matrix element of
E and C"'.

I

propagator calculation by the second-order ADC
scheme, on the other hand, achieves its result by
one diagonalization within the space of singly (p-h)
and doubly (2p-2h) excited configurations. Here,
the modified p-h-interaction matrix elements C' '

account for the second-order ground-state correla-
tion and the interaction with the triply excited con-
figurations.

We now turn to a discussion of the TDA and
RPA results. The second-order excitation energies
within the TDA approach are found to be

bEab =ra kb V—ab[ab]+ U b(P h) . -lA (72)

Obviously, this expression is only exact up to first
order, since in second order only the interaction of
the special p-h excitation (a,b) with the other p-h
excitations is taken into account.

For the RPA, we find by a straightforward per-
turbation theory for Eq. (60) the second-order re-
sult

~Eab '4 eb Vab[ab]+ ab(P h}RPA

I Vaj [kb] I nj nk

~

k ea +EJ—Eb —6k

By comparing with the full second-order expres-
sion (69) one immediately sees that the RPA exci-
tation energies are only exact up to first order. As
the TDA, the contribution U,b(2p 2h) of the-2p-2h
excitations for the excited state is completely ab-

sent. Since this contribution represents a signifi-
cant reduction of the energies of the excited states,
the RPA (and TDA) excitation energies are, in

general, too large. The contribution R,b of Eq.
(69b) is only partly considered by the RPA. Only
the third term corresponding to the RPA diagrams
C(7)—C(10) is taken into account. Consequently,
the RPA excitation energies might only be better
than the TDA results because of accidental numer-
ical compensation, and, in fact, are often not as
good. This can be seen by inspection of the full
contribution R,b of Eq. (69b): whereas the first
two parts corresponding to diagram A, B (7—10)
which are missing in the RPA, are positive, the
third part, included in the RPA, is negative. Thus,
the RPA always lowers the TDA excitation ener-
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gies (in second order), whereas the full correction
R,b in general is positive. In contrast to what is
often assumed, the RPA should by no means be
more highly esteemed than the TDA, at least as
far as the excitation energies of finite Fermi sys-
tems are concerned. On the other hand, the RPA
is superior to the TDA with respect to the transi-
tion moments which are calculated consistent
through first order by the RPA as will be dis-

cussed in Sec. IVC.

Inserting these results into the right-hand side of
Eq. (76) one immediately sees that T,~ comprises
the first and the third term of the full first-order
transition moment T,b, whereas the ground-state
correlation term (75c) is missing.

The RPA, on the other hand, renders the transi-
tion moments exact up to first order. By partition-
ing the RPA eigenvector corresponding to the p-h
excited state

I
'P,b & into a p-h part X b and into a

h-p part Y b one may write

C. Transition moments up to first-order
perturbation theory

Now we consider the transition moment

D

for the (p-h) excited state
I %,s &. Here, D is the

one-particle transition operator of Eq. (10). Up to
first order one obtains

(74)

'rab' =
& ~'~b

I
D

I
@o& + & @ah I

D
I
q'o" &

+ &q"'b'ID
I

+'o&

&c~b ID I
@0& D&b &

(75a)

(75b)

(4, ID I

ql"'& —y D
6'a +Ej —Gb —6k

(75c)

(e.'," I
D

I e, & =
j,kQ(,a, b) ~a ~J ~b +~k

(75d)

The first term (75b) is the zeroth-order transition
moment. The two first-order contributions (75c)
and (75d) correspond to the first-order ground state
and to the first-order excited state, respectively.
We note that only the singly (p-h) excited configu-
rations in

I
4,'s'& give a contribution to T,'s'.

As in Sec. IV 8, we now compare the first-order
transition moments with the outcome of the TDA,
RPA, and ADC. For the TDA we find

TDA
Tab +~bD ~ (76)

for j=a, k=b
else

~(0)
~jk ab 0

0 for j=a, k=b
Vbj [ak]

I1)
Xjk,ab

else, ink ——1 .
Ea —

6~ —Cb +6

(77a)

(77b)

where X b denotes the eigenvector associated with
the excited state

I
%',b &. Up to first order its ele-

ments read

T,b =(X~b~Yb )D, (78)

Vkb [aj]
Yjk,ab njnk =1 .

