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Application of symmetry-adapted pair functions in atomic structure calculations. II.
Third-order correlation energy of the neon atom
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The accurate third-order correlation energy (E3) for Ne is evaluated within the
framework of the Rayleigh-Schrodinger Hartree-Fock perturbation theory. The
variational-perturbation method is applied. The N-electron first-order wave function is

defined in terms of orbital configurations, of one-electron functions, and of symmetry-

adapted pair functions in the form of partial-wave (PW) expansions. It is demonstrated

that the value of E3 critically depends on the accuracy of the approximate first-order
wave function. In order to obtain accurate values of E3, the pair functions have to be

approximated in terms of extensive basis sets both in the radial and angular sense. A
calculation based on all PW's up to 1', 1"(9 yields the value E3——0.00349 hartree.
Careful radial and angular extrapolations result in E3——0.0044 hartree. The third-order

energy is analyzed in terms of third-order pair energies and third-order PW increments to
the pair energies. It is found that the third-order values modify the individual second-

order PW increments and second-order pair energies by about 10%, whereas the
modification caused by E3 on the values given by E2 is of the order of l%%uo. The stability

of the third-order results with respect to the accuracies of the solution of the Hartree-
Fock equations is also discussed.

I. INTRODUCTION

In a previous paper,
' hereafter referred to as I, a

variational-perturbation scheme for closed-shell
systems was presented. It is based on the assump-
tion Ho ——HHF and on the application of the N-
electron first-order wave function expressed in
terms of orbital configurations of one-electron
functions and symmetry-adapted pair functions
(see the fundamental papers of Sinanoglu, Ref. 2)
in the form of partial-wave (PW) expansions. Ow-

ing to the structure of the approximate first-order
wave function one can make extensive use of the
simplifications provided by the application of the
irreducible tensor-operator algebra. As a result,
our method furnished the possibility of performing
accurate second- and third-order calculations for
larger atoms containing many closed shells of
equivalent electrons. Thus far the main computa-
tional effort has been concentrated on the calcula-
tion of accurate second-order pair energies and PW
increments for many closed-shell atoms up to the
Zn-isoelectronic sequence. ' There are many
motivations for undertaking such large scale calcu-
lations of accurate second-order correlation ener-
gies. ' I.et us just mention two of the arguments:

(a) There is much numerical evidence that the
second-order energy E2 represents for all but the
smallest systems the bulk (more than 90%%uo) of the
total correlation energy, e.g., we have found in I
that for Ne E2 represents 99.7%%uo of the total "ex-
perimental" correlation energy. (b) The second-
order calculations for complex closed-shell systems
provide the only source of information about many
details of the all-external (dynamical) correlation
effects, which can be used in setting up semiem-
pirical methods for the study of correlation effects
in arbitrary atomic systems.

A question immediately arises: How will the
"stx:ond-order picture" of electron correlation in
complex atoms change if higher-order terms of the
perturbation expansion are taken into account?
The next perturbative term to be considered is the
third-order energy E3. Since the structure of this
quantity is much more complicated than of E2, its
accurate evaluation is a very difficult task, needing
computer times close to those required by a varia-
tional calculation based on doubly excited configu-
rations involving the same orbital basis set. In I
we have presented the results of our preliminary
attempt to the evaluation of E3 for Ne using an
approximate first-order wave function expressed in
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terms of a limited basis set (corresponding to
E2 ——0.3421 hartree, i.e., 89% of the extrapolated
value). Recently, when performing very accurate
coupled-cluster calculations by a method based on
numerical solutions of the radial two-electron equa-
tions, Lindgren and Salomonson obtained also
accurate E2 and E3 values for Ne. Their E3
=0.0035 hartree result differs significantly from
our value of 0.00245 hartree indicating that E3
may be much more sensitive to the accuracy of the
first-order wave function than E2.

The object of the present paper is an attempt of
accurate evaluation of the third-order energy and
third-order pair energies for Ne within the frame-
work of our approach. To secure this aim we ap-
proximate the pair functions in terms of many sets
extensive both in the radial and angular sense. The
numerical calculations are followed by careful ex-

trapolations, aiming to remove the errors due to
the limited character of our basis sets. We have
developed an efficient computer program for the
evaluation of E3 for arbitrary closed-shell atoms.
Our motivation for performing these extensive cal-
culations of E3 stems from the fact that the
knowledge of the accurate values of the leading
terms of the perturbational expansion of the corre-
lation energy for some complex atomic systems is
of importance from the methodological point of
view. In the absence of any information about the
exact value of the correlation energy for such sys-.
tems these terms may play the role of a benchmark
for the estimation of the reliability of various reali-
zations of the pe&urbational approach, e.g., of the
many-body perturbation theory (MBPT). The
choice of Ne for the present calculations is caused

by the fact that at present this atom posesses the
status of the standard test system for all advanced
methods of dealing with the electron-correlation
problem. Another goal of this research is'the
analysis of the detailed structure of E3. For this
aim we analyze this quantity in terms of third-
order pair energies and third-order PW increments
which we shall define below. We have shown how
these quantities are related to the accurate pair en-

ergies and P% increments obtained from the
analysis of the accurate correlation energies.
Therefore, our results provide some information on
the direction of changes of the pair energies and
PW increments when proceeding from the second-
order level of accuracy to accurate, e.g., variation-
al, results. This information may be useful for set-
ting up semiempirical procedures of evaluating
dynamical correlation effects in complex systems.

II. METHODOLOGY

The method has been presented in detail in I,
where also all definitions pertinent to the second-
order energy and first-order wave function have
been given. Here we shall discuss in detail the
third-order energy E3 of closed-shell atoms. To
this end we shall introduce some new definitions
and simplify the notation both for the exact and
perturbational solutions of the Schrodinger equa-
tion.

A. Symmetry-adapted formulation
of the exact and perturbational problems

Let us consider the solution of the Schrodinger
equation

for the closed-shell ground state of an S-electron
atom. We write the Hamiltonian as

H =Hp+H),

where we assume Hp in the HF form, i.e.,
N

Ho HHF gh (i)—— ——

(2)

(3)

Finally, it seems to us that our work may be in-

teresting from the following point of view. A
comparison of the present results with their coun-
terparts obtained by Lindgren and Salomonson by
a completely different method may shed some light
on the magnitude of the uncertainties of the third-
order results and stimulate further work to increase
the accuracy of evaluation of the sensitive E3 (and
perhaps E4) values.

