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The radiative corrections to the photoeffect from the E shell were evaluated recently by
McEnnan and Gavrila assuming a hydrogenlike atomic model. The result was expressed
in the form of a corrective factor [l+(a/tr)8] multiplying the basic photoeffect differen-

tial cross section. An expression for 5, correct to lowest order in a and aZ, was derived

in analytic form in terms of a large number of single and double integrals over Feynman

parameters, requiring numerical integration. 5 depends on the photon energy co, on the
electron-ejection angle 8, and on the energy threshold lE below which we allow the addi-

tional (soft) photon, emitted together with the ejected electron to go undetected. The b,E
dependence of 5 reflects the inseparable connection between the E-shell photoeffect and

the Compton effect from the E shell with (soft) photons emitted in the range 4E. It was

shown that the same expression for 5, with an appropriate redefinition of the variables,

also radiatively corrects the bremsstrahlung spectrum at its high-energy tip. In the

present work we have carried out the computation of 5. It covers the m energy range
from 0.5 keV to 50 MeV at all relevant angles. The relative error was kept below 0.001,
except at high energies where it was only 0.01. We find that ( —a5/~) is always positive

and increases with 8 and co. At energies of about 500 keV, (a5/n. ) becomes of the order

of 1% and at 5 MeV it has grown to about 5%, when taking hE =0.01mc . By integrat-

ing over the angles we have derived the quantity 5 which radiatively corrects the total

photoelectric cross section, in the form of a factor [1 + (a/tr)h]. We also infer by ex-

ponentiation the correct form of 5 and 5 in the limit AE~O. Finally, we derive the ex-

pression for the cross section describing the energy spectrum of the electrons emitted in

the vicinity of the photoelectric peak, which is the basic information coming from coin-
cidence experiments.

I. INTRODUCTION

Over the years evaluations of radiative correc-
tions have been performed for many atomic
bound-state problems and scattering processes, in

some cases to high orders. Nevertheless, it was

only recently that the radiative corrections to the
atomic photoeffect were first considered. Possible
reasons for such a delay are several. For example,
at higher energies, where radiative corrections
might be expected to become significant, the pho-
toeffect is quite difficult to observe and in the past
experimental results were subject to large errors.
At the same time, the accuracy of the earlier
theoretical calculations of the basic photoeffect
cross section at high energies have been rather low.

In recent years our knowledge of the photoeffect
has improved considerably due to advances in both

theory and experiment. Increasingly accurate nu-

merical computations in the relativistic energy
range (photon energy of the order of the electron
rest energy or larger) have yielded values of the
basic cross section which are probably accurate to
a few percent. This same degree of accuracy has
been attained in recent experiments at these rela-
tivistic energies. Within experimental errors, mea-
surements of the cross section agree with the
theoretical calculations. Since one expects the ra-
diative corrections to be of the order of a few per-
cent of the basic cross section at high energies, the
point is being approached at which their existence
may become apparent. Therefore, it seemed timely
to attempt their evaluation.

The calculation of the radiative corrections to
the atomic photoeffect was carried out for the case
of the E shell by McEnnan and Gavrila' (Ref. 2
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will be denoted in the following by I). The
corrected cross section do+(EE)/dQ was ex-

pressed in the form of a factor 1+ (a/m)5 multi-

plying the basic cross section do' '/dQ (bE
represents the photon energy resolution, see Sec.
II). 5, correct to lowest order in a and aZ, was

given in terms of closed form functions and a large
number of integrals, which could not be performed
analytically. A numerical evaluation of these in-

tegrals required a substantial computational effort
that could not be made at the time.

It has also been shown' that the radiative
corrections to electron bremsstrahlung in the field
of an atom, at the high-energy end of the photon
spectrum ("tip bremsstrahlung"), can be expressed
to lowest order by the same fractional correction 5
as that occurring for the photoeffect. (Henceforth,
Ref. 3 will be denoted by II.)

In this paper we present the numerical evalua-

tion of 5 and interpret the results. We hope that
this work will stimulate an experimental search for
these corrections. At present this still appears to
be a task of considerable complexity but the situa-

tion will undoubtedly improve in the future due to
the ever increasing accuracy of the detection
methods.