6a+Ej —6k —6b
(79)

Clearly, by inserting the first-order results for X b

and Y b in the expressions on the right-hand side
of Eq. (78), one recovers the full first-order contri-
bution of T,b. Thus, one can say that the RPA
provides both the transition energies and moments
exact up to first order, whereas the TDA gives ex-
act first-order results only for the transition ener-
gies. In particular, the inclusion of the first-order
ground-state correlation term for the transition
moment justifies the common statement that the
RPA, in contrast to the TDA, considers ground-
state correlation.

Finally, we consider the ADC result. By con-
struction the first-order ADC defined by Eqs. (41)
and (45) already gives the full first-order transition
moment. As has been mentioned above, the eigen-
value problem of the first-order ADC is identical
with the TDA problem. This can be seen by in-
spection of the Eqs. (41), (45), (59) and (63). Cor-
respondingly, the eigenvector X b for the p-h excit-
ed state

I %,b & is identical to the TDA eigenvec-
tor. For the ADC, however, the transition mo-
ment is obtained by multiplying X~b with the vec-
tor F of the modified transition matrix elements of
Eq. (45b):

ADC
Tab ——X~bF .

Up to first order this yields

T (1)=X'b' F' '+X~s' F"'+X'b' F' ',

(80)

(81)

where, of course, the vector D now comprises the
h-p part as well. The contributions up to first or-
der for the p-h part X~b are identical with the
TDA results of Eq. (77), while for the h-p part one
finds up to first order
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in accordance with the three terms of the first-
order transition moment given in Eq. (75).

We have seen that the RPA can be viewed as an
infinite partial summation for the polarization
propagator, which is exact up to first order both
for the (p-h) excitation energies and the transition
moments. This also applies for the first-order
ADC scheme. However, both methods are quite
distinct and it is worthwhile to repeat the differ-
ences in the mathematical procedures. The RPA
represents a non-Hermitian (pseudo) eigenvalue
problem in a configuration space, which is twice as
large as the space of the singly (p-h) excited config-
urations. The RPA transition moments are ob-
tained by multiplying the RPA eigenvectors by the
original transition-matrix elements D~ I'Eq. (78)].
The first-order ADC scheme, on the other hand, is
(as the TDA) a Hermitian eigenvalue in the space
of singly excited configurations. Instead of using
the matrix dements of B, one multiplies the eigen-
vectors with modified transition-matrix elements I'
in order to obtain the transition moments.

Similarly, one can analyze the second-order con-
tributions for the transition moments. However,
since the resulting expressions are already some-
what lengthy, we do not enter this discussion here.
%'e only mention that, again, the second-order
ADC scheme of Eqs. (48), (53), and (54) gives the
correct second-order results, whereas the RPA re-
sults are already incomplete and selective in this
order.

~@ijkl ~i +~j ~k ~l +Cijkl, ijkl ~ (83)

where Cjki,jki is given by Eq. (55).
We finally consider the transition moments for

the higher excited states. The perturbation expan-
sion of the 2p-2h excited state

I 4;jki & deriving
from

I
4,ski & up to first order reads

~kl [ij ]
I ~;,ki &

=
I +;;ki &

—
I @o&

&i +&j—&k —&l

+ I
p-h &+

I
2p-2h &+

I
3p-3h &

+ I4p-4h & . (84)

In the first-order ADC scheme, as in the TDA
and RPA, higher excited states are not considered
at all. In the second-order ADC scheme the dou-
bly excited (2p-2h) configurations of Eq. (82) come
into play. Of course, the resulting (2p-2h) excited
states cannot be expected to be consistent through
second order. For these states, the consistency of
the transition function T(co) through second order
implies that the transition moments and excitation
energies are consistent through first and zeroth or-
der, respectively. As has already been mentioned,
a simple extension of the strict second-order ADC
scheme, namely, the consideration of the 2p-2h
interaction-matrix elements (55), yields also the ex-
citation energies exact up to first order. The
correct first-order expressions read

D. Higher excited states

In Sec. IV 8 and Sec. IV C we have discussed the
excitation energies and transition moments of ex-
cited states which derive (in the sense of the adia-
batic theorem) from the unperturbed singly excited
(p-h) configurations. These states may be called
the main states of the spectrum associated with the
transition operator B. Here, already the zeroth-
order transition moments contribute to the spectral
strength. In addition to the main states, there oc-
cur secondary states in the spectrum which are re-
lated to higher excited configurations, e.g., the
doubly excited (2p-2h) configurations