Since the method employed here has been de-
scribed in detail in I we present in Sec. II only new
definitions concerning the analysis of the correla-
tion energy in terms of symmetry-adapted pair en-

ergies and P%' increments and some detailed for-
mulas for the third-order values. In Sec. III we re-

port some computational details relevant to the
present work. The calculated and extrapolated
third-order values of the P% increments, the pair
energies, and the total energy are presented and
discussed in Sec. IV. In this section we also dis-
cuss the impact of the approximate character of
the HF orbitals on the results obtained and review

shortly the third-order energies reported by various
authors.
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and h (1) denotes the one-electron Fock operator.
We have

N

Hi H———HQ ——g r,j
' Q—V(i)

with V(i) denoting the sum of the Coulomb and
exchange operators.

Let us write 4 as

(4)

(5)

(SAPF) describing the Kth configurational pair
characterized by the eigenvalues T=(L,S) of the
angular momenta operators. Of course, u (T

~

2)
is strongly orthogonal to @f(T

~

N —2} and to the
symmetry-adapted pair function u0 (T

~
2} defined

in Appendix A. As we have shown in Appendix
B, inserting (10) into (9) one obtains

E„„=gag(T)E (T),
K T

where %0——%HF is an eigenfunction of HD belong-

ing to the eigenvalue EHF. We assume that 4 is
given in the intermediate normalization,

where

and

E (T)=(u f(T) ~g ~

u (T))

g ( T)=g (L,S)=(2L + 1)(2S+ 1) (12)

Now the exact energy E can be written as

E = & po
I
H

I
'p &

=EHF + & po I

H'
I
& &

The last matrix element represents the correla-
tion energy

represents the exact correlation energy of the Kth
pair with the T-symmetry designation. It is often
useful to represent the exact SAPF's in terms of
the PW expansion (Appendix B)

E =E—EHF=(%0 ~H ~x) u (T
~

2)=gu(l, l', K, T ~xi,xi), (14)

and the function X is often referred to as the exact
correlation function. By making use of the Bril-
louin theorem and of the fact that Hi contains at
most two-particle interactions, one can write

(9)

where P' ' denotes the projection operator into the
subspace spanned by all configurations, doubly ex-
cited with respect to the HF state 4'0. Owing to
the fact that E«« is determined only by the P' '7
function, Eco~ can be analyzed in terms of pair
contributions defined in various ways. We shall
use symmetry-adapted pairs (see I) and write P' 'X

for closed-shell systems (we omit the symmetry
designation L =S =Ml. =Ms ——0) in the general
form introduced in Appendix A:

and express the pair energy as a sum of the exact
PW increments

E ( T)=g E ( I,I',K, T), (15)

with

E(l, l', K, T)=(u f(T
~

2) ~g ~

u(l, l', K, T)) .

(16)

Let us now turn to the Rayleigh-Schrodinger HF
perturbation theory taking H0 ——HHF. Denoting by
4; the ith-order wave function, and remembering
that 4'0 ——%HF we obtain

P"iz=y~~gar~I ma~(T ~N —2)ux(T ~2) ~,
K T

(10)

and

Ecorr =g Ei
l =2

where T is shorthand for the pair of L,S quantum
numbers,

with

(19)
T~(L,S) . (10')

We shall use this notation throughout the paper in
all cases whenever misunderstanding is excluded.
Since 7 represents the exact correlation part of the
¹lectron wave function, u (T

~
2) may be termed

an "exact" symmetry-adapted pair function

We know from I that 4i is exactly expressible in
terms of doubly-excited configurations, i.e.,

Now, one can represent easy P' 'P; in the
symmetry-adapted form (A5) using the ith-order
SAPF's. Taking the sum of those expressions and



26 APPLICATION OF SYMMETRY-ADAPTED PAIR FUNCTIONS IN. . . . II. . . . 2381

comparing with Eq. (10) for P' 'X we obtain an ex-
pansion of the exact SAPF in terms of the ith-
order SAPF's

%') as

4i ——g g Vi(K, T)
K T

(27)

u (T
i
2)=g u; (T i2) .

i=1

Inserting (20) into (13) leads to

(20)

(21)

with

%,(K,T)=aT& I 4p(T
~

N —2)ui(T
~
2) J .

(28)

where the ith-order correction to the energy of the
Eth pair is given by

E;+i(T)=(up(T) ~g ~
u; (T)} .

From (19) we have, of course,

E;=gag(T) E(T) .
K T

(22)

(23)

Similarly, the exact PW increments to the pair en-

ergies (16) may be formally decomposed into con-
tributions from consecutive orders of the perturba-
tion expansion

As we show in Appendix C, E3 can be written as

E3 (T)=g(T) '(Vi(K, T)
~
Hi Ei

~

%—i }

Let us note that the third-order correction to the
energy of the Kth pair depends on the first-order
SAPF's of all pairs.

For our purpose it is also convenient to cast the
expression for the third-order PW increments to
the pair energies, defined according to Eqs. (24),
(16), and (B9) as

E3(l, l', K, T)= (up (T
~

2)
~ g ~

u (l2, l', K, T)}, (30)

E(l, l', K, T)= g E;(1,1',K, T) .
i=1

(24) into a form dependent on the first-order PW incre-
ments. To achieve this we introduce the function

B. Third-order energy corrections
%,(l, l', K, T)=aT& I4 (pT ~N —2)ui(l, l', K, T)I .

(31)
Equations (19), (22), and (24) expressing the ith-

order contribution to the pertinent energy value in
terms of the ith-order functions are very incon-
venient from the practical point of view. It is well
known' that one can obtain the perturbation ener-

gy to the (21 + 1)th order from the knowledge of
the wave function perturbed to the ith order, e.g.,
the third-order energy may be expressed in two dif-
ferent ways, '

It is easily seen that

+i(K, T)=g 4i (1,1',K, T)

and

%,=g g +%,(l, l', K, T) .
K T ll'

(32)

(33)

E =3(q lHp, I
q, ),

E3=(q, ia, —E,
i ei&,

(25a)

(25b)

TABLE I. Parameters of the radial basis functions
R(n, g ~

r)

where the first form corresponds to Eq. (19).
Hence, knowing the first-order wave function we
are in a position to evaluate the total third-order
energy. According to (23) E3 can be analyzed in
terms of the third-order pair energies

E3 ( T)= (u p ( T)
~ g ~

u 2 ( T) } (26)

This equation is inconvenient for our goal because
it involves the second-order SAPF. However, it is
possible to reexpress E3 only in terms of the first-
order SAPF's u i (T

~

2). To this aim let us write

No.

1

2
3
4
5
6
7
8

9
10

25.395
44.776
2S.395
25.395
25.395
25.395
11.608
11.608
11.608
5.577

No.