The outline of our paper is as follows. In Sec. II
we review the analytic results derived in papers I
and II. We shall present these in a rather self-

contained manner, emphasizing those aspects need-

ed for the understanding of the physics. Next, in

Sec. III, we describe the computation of 5, and its
features at low and high energies. The numerical
results obtained for 5, and its angular-integrated
counterpart are presented in Tables I and II,
respectively, and are commented on in Sec. IV. In
Sec. V we discuss some extensions of our results.
Firstly, by applying the exponentiation procedure a
more general expression for daz(EE)/d Q, valid
also for EE~O, is obtained. This allows the
derivation of the energy distribution of the ejected
electrons, described by the cross section d 0/
dedQ, where e is the energy loss of the electron
with respect to the value predicted by the energy
conservation equation. Some comments are made
on the connection to experiment. Finally, the aZ
and screening corrections to our results are briefly
considered. In the Appendix an Errata is given for
the previous three papers, Ref. 1, 2, and 3.

II. ANALYTIC FORMULATION

The atomic model adopted in I for the descrip-
tion of the E-shell photoeffect was that of an in-

dependent electron under the influence of a
Coulomb field of a nucleus of charge Z. (Possible
electron-screening corrections to this model are
considered in Sec. V.) At high photon energies
and for arbitrary values of Z, where the relativisi-
tic Dirac theory is required, the photoeffect cross
section cannot be expressed in simple analytic form
even for this model, and a numerical computation
has to be carried out. (The current status of the
theory of the atomic photoeffect, for high-incident
photon energies, is summarized in the review arti-
cle by Pratt et al. ) However, for light elements

(aZ « 1) and high photoelectron velocities

(aZ/P « I), Sauter was able to obtain an analytic
approximation to the relativistic cross section,
correct to lowest order in aZ [i.e., a(aZ) ]. '

The radiative corrections to the E-shell photoef-
fect were calculated in I to lowest order in the ra-
diation field, and with the same limiting condi-
tions, aZ && I and aZ/P « I, as the Sauter re-

sult. The matrix elements were expressed in the
Furry picture of QED. In this picture, the wave

functions and the electron propagators contain all

effects of the potential so that the resulting matrix
elements are exact in aZ. Neglecting second and

higher orders in aZ and aZ/P, the ground state
can be expressed in terms of the Pauli approxima-
tion, and the final state in terms of a Born expan-
sion, respectively. Two terms in the Born expan-
sion were retained to get a consistent lowest-order
result in aZ. For the electron propagators in the
Coulomb field, it was argued that it is consistent to
use a Born expansion with the first two terms re-
tained, as was done for the final state. By apply-
ing the renormalization program of QED, the ul-

traviolet divergences were eliminated. The infrared
divergences were avoided in the usual manner by
attributing a finite mass A, to the photon. This al-

lowed the calculation of a finite "virtual-photon
correction" to the photoeffect cross section. Elimi-
nation of the fictitious mass A, was done as usually

by recognizing that any physical process can be ac-
companied by the emission of photons. Only
events in which the secondary photons are emitted
below a certain energy threshold LE are con-
sidered. If ~ is not excessively small (see Sec.
V A), there is an appreciable probability for the
emission of only one photon in the range hE. This
is the process if Compton scattering by a bound
E-shell electron, in which the energy of the final
photon is less than ~. For reasons of calculation-
al convenience the assumption hE « 1mc was

adopted and terms vanishing in the limit ~~0
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were dropped (soft-photon approximation). Furth-
er, for consistency, a mass A, was attributed to the
photon. In this way the Compton cross section
could easily be derived. Finally, the incoherent ad-
dition of the latter to the cross section contributed

by the virtual photons considered before results in
the physical, corrected photoeffect cross section,
which is independent of A, although it is dependent

upon ~. Note that, due to the conservation of
energy, the emission of a soft photon of energy less
than hE implies an energy loss for the ejected elec-
tron of not more than ~. '

The units used throughout I, II, and the present
paper are "natural units, " fi=c =m, =1. Conse-
quently, momenta are measured in units of mc, en-

ergies in units of mc, and the cross sections in
squares of the Compton wavelength. (Notations
will be the same as in I and II.) Neglecting terms
of order (aZ), the energy conservation equation is