I@'ijkl & =c cg~k~l I
@o&

The contributions
I np nh & (n =1-,2,3,4) arising

from the (linear) coupling of the doubly excited
(2p-2h) configuration

I 4;ji,i & with np nh excit-a-

tions are somewhat lengthy and need not be speci-
fied here. The transition moment

T,,„,=(ej„ID
I
q, & (85)

obviously has no zeroth-order contribution for a
single-particle operator D. The first nonvanishing
term occurs in first order

(86)

Tiki=&~'jki ID I'4" &

T,'j,",=(e,j„ID I
q',"+(q,'j-,', ID I

c,& .

For
I
0",gi & in the second term the np nh excita--

tions with n )2 make no contribution, accordingly,
we obtain

n;njnknl ——1 .

We note that the zeroth-order transition moments

(4;jki I
D

I
4o& vanish (as long as D is a one-

particle operator).

(@oID I4o&
i +Ej—Ek

+(p-h ID I c,& . (87)
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The first two terms are readily identified with the
modified transition-matrix elements of Eq. (54b)

(e, iD ie, ) .~ij [kl]

6 +6' 6k-

The reinaining term (ph
~

D
~
@o},associated with

the singly excited (p-h) configurations in the excit-
ed state

~
0',ski },is included in the ADC according

to the interaction-matrix elements (53b).

(88)

V. CONCLUSIONS

The algebraic diagrammatic construction (ADC)
presented in this article allows the summation of
the diagrammatic perturbation expansion of the
transition function T(co). This function, being (for
a general transiton operator) equivalent to the po-
larization propagator, can be written in the useful
form of Eqs. (25) which in turn splits the problem
of determining T(co) into two separate problems,
namely, the construction of the modified transition
moments I', and the diagonalization problem for
the modified interaction matrix C.

The general ADC scheme introduces in a natural

way its nth order approximations representing in-

finite partial summations exact up to nth order.
The zeroth-, first-, and second-order ADC schemes
have been explicitly constructed and discussed. We
wish to repeat here the main features of these
schemes. First we stress that the mathematical
procedure requires the solution of a Hermitian
eigenvalue problem for a restricted space of unper-
turbed excited configurations (physical excitations).
This is an important advantage with respect to
RPA-like approximations, which encounter a non-
Hermitian eigenvalue problem and, in general, deal
with undesirably large configuration spaces, since
unphysical excitations have to be included. The
ADC, on the other hand, introduces modified ma-
trix elements (and transition moments) which are
no longer first-order (zeroth-order) expressions in
the two-particle interaction, but include higher-
order terms which are derived from the diagram-
matic perturbation theory. Thus, the ADC may be
viewed as representing an advantageous mixtum
compositum of a diagonalization problem and per-
turbation theory.

The first-order ADC is formulated within the
space of the p-h excitations. The diagonalization
problem, yielding the excitation energies, is
equivalent to the TDA scheme. In contrast to the

TDA, however, the resulting eigenvectors are mul-

tiplied by modified transition-matrix elements; con-
sequently both the excitation energies and the tran-
sition moments are consistent through first order,
as has been shown by analyzing the results using
formal perturbation theory. In this sense the first-
order ADC is analogous to the RPA which also
gives results consistent through first order. We
would also note that the RPA has some obvious
deficiencies which are avoided in the first-order
ADC, e.g., selective and unbalanced contributions
in second and higher order and the occurrence of
complex solutions for excitation energies of low-

lying excited states.
A decisive step beyond the RPA is certainly the

second-order ADC scheme: its configuration space
comprises the p-h and 2p-2h excitations, and is
thus of a size, which is familiar from the conven-
tional CI calculations. The modified interaction-
matrix elements and the modified transition mo-
ments contain terms of second order in the interac-
tion, however, the expressions given by Eqs. (53)
and (54) are still quite transparent and easy to im-