11
12
13
14
15
16
17
18
19
20

9.249
5.577
8.284
5.577
5.577
2.67S
5.577
2.675
2.67S
2.675
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Now, using the first-order-type function %i(/, /', E,T)
one can show, in a similar manner as for Ei (T),
that

E3(/, /', E,T)

=g(T) '(%i(/, /', K, T)
~
Hi Ei—

~

'Pi) . (34)

This energy increment depends through O~ on all
first-order PW functions u i (/, /', E,T).

III. COMPUTATIONAL DETAILS

%e are concerned with the third-order quantities

Ei, E3 (T), and Ei (/, /', E,T) defined in terms of
first-order SAPF's bv Eqs. (25a), (29), and (34),
respectively. As it has been already mentioned, in
this representation these third-order quantities can-
not be obtained as sums of contributions deter-
mined by individual pairs or individual P%'s of a
given pair, which is the case for the second-order
results. In third order each of these quantities is
defined by matrix elements involving the whole
first-order wave function, and matrix elements in-

volving different pairs have to be considered. This
situation causes a very great increase of the re-
quired computer time, which becomes comparable
to that needed by a variational calculation within
the same basis set. Therefore, we could not afford
to use the basis set of 13 880 configurations em-

ployed in our second-order calculations for Ne re-

ported in I. Instead, additional work has been in-

vested into the optimization of nonlinear parame-
ters of the radial basis functions R (u, i/

~

r) defined
in I. As a result we obtained an effective set of 20
functions with the parameters specified in Table I.
From various subsets of these functions we set up
the two-electron radial basis functions used for the
expansion of the P%'s. The expansion lengths
varied in the range from 9 to 64 functions. We
considered P%'s characterized by l', /" & 9. The re-
sults reported below were obtained for various sub-
sets of three basis sets which comprise 1358 (set A),
1590 (set B), and 2109 (set C) S-electron configura-
tions. That the qualities of these three basis sets
are rather good may be seen from the respective
second-order energies which amount to 99.36,
99.49, and 99.64%%uo of the result for the 13 880-
configuration case (in our third-order pilot calcula-
tion the pertinent characteristic is 88.5%, which,
as we shall see, may cause considerable errors).

In the essential part of the present calculations
we have used the accurate analytical HF orbitals of
Clementi and Roetti" spanned by Slater-type orbi-
tals (STO). However, for the stability tests of Sec.
IV D less accurate analytical orbitals reported by

Huzinaga' have also been employed. The linear
coefficients of the HF orbitals are slightly modi-
fied to fulfill the orthonormalization conditions
with double-precision accuracy.

%e use extrapolation procedures to remove the
inaccuracies of the calculated values due to the
limited character of the radial and angular basis
sets employed. These procedures can be applied on
various levels of the calculations, i.e., on the P%-
increment-pair-energy and total-energy levels.

Our radial extrapolation procedure is based on
the following observation. We consider basis sets
with fixed angular characteristics, i.e., /, „=const,
but including varying numbers of radial functions.
Let us further assume that these basis sets are flex-
ible enough to yield very good approximations to
the second-order quantities considered on the given
level of the calculation. For the results obtained
within such basis sets we have observed an almost
linear dependence between the second- and third-
order values considered. To implement our extra-
polation procedure we perform on a given level the
calculations of the pairs of second- and third-order
quantities using subsets of the sets A, B, and C for
fixed /, „. For the triple of points defined by
these pairs we find the straight line by means of
the least-squares method with weights assumed to
be the reciprocals of the difference between the cal-
culated and exact second-order quantities. We as-
sume that the extrapolated results given in I well
represent their exact counterparts. The angular ex-
trapolation on the level of pair and total energies is
performed by using an extrapolation parabola de-
termined by five pairs of radially extrapolated
second- and third-order values.

The approximate first-order wave function was
obtained by the variational-perturbation procedure
employing the general computer program devel-
oped earlier (see I). The third-order energy contri-
butions were calculated using a new general com-
puter program. This program has been developed
based on very concise formulas' expressing the en-
ergies in terms of radial integrals and 6-j coeffi-
cients. The computations were carried out on a
RIAD-32 computer in double-precision arithmet-
1CS.

IV. THIRD-ORDER ENERGY RESULTS
AND DISCUSSION

A. Partial-wave increments to
the pair-correlation energies

The third-order PW increment to the energy of
Eth pair E3(/, /', E, T) is defined by Eq. (30), which
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TABLE II. Third- and second-order PW increments to the pair energies E; (A) =g(T)E;(A), obtained for basis set C
(in units of 10 hartree).

PW l =3
1s 'S

l =2 1=3
1s2s 'S

l =2 l =3
1s2s S

l =2 l =3
2s"S

l =2

ss

pp
dd

ff
hh

ll

JJ
kk
II

—356
—548

62
38
18
9
4
2
1

1

—12 114
—22485
—3717
—1020
—373
—163
—80
—43
—25
—15

—40
—35
—7

0
1

1

0

—1650
—1667
—413
—107
—38
—16
—7

—8
—18
—4

0
0

—67
—1238
—212

31
7

29
—120
—230
—18

32
24
15
9
5

3

—3174
—1815
—4609
—1292
—490
—221
—112
—61
—34
—21

l =3
1s2p 'P

l =2 l =3
1s2p P

l =2
2s2p 'P

l =2 l =3
Zs2p P

l =2

sp

pd
df
fg
gh
hi

lJ

jk
kl

—29
—185

—5

10
6
3
2
1

1

—233
—6005
—1210
—356
—139
—63
—29
—15
—9

2
13

—1

2
1

0

—6077
—7031
—595
—97
—23
—6

—1170
—1073
—1313

55
141
98
61
36
24

—24445
—12 564
—14479
—4525
—1846
—875
—462
—251
—158

2576
9

—353
—2.