Eg ——1+a),

where ro and EJ=(1—p )
' are the energy of

the incident photon and the kinetic energy of the
ejected electron, respectively. The variables ~ and

do g(AE) dog '

dQ dQ

where do~'/d0 is the Sauter cross section,

(3)

alp —kl'

X[4+(~—1)
I p —k I'] . (4)

The radiative correction 5, given by Eq. (6.15) in I,
has the form

~ are defined by

K=2coEJ(1 —Pcos8)=
~ p —k ~, r=2co, (2)

where k and p are the momenta of the photon and
electron, respectively, and 0 is the angle between p
and k.

The radiatively corrected differential cross sec-
tion derived in I for the K-shell photoeffect,
summed over the electron and photon polariza-
tions, which allows for the emission of one soft
photon in the range b,E« 1, is [see Eq. (6.14) in
I (Refs. g —10)]

2 —T5=A+
7 K7

Re[R i+(1 r)Ri (rc —r 8)R—i ——2R4—] . (5)

5=5O+5),

where

(6)

5, =WlnhE, (7)

The R„are functions of only ~ and ~, and are de-

fined by Eqs. (5.8), (5.14)—(5.16), (5.20), (5.22)—
(5.27), and Tables I—III of paper I. The function

A, on the other hand, depends on ~ and ~, but is

angle independent. It is defined by Eq. (6.8) in I,
and because of its form we may separate the ~-
dependent part of 5 as

1 1

H„=f f dxdy8„( , ;irryx, )h (K,r;x y), (10)
1J„=f f dx dyK„"(ir, r;x,y)J„(ir,r;x,y), (11)

where the factors in the integrands are given in
Tables I—III of I. Nevertheless, in the nonrela-

tivistic limit co && 1, and in the high-energy limit
ai » 1 at finite momentum transfer v s., simple
analytic forms could be obtained for these integrals
and hence for 5 [see Eqs. (7.1) and (7.2) in I].

In the nonrelativisitic case one finds:

5=Pi[ ——„+—,ln(26E)] ——,P cos8lnP

A = —2+ —ln
1 I+P

1— (8) + 7io P cos8+0(P' lnP) . (12)

and 50 is ~ independent.
The quantities R„contain elementary functions

together with 50 Feynman-parameter integrals
which cannot be expressed analytically in general.
Each of these integrals is well defined for all (fin-
ite) values of a. and r They are of.the form [see
Eqs. (5.23)—(5.27) in I]:

1

G„= dy I „(]c,~,y)g (]c,~',y),
0

In Eq. (12) we include the order Pi term which
was not given previously in Eq. (7.1) in I. Since
the calculation of 5 is based on the Born approxi-
mation, Eq. (12) will be physically valid only a suf-
ficiently high (nonrelativisitic) values of P.

In the high-energy limit the result is

5=2(lnr —1)[In(26E) ——,lnr]
—ln~ in~+0(1) (13)
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The O(1) term with respect to the energy in Eq.
(13) is a function of ~; it could not, unfortunately,
be obtained analytically. Equation (13) approxi-
mates the exact 5 on condition that ~ can be
neglected with respect to ~, i.e.: ~&&~& 1. (Note
that at high energies ~) 1.)

The total cross section corresponding to Eq. (3)
can be written as

og =o'g 1+(p) a
7r

(14)

In general, since 5 is only given in numerical form,
the integration over the angles in Eq. (15) must be
evaluated numerically. However, in the high-en-

ergy limit, by using Eq. (13) and the high energy-
limt of do+'/dQ, an analytic expression can be de-

rived for 6, see Eq. (7.6) in I:

where o.z' is the total Sauter cross section, and the
expression for 6 is

(0)

(15)

do-'"

dN

do
1

dco 7r

where (do' '/den)TB corresponds to (d o' '/
dco dQ)TB and, to lowest order in aZ, 6 coincides
with the one given in Eq. (15).