plement in a computer program. By construction,
the excitation energies and the transition moments
of the singly excited states are now exact up to
second order. We emphasize once more that in or-
der to be consistent through second order in a
wave-function approach one has to take into ac-
count already 3p-3h excitations (triply excited con-
figurations with respect to the HF ground state)
for the excited states and 2p-2h excitations for the
ground state. In addition to the main excited
states connected with the p-h excitations, higher
excited (2p-2h) states are obtained in the second-
order ADC, being consistently treated through first
order. We believe that the second-order ADC
scheme, in particular, will prove to be a successful
approximation scheme for the excitation problem,
maintaining the advantages of the many-body ap-
proach, i.e., the direct and consistent calculation of
the transition energies and moments, and circum-
venting the difficulties and complexities of the pre-
vious RPA-like approximations.
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APPENDIX A

Diagrammatic rules

In the following we briefly review the rules for
the diagrammatic perturbation expansion of the
polarization propagator and the transition function.
We start with the rules for the Feynman diagrams
(for more details see, e.g., Fetter and Walecka ).

(F1) Draw all topologically distinct connected
diagrams with n interaction (wavy) lines and
2n +2 directed free Green's function (solid) lines,
which start and end at the external times t' and t,
respectively, with a pair of up- and downwards-
directed free Green's functions.

(F2) Skip all disjoint graphs, i.e., graphs of the
structure shown in Fig. 1. Such terms are exactly
canceled by the second part on the right-hand side
of Eq. (20).

(F3) Label the graphs with one-particle indices
and time arguments according to Fig. 3. This fig-
ure also defines the graphical symbols. Sum over
all internal indices and integrate over all internal
times.

(F4) Multiply by a sign factor ( —1),where I. is
the number of closed (fermion) loops and by an ad-
ditional factor (+i) stemming from the definition
(20). When all i factors for the nth order diagram
are collected one obtains the overall factor

Employing the Abrikosov notation, i.e., replacing
the wavy interaction lines by interaction points
representing the antisymmetrized matrix elements

~ij [kl] Vijkl ~ijlk ~

reduces the number of diagrams considerably, al-

though, the overall sign is not uniquely determined
in this notation.

(FS) The correct sign of the graph follows from
the comparison with the sign of one Feynman
graph which is contained in the Abrikosov graph.

(F6) As an additional rule for Abrikosov graphs
one has to multiply each graph by 2, where P is
the number of permutations of two 6 lines leav-

ing the graph topologically unchanged.

As an example we consider the second-order Feyn-
man diagram A, represented by the graph A (1) in

Fig. 5

A (t, t') =i —,g VJ»(~l V~(J'»} Gk(t', t)f f dti dt2GJ (t, ti )G„(ti&t2)G, (ti &t2)G„(t2&t, )GJ'(tp&t') . (Al)
r, s, n

Here one finds L = 1 and P = 1.
The evaluation of an nth order Feynman dia-

gram X(t, t') requires the performance of n time in-

tegrations over the internal time indices t&'. . .t„.
The result of these integrations and of the addi-
tional Fourier transformation

(A2)

can be read directly off the so-called Goldstone di-

agrams. The rules to draw and evaluate the Gold-
stone diagrams are as follows:

(Gl) For a given nth order Feynman diagram,
draw all (n +2)! time-ordered diagrams which re-
sult from permuting the ordering of the times
t, ti. . .t„,t'. For definitness, we refer to a repre-
sentation of the Feynman diagrams where t and t'
are the upper and lower external times, respective-

ly, and where the pairs of external lines are ordered
such that the first line is directed upwards and the
second line is directed downwards (see the exam-
ples in Figs. 5 and 6}. We further introduce an

auxiliary line connecting the external times t and t'
with the direction t~t'.

(G2) For the Goldstone diagrams the direction
of the lines has a meaning: Upwards- and
downwards-directed lines represent particles (unoc-
cupied one-particle states} and holes (occupied
one-particle states}, respectively. Label all lines

with one-particle indices respecting this distinction.
(G3) There are no longer time arguments associ-

ated with each vertex. Instead, each cut (a hor-
izontal line) between two successive vertices (in-

cluding the external) introduces a denominator of
the type

(CJt&7+ Ek+ et . . 'E —E.——. + l 7/)

Here, each cut line gives a contribution: hole-lines

k, l, . . . , contribute the one-particle energies ek,
el, . . ., particle line i,j,. . ., contributes the negative
energies —e;, —ej, . . . . The energy variable e is
introduced if the auxiliary line is cut, and has a
positive (o = 1) or a negative sign (o = —1) accord-
ing to the downward or upward direction, respec-
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tively. If the auxiliary line is not cut, then (7=0
and a constant denominator results in which the
imaginary infinitesimal ig can be omitted.