5

3
1

—18 122
—4561
—3119
—577
—154
—52
—20

l =3
2p "S

l =2 l =3
2p2 3P

l =2 l =2
2p "D

PW l =3 l =2

ss

pp
dd

ff
gg
hh

ll

JJ
kk
II

—277
218

—274
340
200
110
62
35
21
13

—2 280
—15 189
—20 757
—4279
—1441
—614
—301
—160
—92
—56

5537
—425

158
77
29
12
6
3
1

—41 212
—40 356
—4361
—907
—265
—95
—39
—18
—9

1133
—879

80
74
44
25
14

8

5

—40030
—23 238
—3300
—944
—368
—171
—89
—48
—28

sd

pf
dg
fh
gl

hj
ik
jl

—451 —6669
—238 —3882
—290 —4917

114 —1835
95 —826
60 —420
37 —232
23 —137

is equivalent to Eq. (34), which, involving only the
first-order-type wave functions, provides the basis
of the present computations. The results obtained
for our most extensive basis set (C) are presented
in Table II for all electron pairs of Ne. Values of
the second-order PW increments calculated for the
same basis sets are also given. For the convenience
of presentation we report not directly the PW in-

crements but their values multiplied by g (T)
=g (L,S), indicating the number of possible pairs
for a given I. and S, i.e., we report

E;(A) =E;(l,l', K, T)

=g ( T)E; (I,I',K, T) (i =2,3) (35)

where A denotes the set of indices specifying the PW

A+ (1,1',K, T) . (36)

According to Eq. (24) the exact PW increment to
the pair energies E(A) can be expanded in terms of
consecutive orders of the perturbation theory.
Thus, we may consider the quantity
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TABLE III. The values of E; for the 2p 'S pair obtained for various basis sets (in units

of 10 hartree).

Imax

Basis sets
8

Radially"
extrapolated

values

3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2

—S69
—17431

—664
—38 157

—297
—42411

—50
—43 826

136
—44422

246
—44712

310
—44 866

349
—44954

373
—45 007

—568
—17450

—657
—38 207

—284
—42 475

—22
—43 911

172
—44 522

287
—44 820

356
—44 981

398
—45 072

424
—45 129

—566
—17469

—652
—38 225

—271
—42 504

4
—43 946

193
—44 559

310
—44 860

379
—45 021

421
—45 113

447
—45 169

—563
—17 501

—643
—38 278

—250
—42 578

35
—44047

244
—44 684

372
—45 005

450
—45 183

499
—45 289

531
—45 356

63a
—4 556"

'Extrapolated results in units of 10 hartree.
'The extrapolated E2 values are taken from I.
'Extrapolated.

E' '(A) =E2(A)+E3(A) (37)

as an approximation to E(A) which is expected to
be more accurate than Ez(A). The values of
E' '(A)=g(T)E' '(A) can be easily obtained as
sums of the neighboring numbers in Table II.

We use the more explicit spectroscopic way to
designate electron pairs as well as the letter con-
vention to label the PW's (see I). One can see from
the table that, unlike E2(A), which is always nega-
tive, E3(A) takes both negative and positive values.
A common feature of the third-order PW incre-
ments is that they are positive for l, l'& 3, i.e., for
high-l indices they bring about a reduction of the
absolute values of E' '(A) if compared with E2(A).
A comparison of the PW increments obtained for
the basis sets A, 8, and C indicate that for all but
the 2p 'D and 2p 'S pairs the results displayed in
Table II, i.e., for basis set C, are very close to the
radial limit. For some low-l PW's corresponding
to the pairs just mentioned the results in the table
may be off by about 5%%uo. The I convergence of the
third-order PW's is very fast for the triplet pairs.

For the singlet pairs, in turn, this convergence is
rather slow. At the present level of accuracy it is
still difficult to indicate the precise convergence
patterns. It seems, however, that for high-I values
the ratio of the consecutive increments tends to a
constant value of about 0.6. The l convergence of
E' '(A) is about the same as for E2(A).

B. Third-order pair energies

The third-order irreducible-pair energies E3 (T)
are defined by Eq. (26), but we shall base our cal-
culations on the use of Eq. (29). We shall present
our pair-energy results as g (T) multiples of E; (T),
i.e., in terms of

(38)

We have performed the calculations for the basis
sets 3, 8, and C, and their subsets defined by fixed
values of the index l,„ that denotes the highest
PW taken into account. In this way we have the
possibility of studying the convergence both in the
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TABLE IV. Calculated' and radially extrapolated E3 {T) energies (in units of 10 hartree).

Imax

1s2'S
Calc.' Extr.

1s2s 'S
Calc. Extr.

1s2s 3S

Calc. Extr.
2s"S

Calc. Extr.
1s2p 'P

Calc. Extr.
1s 2p 3P

Calc. Extr.

1

2
3

5
6
7
8
9

—112
—92
—84
—80
—79
—78
—77
—77
—77

—112
—92
—84
—80
—78
—77
—77
—77
—76
—76

—3
—3
—3

—3
—3
—3

—20
—34
—42
—36
—32
—29
—27
—26
—25

—20
—34
—41
—35
—30
—26
—24
—23
—22
—20

4
—26
—24
—22
—21
—20
—20
—20
—20

4
—26
—24
—22
—21
—20
—20
—19
—19
—19

—6
0
1

1

2
2

—6
0
1

2
2
2

2s2p 'P
Calc. Extr.

2s2p P
Calc. Extr.

2p "S
Calc. Extr. Calc.

2p2 1D

Extr.
2p P

Calc. Extr.

—171
—303
—417
—392
—360
—340
—327
—319
—314

—171
—303
—416
—390
—357
—336
—322
—313
—308
—291

275
257
221
221
223
224
224

275
257
221
221
223
224
224

225

—57
—65
—27

0
19
31
38
42
45

—56
—64
—25

4
24
37
45
50
53
63

—1

—126
—121
—111
—72
—46
—30
—21
—15

—1

—115
—117
—105
—64
—36
—19
—8
—2
13

534
512
525
530
535
538
539
540
540

535
514
527
533
537
540
542
542
543
544

'Results for subsets of C determined by I,„.
"Extrapolated for Im»~ ao.

radial and angular sense. To get an idea about the
convergence characteristics for an individual pair,
we present in Table III the results obtained for the
2p 'S pair. This pair together with the 2p 'D pair
disclose the least stability against basis-set modifi-
cations. We note from the results of Table III that
the values of the third-order pair energies very
strongly depend on the accuracy of the first-order
wave function both in the radial and angular sense.
The dependence on l,„ is especially pronounced,
e.g., calculations with lm» ——4 yield E3 with the
wrong sign. Moreover, the basis-set dependence of
E3 is much larger than for Ez. Let us take, for
example, the value obtained for basis set C if
1,„=4. One can see that the meaningless E3
value is associated with the Ez result representing
96.4%%uo of the accurate second-order pair energy.
The values for E3, both calculated for various sub-
sets of C (lm, „=const) and extrapolated (on the
pair-energy level) according to the procedures
described in Sec. III, are listed in Table IV. These
values exhibit different stabilities with respect to
the basis-set incompleteness. We note that for the

triplet pairs the results little depend on the com-
pleteness of the basis sets used. For the singlet
pairs this dependence is much stronger, and even
critical in some cases, e.g., for the 2p 'S and

Zp 'D pairs.
To get an idea about both the reliability of the

extrapolation procedures used and the accuracies of
the extrapolated Eq (T) values we performed also
the extrapolation of E3 (T) in a different way
which is described in Appendix D. The results are
practically identical to those displayed in Table IV
for all but the 2p 'D pair. The Eq(T) results for
the pair just mentioned, which is the most sensitive
to the structure of the basis set, are discussed in
Appendix D. The alternative extrapolation yields
the value of 0.00011 hartree, which is in satisfac-
tory agreement with the value of 0.00013 hartree
displayed in Table V.