(18)

d2 d2 (P)

dcodQ TB deeds

is the same as for the photoeffect, see Eq. (3).
Here (d o' '/de 1 Q)rii is the basic tip bremsstrah-
lung cross section, which can be derived to lowest

order in aZ from the Sauter cross section Eq. (4)

by multiplication with co /(aZ) p . The p, E~,
and k, co entering the expression of 5 now charac-
terize the incoming electron and the radiated pho-
ton, respectively. Equation (17) specifically applies
to the tip of the spectrum (P2-0), a case not
covered by other Born-type radiative corrections
calculations to bremsstrahlung (see II).

By integrating over the angles Eq. (17), the tip
value of the spectral distribution is

6=2(ln~ —1)(ln26E ——,ln~) ——, in~+0 (1) .

(16)

As does 5 itself, 6 contains the not analytically
determined term of order one in the high-energy
limit, O(1).

The radiative corrections to the case of tip
bremsstrahlung are the subject of II." Tip brems-

strahlung is that process in which an incoming
electron is accelerated in the atomic potential and
radiates all its kinetic energy in the form of one
photon, thereby being left (quasi) at rest. This is a
case which cannot be handled by the usual Born-
approximation techniques since the velocity of the
final electron Pz is (quasi) zero (aZ/P2» l).
Apart from atomic binding effects, i.e., neglecting
terms of order (aZ), tip bremsstrahlung and pho-
toeffect are essentially inverse processes and the en-

ergy conservation equation, Eq. (1), still applies.
This idea was used by Fano and collaborators, and

by Pratt (see II) to derive a simple relation between
the differential cross sections for tip bremsstrah-
lung (d o' '/dcodQ)Tq and photoeffect (der~'/dQ),
which holds to first order in aZ, see Eq. (6) in II.
In II it was proven that this relation remains valid
when including radiative corrections to lowest ord-
er in a. The fractional radiative correction 5 to
the tip bremsstrahlung cross section, ' defined as

III. COMPUTATION

The radiative correction 5 is a function of three
variables: the photon energy co, the emission angle
0 (or, alternatively, the momentum transfer
squared ~), and the energy resolution hE. The
dependence of 5 on hE is such that the values 5
and 5' corresponding to the two values hE and
b,E', are related by [see Eqs. (6)—(8)]

I

5'=5+3 ln
hE

This equation allows the calculation of 5 for any
hE once a computation has been carried out for
some specific hE. We have chosen this reference
value to be EE=0.01.

Some of the quantities contained in 5, Eq. (5),
are expressed in terms of simple functions which
can be easily evaluated. Such quantities are A, see
Eq. (6.8) in I, and the P„,M„, and F„appearing in
the R„(n =1, . . . , 4) of Eq. (5), see Eqs. (5.8)—
(5.22) and (6.15) in I. Both the A and M„explicit-
ly depend upon the Euler dilograthm L&(z), which
is a quantity frequently appearing in radiative
corrections calculations. (Detailed accounts of this
function are given in Refs. 13 and 14.) From Eq.
(6.15) in I it is apparent that in our case only the
real part of L2(z) is needed, which is given by [see
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Eqs. (5.19) and (5.21) in I]

ReL2(z) = —J dx .'in[1 —x [

x
For any real z, L2(z) can be expressed in terms of
logarithms and another function L2(x) of a dif-
ferent variable, contained in the range (0,—,). For
the latter one can use a rapidly convergent series
expansion.

The other quantities contained in the R„of5
are the integrals 6„,H„, and J„. The functions

g (y), h (x,y), and j (x,y) appearing in the in-

tegrands exhibit a number of common traits. For
example, some of the g (y) have a logarithmic
singularity at y =0, and some of the j (x,y) have a
logarithmic singularity at x =0. These singulari-
ties are integrable and, if one choses a quadrature
formula which avoids evaluating the integrands at
x =0 or y =0, these points present no numerical
difficulties. Also, many of the functions g (y),
h (x,y), and j (x,y) contain in their denominators
the quantities

qz
——1 —vy,2= 2

q„=—xs+ [ry(1 —y) —sy](1 —x)i

+my(1 —x)+ 1,
which can vanish within the domain of integra-
tion. ' In the case of q~ this happens for a certain
point yo of the integration interval (0,1), defined by

qz(yo) =0. In the case of the q„, this occurs along
a line yo ——yo(x) crossing the integration square,
defined by q [x, yo(x)] =0. Nevertheless, the func-
tions g, h, and j are not singular at these
points due to the fact that the numerators also
vanish. Thus, the singularities are only apparent.
This can easily be seen by expanding the functions
involved in powers of q~ and q„, assumed to be
small. To evaluate those integrands containing in
their denominators q~ or q„near the points (x,y)
for which

~ q„~ & 10,we replaced the numerical-

ly evaluated functions g, h, or j by their series
expansions in q„or q .