(G4) Each hole line introduces the factor ( —1).
Thus, multiply by a sign factor ( —1) +, where L
is the number of closed loops and M is the number
of hole lines. Since each interaction vertex gives a
factor ( —i) and each cut gives a factor (+i), one
obtains together with the factor +i from the defin-

ition (20) the additional overall factor (+i}( —i)
X (i)"+' = —1.

For the Goldstone diagrams one may also employ
the Abrikosov notation; the corresponding rules

(G5) and (G6) are analogous to (F5) and (F6). As
an example we consider the second-order Gold-
stone diagram A(8) of Fig. 5:

A(8)= —i QVjr[uu]Vtsv[j'r]nrntsnv(N+ek ej'+—l'rj) (N+6k+ets+Ev —
E~

—6r+lr'i) (6u+Ev —
Gy —6r)

FQu (A3)

Here, M=3, L=1, P=1.

The (n +2}!Goldstone diagrams of a given nth
order Feynman diagram can be divided into two
classes of diagrams according to the two possibili-
ties t & t' and t' & t for the external vertices. As is
clear from the rule (G3}, the diagrams of the first
class have only +ig denominators (analytic in the
upper half of the complex plane} and contribute
exclusively to the part II+ of the polarization pro-
pagator. Analogously, the second class contributes
only to II

The transition function T(co) [defined by Eq.
(16)] derives from part II+ of the polarization pro-
pagator. Each diagram for II+ corresponds to a
diagram for T(co) by associating the transition-
rnatrix elements D with the external vertices. To
be definite, one may start from the original Feyn-
man diagram with the upper vertex Djk and the
lower vertex D~'k. As examples we refer to the di-

agrams C(7)—C(10) of Fig. 5 which yield the
contributions in Eq. (49). Finally, it is worth men-

tioning that an explicit expression for the full
second-order contribution of T(co) [and II+(co)] is
readily obtained by using the expressions (53) and
(54) in the algebraic terms collected in Table I.

APPENDIX B

Second-order terms of the modified
transition momnets for the p-h space

) jr [nu] nu [sr]V V

e[nvrj ]k[nurs]

rs[kn] un[rs]V V

e[knrs] e[nurs]

(C) 1 jr [kn] un [sr]V V

e[knj r]e[unsr]

(2 )) I rs[nu] nj [rs]V V ~

e[uj )e [nurs]

nu [no] rj [nulV V ~

e[wj ]e[nurj ]

(2,3) & ~ [nu] nu [kg]V V

e[kr]e[nurs]

(2 4) 1 rs [kn] tn [rs]V V

E[kt]E[knrs]

jn [rk] rs [un]V V

e[kvjs]e[nvrs]

us[vr] jr [nk]V V

e[knjr]e[kujs]

(2 7) J'u [ns] sr [uk]V V

e[knj r]e[kurs]

(p S) js[un] u [ k]V. V

e[kvjr]efnujs]

(2 9) Jr [ss] ss [vk]V V

e[knj r]e[knst]

(Z ip) ) jr[vw] uw [uk]V V

e[knj r]e[vwj r]

(B1)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

(B1 1)

(B12)

(B13)

Here we present the explicit expressions of the
second-order terms appearing on the right-hand
side of Eq. (54a). The first three terms correspond
to the time orderings (7)—(10) of the diagram
types A, B, and C, respectively. The following ten
terms IJ'k' ', I =1,. . ., 10 correspond to the time
orderings (5)/(6) and (11)/(12) of the diagram types
A —E:

Here, the summations run over all occuring indices
except j and k. %e use the convention that r, s, t
denote particles (unoccupied one-particle states)
and n, v, w denote holes (occupied one-particle
states}. The symbol e[nu. . . rs . ..] denotes t.he sum

e[nv. . rs . .]=k„+. e.,+. . .—e, —@,—.. .
of one-particle energies.
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