To get an idea about the relative values of the
second- and third-order pair energies we collected,
in Table V, the pertinent calculated and extrapolat-
ed values. We also show the extrapolated results
for E2 +E3 which represent an approximation to
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TABLE V. Pair energies for Ne (in units of 10 hartree).

EIr'

Calc. ' Extr."
EK

Calc. Extr. '
EK+EK

Extr.

1s"S
1s2s 'S
1s2s S
2s "S
1s2p 'P
1s2p P
2s2p 'P
2s2p P
2p"S
2p "D
2p2 3P

—4003
—390
—156

—1183
—806

—1383
—5961
—2661
—4517
—8713
—8726

—4022
—397
—159

—1202
—813

—1404
—6033
—2682
—4556
—8785
—8739

—77
—8
—3

—25
—20

1

—314
224

45
—15
540

—76
—8
—3

—20
—19

2
—291

225
63
13

544

—4098
—405
—162

—1222
—832

—1402
—6324
—2457
—4493
—8772
—8195

Third-order energy, E3 0.003 49" 0.004 3Qd

'Using basis set C, 1,„=9.
Quoted from I.

'Radial and angular extrapolation.
dIn hartrees.

the g (T) multiple of the exact energies defined by
Eq. (13). One can see that the modification caused

by the third-order values is smaller than for the
PW increments (Table II). In most cases, the
changes are of the order of 2%. Only for the
2s 2p P, 2p P, and 2s 2p 'P pairs the changes
amount to 8, 6, and 5%, respectively. It may be
interesting to note that the modifications of E2 by
E3 are, in the case of the nsn's pairs, much smaller
for Ne than for Be.' In the former case they
amount to 1.9, 2.0, and 0.7% for the configura-
tional pairs 1s, 1s 2s, and 2s, respectively. For
Be, in turn, the corresponding values are 5, 14, and

25%. This different behavior is apparently caused

by the quasidegeneracy of the Be ground state.
We display also in Table VI some of the

configurational-pair energies defined as

E3 =gg(T)E-'T) . (39)

The results are obtained by using the extrapolation
procedure given in Sec. III (on the level of
configurational-pair energies). A comparison of
the results of this extrapolation with the values ob-
tained by taking sums of extrapolated pair energies
(from Table IV) discloses an agreement within the

TABLE VI. Radially extrapolated third-order configurational-pair energies E3 (in units
of 10 hartree).

Pair ~max

This'
work

Lindgren
Salomonson" Pair Imax

This
work

Lindgren
Salomonson

1s

1s 2s

2$

—799
—766
—763
—110
—108

—350
—244
—224

—794

—319

1s 2p

2$2p

2p

—203
—176
—172

—1683
—974
—831
4302
5680
5952

—204

—1293
—973

5419
5951

'Radially extrapolated on the E level.
Reference 8.
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Imax

Calculated"
E3 E

Radially extrapolated
E

1

2
3

5

6
7
8

9

423
111
20
100
205
271
311
334
349

—19 180
—32 193
—35 961
—37428
—37 992
—38251
—38 383
—38 455
—38 498

425
117
30
116
227
298
343
370
387

—19204
—32238
—36027
—37 512
—38 092
—38 363
—38 507
—38588
—38 638

0.0044' —0.3879"

'In hartrees.
"For basis set C.
'Quoted from I.
Extrapolated.

TABLE VII. Second- and third-order energies for Ne
(in units of 10 hartree).

ciple, ' one can consider the value of Ei as an en-

ergy criterion of the accuracy of %i. Hence, one
can see that for obtaining reliable E3 results one
has to take very accurate first-order functions. To
visualize the fact that the accuracy requirements
for %i are really critical, let us mention that for a
function yielding 92% of Ei we have obtained a
negative E3 value. Let us now consider both the
radially and angularly extrapolated E3 energies.
The value obtained as a result of adding the extra-
polated pair energies (see Table V) amounts to
0.0043 hartree, which compares well with the value
of 0.0044 hartree obtained when extrapolating on
the total-energy level (see Table VII). The agree-
ment of the results of the different extrapolation
procedures seems to indicate that the third-order
energy for the ground state of Ne takes the value

E3——0.0044+0.0002 hartree.
The E3 energy can also be written as a sum of

the contributions

limits of +0.00001 hartree. This agreement sup-

ports our expectation about the reliability of our
extrapolation procedures. The E3 values can be
compared with the results obtained by Lindgren
and Salornonson within their procedure involving
also radial extrapolation. One can see from Table
VI that the two sets of results disclose a satisfacto-
ry agreement, which distinctively improves when

proceeding to higher l,„values.

C. Third-order energies

Having calculated all Ei (T) or Ei energies one
can readily obtain E3. For the basis sets A, B, and
C (1,„=9)we have obtained for E3 the values of
0.003 19, 0.003 35, and 0.003 49 hartree, respective-
ly. These results correspond to the second-order
values of —0.383 88, —0.38437, and —0.38497
hartree, respectively. We see again that the basis-
set dependence of E3 is much larger than for E2.
In Table VII we display for various l,„ the values
of E3 calculated and extrapolated on the level of
total energies according to Sec. III. The pertinent
E2 values are also shown in this table. The results
for E3 exhibit the strong l,„dependence which
was already found on the pair-energy level. For
example, we note from the table that taking subsets
of basis set C for I,„=3 and 4 one obtains 6 and
29% of the result for l,„=9,respectively. For
E2 we would obtain 93 and 97% of the result for
1,„=9. Basing on the Hylleraas variational prin-

EK,K' ~ EKK', TT'
3 ~ 3

T T'
(41)

TABLE VIII. The diagonal and off-diagonal con-
figurational-pair contributions E3' for Ne (in units of
10 hartree).

K E' 1s 1s 2s 2s 1s 2p 2s 2p 2p~-

1s
1s 2s
2s

1s 2p
2s 2p
2p

—845
—23 —149

16 —6 —353
129 14 0 —667

0 71 —1169 7S —871
31 24 1364 757 967 4129

which are defined in terms of the first-order wave
functions u i (T

~

2) and u i (T'
~

2). In I we have
discussed the relative magnitudes of the diagonal
(K =K' and T = T') and off-diagonal contributions
and found that for pairs involving 2p electrons
these contributions are of equal importance. To
visualize this fact let us mention that for the 2p sp

and 2p 'D pairs the diagonal contributions calcu-
lated in basis C are —0.00707 and —0.006 87 har-
tree, respectively, whereas the off-diagonal contri-
bution amounts to 0.01491 hartree. To get a gen-
eral idea about the relative magnitude of contribu-
tions to E& from different subshells we display in

Table VIII the values of
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TABLE IX. Radially extrapolated E3 and E2 values for various HF orbitals (in units of 10 hartree).

Imam

(4s, 2p) STO basis

(EHF ———128.535 08 hartree)'

E2

(4s, 3p) STO basis

(EHF = —128.54648 hartree)
(6s,4p) STO basis

(EHF ———128.547 05 hartree)"

E3

—19083
—32 136
—35 931
—37420
—38 002
—38 274
—38418
—38 499
—38 549
—3870'

365
56

—31
54

166
237
282
310
327
38'

—19 188
—32224
—36014
—37499
—38079
—38 350
—38 494
—38 575
—38 625
—3878'

420
113
25

111
222
293
338
365
382
44'

—19204
—32 238
—36027
—37 512
—38 092
—38 363
—38 507
—38 588
—38 638
—3879"

425
117
30

116
227
298
343
370
387
44'

'Reference 11.
Reference 12.

'Units of 10 hartree.
Extrapolated.

calculated for the basis set C. One can see that
only for the nsn's pairs the off-diagonal contribu-
tions are small in comparison with the diagonal
ones. Such a situation was also found by Byron
and Joachain' for Be.

D. The effect of the accuracy of
the HF orbitals on E3

The derivation of all the second- and third-order
expressions is based on the assumption that we
have an accurate solution to the HF equations.
The problem for the second-order energy was al-

ready discussed by Pan and King, ' who found
that a meaningful calculation does not require ex-
tremely accurate HF orbitals. Let us now consider
the problem of the impact of the approximate
character of the HF orbitals on the value of the
third-order energy which, as we have seen, is very
sensitive to the accuracy of %i. We have per-
formed numerical experiments in which the quality
of the HF orbitals is varied. We have repeated all
the calculations discussed in Secs. IV A —IV C for
two sets of HF orbitals which are of lower accura-
cy. These orbitals were obtained by Huzinaga'
within (4s, 2p) and (4s, 3p) STO basis sets. The per-
tinent HF energies are given in the upper part of
Table IX. The problem of the relative quality of
the orbital sets may be answered using the energy
criterion, i.e., by a comparison of EHF for each
case with the very accurate EHF energy obtained
by solving numerically the HF equations. For

this energy we have obtained the result EHF
=—128.547098 using Froese-Fischer's' HF pro-
gram. Taking the EHF values from Table IX one
can see that the three orbital sets may be charac-
terized by the following values of the energy differ-
ences EHF —EHF. 0.01202, 0.00062, and 0.00005
hartree. The latter value indicates that the
Clementi-Roetti HF orbitals are almost identical
with the numerical ones. This conclusion may be
further supported by comparison of the corre-
sponding orbital energies obtained in both cases.
When changing the set of HF orbitals the results
are modified in a rather regular way on all levels
of the calculations. This behavior is well charac-
terized by the results for the radially extrapolated
E3 values displayed in Table IX for the three sets
of HF orbitals considered. The last two columns
corresponding to the Clementi-Roetti orbitals are
taken from Table VII. As may be seen in Table
IX, the results for E3 obtained when using the
three sets of HF orbitals disclose the most pro-
nounced difference for low l,„values. Forl,„=9the difference of the (4s,2p) and (6s,4p) re-
sults amounts to 16%, whereas the difference of
the corresponding (4s, 3p) and (6s,4p) values is of
about 1.3%. The corresponding differences for the
E2 values are much smaller amounting to 0.2 and
0.03%, respectively, which is a confirmation of the
finding of Pan and King. One can also see from
the table that the extrapolated E3 energies are
identical for the (4s, 3p) and (6s,4p) orbital sets.
Since the third-order results are almost identical
for the (4s, 3p) and (6s,4p) HF orbitals which lead
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TABLE X. Comparsion of the third-order energy of Ne (in hartrees).

Authors and method

Pople et al. (Ref. 21)
Urban et al. (Ref. 18)
Wilson and Silver (Ref. 17)
Lindgren and Salomonson
(Refs. 7 and 8)—radially
extrapolated
This work:
calculated (basis set Q

Radially extrapolated

Radially and angularly
Extrapolated

6—8

—0.00048
0.001 18
0.00072

0.003 5

0.003 49
0.001 17
0.003 43
0.003 87
0.0044+0.0002

—0.254 52
—0.215 66
—0.25052

—0.3883"

—0.38497
—0.322 38
—0.385 07
—0.386 38
—0.3879'

'Quoted from I.
Radially and angularly extrpolated result.

to EH„values differing by —0.000 57 hartree, we

may expect that these results will also be identical
when comparing the (6s,4p) and numerical HF or-
bitals, for which the difference of EHF amounts to
—0.00005 hartree. Hence, our numerical experi-
ment leads us to a conclusion that our third-order
results are not affected by the approximate charac-
ter of the Clementi-Roetti orbitals.

(for off-diagonal PW's up to l',„+l' ',„=14). The
procedure includes radial but not angular extrapo-
lation. One can see from Table X that their value
of 0.0035 hartree is in excellent agreement with our
value for lm, „=7.

V. SUMMARY

E. Comparison with other work

We know only about a few attempts of evaluat-

ing the third-order energy for Ne. Except I and
the work of Lindgren and Salomonson, ' the Ei
values were obtained from calculations within very
limited basis sets. We collect in Table X the
values obtained by various workers. The results in
the first three rows were obtained for first-order
wave functions yielding Ei representing 55 —66%
of the exact Ei result. As we have demonstrated
above, for such inaccurate first-order functions the
E3 values have very little in common with the ex-
act third-order energy defined within the Ray-
leigh-Schrodinger perturbation theory for the N
electron problem. Therefore, the E3 values ob-
tained at such a low level of accuracy should be
considered only as third-order corrections for some
model problems defined, e.g., by a given basis set,
which is, in fact, the case for the algebraic approx-
imation to MBPT developed by Wilson and
Silver. ' The work of Lindgren and Salomonson is
based on calculations including PW's up to l,„=7

We have expressed the exact correlation energy
in terms of exact symmetry-adapted pair energies
and exact PW increments to these pair energies.
Next, all these quantities are represented in terms
of perturbative contributions within the Rayleigh-
Schrodinger approach based on Ho ——HHF. The
main attention has been paid to the third-order
contributions which are expressible in terms of
first-order SAPF's and first-order PW's. These
functions have been determined by the method
developed in I, and are employed in the evaluation
of the third-order PW increments, E&(A), third-
order pair energies Eq (T), and the total third-order
energy E3. It turned out that all these values are
very sensitive to the accuracies of the first-order
pair functions, i.e., to the completeness of the basis
sets used. This basis-set dependence is much
stronger than for the second-order energies. We
have used basis. sets that are extensive in size (up to
lm, „=9)and are flexible enough to yield reliable
results. Nevertheless, our values required extrapo-
lations both in the radial and angular sense. We
have employed independent extrapolation pro-
cedures on all four different levels of the calcula-
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tions. The results obtained by various extrapola-
tion procedures disclosed satisfactory agreement.
%e have obtained the extrapolated value of
E3——0.0044+0.0002 hartree, which represents
1.1% of the E2 energy. The values of the indivi-
dual second-order PW increments and pair energies
are in some cases modified by about 10%. Howev-
er, those modifications cancel to a significant de-

gree leading to the small change of E2. %e have
also found that the off-diagonal and diagonal con-
tributions to E3 are of the same order of magni-
tude, which precludes the application of inde-
pendent-pair-like approaches to the evaluation of
E3 Since the determination of reliable E3 values
requires 4& functions of very high accuracy (yield-
ing for Ne 99% of the exact Ez), most of the E3
energies recently obtained in various small-basis-set
calculations have little in common with the third-
order energy for the real ¹lectron problem. The
same may be true for the E4 values recently com-
puted for very limited basis sets (see, e.g. , Refs. 18
and 19). The lack of reliable information about
the structure of E4 hinders the full understanding
of the pair-pair coupling effects, which are crucial
in accurate many-electron theories. Therefore, in
the future more effort has to be paid to the accu-
rate evaluation of E4 for systems of the size com-
parable to Ne. We found in our calculations that
for two first-order functions that are not of high
accuracy it is possible to get the same E2 value
and two E3 values of different sign. This situation
must raise some questions about the purposefulness
of using the [2/1] Pade approximants (or even the
[n +1/n] ones) to get more accurate approxima-
tions to the correlation energy than in the pertur-
bation theory through the (2n + l)st order (see,
e.g., Ref. 17). The unstable behavior of E3 (and
perhaps E4) may suggest that one should carefully
consider for a given system whether it is more
worthwhile to perform higher-order MBPT calcu-
lations within a very limited basis set than to cal-
culate just E2, but within a more extensive basis
set. The latter is certainly the proper approach for
Ne.
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APPENDIX A: SYMMETRY-ADAPTED FORM
OF FUNCTIONS BELONGING TO THE

SUBSPACE SPANNED BY
DOUBLY EXCITED CONFIGURATIONS

Let E denote a configurational pair of orbitals
belonging to the subshells of equivalent orbitals
n; I; and n~ 1~, i.e., K:—(n;l;, nJlJ ). If i +j and i =j,
we have the inter- and intrashell case of I, respec-
tively. Before proceeding further let us consider
the HF reference function %0 for the closed-shell
(L =S=0) ground state of the ¹lectron atom.
For each pair of occupied orbitals E one can
rewrite %p (defined as in I) in the following form:

ep ——y ar [ ep(T
~

E —2)up (T
~

2) ],
T

(Al)

' —1/2

,, 41+2= [(2l +1)(2S+1)]'~' (A2)

For intershell pairs, E:(n;l;, n~l~), one —can see
from (Se) of I that

1/2
(2L +1)(2S+1)
(4l;+2)(41, +2)

(A3)

Let us consider the set of antisymmetric N
electron functions, designated by L =S=0, which
are obtainable from the reference function +o by
double excitations from the given Eth orbital pair
to any pair of virtual orbitals orthogonal to the oc-

where &p(T
~

X —2) is a normalized antisymmetric
function characterized by the T =(L,S) eigenvalues
of the angular momenta operators. The electron
configuration involved differs from the configura-
tion of %0 by removing the configurational pair E.
The one-electron functions of this pair are coupled,
giving rise to the pair function up (T

~

2). The
braces denote that we take a vector-coupled prod-
uct corresponding to L =S=0. One can see from
I (Sec. II A 1 —IIA 5) that for intrashell pairs ar
is just the two-electron coefficient of fractional
parentage for the shell defined by E—:(nl, nl).
For closed parent shells this coefficient is of the
form

E K
Qy =Qgs
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cupied orbitals. Then, using the possibility of
representing %0 in the symmetry-adapted form
(Al) for the given pair K, one can easily cast every
function belonging to the subspace spanned by this
set into the symmetry-adapted form

Xj=ya yap I eo(T IN —2)ug (T I2) I
K T

(A5)

Xx=~'yarxI +ox(T IN —2)u,'(T I2) ~,

(A4)

APPENDIX 8: CORRELATION ENERGY IN
TERMS OF PAIR-CORRELATION

ENERGIES AND PVf INCREMENTS

where M denotes an antisymmetrizer which must
be introduced to ensure the antisymmetry of g; .
Since the virtual orbitals are orthogonal to the oc-
cupied ones the antisymmetric pair function

u; (T
I
2) is strongly orthogonal to all ground-state

orbitals, and consequently to the functions 4o and
K

Finally, if one takes a basis set being a union
over all possible pairs E of the basis sets defined
above, then any function belonging to the subspace
spanned by this basis set can be written in the
symmetry-adapted form

Let E'„be a contribution to the correlation en-

ergy determined by the function 7; belonging to
the subspace of all doubly excited configurations:

E„„,;=(4 IH, Ix;& . (81)

We assume that H~ can be represented as a two-
particle operator

H, =gg;, . (82)

Inserting the functions (Al) and (A5) into Eq. (Bl)
we obtain

&q'o
I
Hi

I &; & = g 2 araz- & I~'o (T IN —»uo (T
I
2) I I

Hi
I
~ 'I@o (T'

I
N —»u; (T'

I
2) J & (8»

K,K' T, T'

Since the product of the bra function and the H~ operator is antisymmetric with respect to the permutations
of electrons involved in W, we can eliminate the antisymmetrizer from the matrix element on the right-
hand side of Eq. (83) and obtain for this matrix element the result

b (I4 (T fN —2)u (T f2)I IH, f
I4 (T'IN —2)u; (T'f2) I&, (84)

where b indicates the number of permutations involved in M . This number depends on the configura-
tion-pair K considered and amounts to

bK
for IC =(nl, nl)

4l +2

(4l +2)(41'+2) for E+(nl, n'I') . (85)

We assume that the pair functions uo and u; pertain to the (N —1)- and Nth electrons. Taking into account
the strong orthogonahty of u; both to 4o and uo as well as the orthogonality condition (4&o(T)

I
4o (T) &

=5' 5zz-, Eq. (84) can be reexpressed as

& I @o(T IN —»uo(T
I
2) ) I gN 1,N I I C'o (T IN ——2)u; (T

I
2) f &

5rr'4''&uo(T
I
2)

I g I
ui~(T 12) & (86)

Inserting this result into (83), and taking into account (A2), (A3), and (85) one obtains

(qolH, IX, &=@„y(ar~)'bx(uox(T I2)lg Iu,"(T I2)&
K T

=Zing(»&uo(T I»lg fu (
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We can therefore write

E,.„,;=+gg(T)E; (T),
K T

[h' '(N —1,N) —E]] ]u] (T
I
2)

+(gN —],]v —E](T)]uo(T I2)=0, (C3)

with

E; (T)=(up(T (2) Ig Iu; (T (2)) (88)

where (N —1) and N denote the variables of the
pair function,

with (T stands for L and S)

u;(l, l', K, T Ix],x2)

=DR]]'; (r],r])Z" '(L,Mr. (5],62)

)&W(S,Ms (o],ap), (810)

where A is a two-particle antisymmetrizer and the
functions Z' ' ' and A have been defined in I.
The correlation energy of the pair can be reex-

pressed in the form

E; (T)=g E;(1,l', K, T),
I, I'

(811)

where the PW increments to the pair energy are
defined as

E;(I,l', K, T)

=(up (T
I
2) Ig I

u;(l, l', K, T)) . (812)

APPENDIX C: THIRD-ORDER PAIR ENERGY

The first- and second-order wave functions ful-
fill the following equations':

representing the correlation energy of the Eth pair
determined by the SAPF u; .

It is often convenient to define the SAPF's in

terms of partial-wave (PW) expansion (see, e.g. ,

Sec. II in I)

u; (T (2)=gu;(l, l', K, T (x],xq)

h' '(N —1,N) =h (N —1)+h (N),

and Eo is the sum of HF orbital energies corre-
sponding to the electrons of the Eth pair. Multi-

plying (C3) to the left by uq(L, S
(
2) and taking

the complex conjugate of the scalar product, one
obtains

E3 (T)= &"o (T (2)
I g I

"2 (T (2) &

= —(u] (T
I
2)

I

h' ' Eo
I
u2—(T

I
2)) .

(C4)

I.et us now, using Eq. (A5), express 42 in terms of
second-order pair functions u2(L, S (2) and insert
into (C2b). Next, we evaluate the scalar product of
the left-hand side of Eq. (C2b) with the function
%](K,T) defined by Eq. (28). We obtain for the
first term

uT & ~'I ~'o(T
I
N —2» ] (T

I
2) ] I

Ho —Eo
I

C'z&

( K)2bx

X(u] (T (2) (h'" —Eo (u2(T (2))

=g(T)(u] (T (2)
I

h' ' Ep (u2(T
I
2—)),

(C5)

where g ( T) and b are defined by Eqs. (12) and

(85), respectively. For the second term we obtain

&+1(K T)
I
P2(H] E])

I
+1&

(Hp —E]])%]+(H] E] )op=0— (C 1)
&+1(K T)

I
Hl El)

( +1& '

(Ho —E]])%~+(H] E])'P]+Ep]p2=—0 (C2a)

For our aim it is sufficient to know the function
42 ——P' '0'2 which satisfies the equation

We have, hence,

g(T)(u] (T (2) (h'2' —Ep (uq(T (2)

= —(%](K;T)(H] E] (]I]]) . (C7)—

(Ho —Ep)@2+8' '(H] E] )4]——0, —(C2b) Combining (C7) with (C4) one obtains

obtained by acting with the projector P' ' on (C2a).
Writing %o and V] in the forms (Al) and (A5),
respectively, and inserting into Eq. (18) one can
find the following equation satisfied by the first-
order function u] (T (2):

Ex3(T)=g(T)-](e](K,T) (H, —E,
I
+]),

which is the desired representation for E3 in terms
of matrix elements involving the first-order
SAPF's.
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TABLE XI. Radially and angularly extrapolated PW increments, E3(A) for the pair
2p 'D (in units of 10 hartree).

PW
Calc.

(basis C)

Rad.
extr.

(l. =9)

Rad.
and
ang.
extr. PW

Calc.
(basis C)

Rad.
extr.

(1,„=9)

Rad.
and
ang.
extr.

1149
—871

88
79
47
27
17
10
7

1133
—879

80
74
44
25
14

8

5

PP
dd

ff
gg
hh

11

JJ
kk
ll

l'g9
Third-order pair energy for 2p 'D

1160
—858

93
81
49
28
18
10
7

11

sd

Jf
dg
fh
gl

hj
ik
jl

l', l")g

—451
—238
—290

114
95
60
37
23

—146

-441
—218
—283

121
101
67
42
26

—32

—437
—211
—275

126
106
70
45
29
54

105

APPENDIX D: ALTERNATIVE
EXTRAPOLATION PROCEDURE FOR E3

As one can see from Eq. (34) the third-order PW
increments to the pair energies

E3(A) =E3(1,1',K, T)

depend through %t on all PW's of the system, i.e.,
the value of each E3(A) depends on 1,„. There-
fore, to get accurate E3(A) values one has to per-
forrn extrapolations both in the radial and angular
sense. Basing on the results of our computations
for various subsets of the basis sets 3, 8, and C we
can attempt such extrapolations. In Table XI we

present the result for the 2p 'D pair for which (see
Table IV) the pair energy discloses the greatest sen-

sibility to the completeness of the basis sets. The

radially extrapolated E3(A) values were obtained
from the extrapolations of the results for basis sets
A, 8, and C (1,„=9)by means of the procedure
described in Sec. III (on the PW level). Such ex-
trapolation procedures were also performed for all

1,„~9providing for each PW a sequence of l-

dependent values. These values disclosed an l
behavior for the diagonal PW's and an l
behavior for the nondiagonal ones. Taking into ac-
count these convergence patterns we obtained the
radially and angularly extrapolated values shown in
the table. The sum of the PW increments for
l, l'g 9 is approximated basing on the fact that for
high I indices the PW increments behave like
members of a geometric series. Taking a sum of
the E3(A) values we obtain the third-order pair en-

ergies displayed in the lowest row of Table XI.
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