An open-panel integration method was chosen in
the form of a simple (case of y integrations) or
composite (case of x and y integrations) third-order
Gaussian quadrature with a predetermined step
size, to minimize program complexity and to avoid
evaluating logarithmic singular integrands at the
end points x =0 or y =0. The step size was
varied, in general, in the different parts of the in-

tegrations domains depending upon the energy co.

The desired level of accuracy in the computation

was achieved by repeating the integration with de-

creasing step sizes. The procedure was stopped at
the point when the difference in results between
two consecutive integrations was smaller than the
error allowed. In fact, rather than checking the
accuracy for each integral separately, we preferred
to check it for the combination R, +(1—rWi
—(~—~—8)R3 —2R4 explicitly appearing in 5,
thereby preventing the loss of significant figures
due to the cancellation between various terms.

To test the accuracy and correctness of the nu-

merical code we have performed a number of
checks. For example, we have compared the nu-

merical results with those derived analytically for
the low- and high-energy limits. We did not con-
sider it sufficient to compare with the overall lim-

iting results for 5 given in Eqs. (12) and (13) be-
cause not all of the 50 integrals [Eqs. (9)—(11)]
contribute to these limits and, further, considerable
cancellation occurs. Instead, we have tested each
of the integrals against its low- and high-energy
analytic limits. The test against the high-energy
limits required the use of more refined integration
procedures than those needed for the values of co

physical interest.
In what follows we shall describe in more detail

our integration procedures for low and high ener-

gies. At lou and intermediate ~, i.e., from about
0.5 keV to about 1 MeV, the integrands in Eqs.
(9)—(11) are slowly varying functions of their vari-
ables x and y. A rather small number of integra-
tion points uniformly distributed in the integration
domain sufficed to yield 5 with a relative error
which is, we are confident, smaller than 10
When testing the nonrelativistic limit, however,
one has to go to much lower energies. We have
considered the sequence P=0.1, P=0. 1, P=0.001
and have followed the convergence of the numeri-
cal results to their corresponding analytical coun-
terparts. For p=0.001 agreement was achieved to
better than 10 in all cases. '

At high energies co, above about 1 MeV, changes
are required in the integration procedures in order
to achieve the desired accuracy with a minimum of
computer time. This is due to the fact that now
the integrands in Eqs. (9)—(11) cease to be smooth
functions. Thus, for example, in the extreme case
s~ 00 with ~ held fixed, (p„) ' vanishes in all
points of the integration square of the (x,y) plane,
except for the points (0,0) and (0,1) where it tends
to 1. Similarly (p„—x~) ', (q„+ax) ', (q„)
vanish in all points of the integration square except
on its three sides y =0; x =1;y =1. The situation
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is further complicated by the factors H„and E„
which can vanish on the sides of the square, there-

by producing local maxima and/or minima. In
these areas the value of the interands may vary
considerably within a distance of 1/r, and this

variation is sharper the larger ~. To deal with

these variations of the integrands we chose to sub-
divide the integration square into three areas: (1)
the vicinities of the points (0,0) and (0,1); (2) a
strip along the sidesy =0; x =1;y =1 of the
square; (3) the remainder of the square. The in-

tegration grid varied from area to area, with the

TABLE I. Values of the radiative correction —(a/n. )5 as a function of the emission angle 0 (in degrees) and in-

cident photon energy co (in keV). We have taken EE=0.Olmc'. Numbers in parentheses denote powers of 10.

0.5 10 50 300

0
15
30
45
60
75
90

105
120
135
150
165
180

1.270( —5)
1.274( —5)
1.285{—5)
1.301(—5)
1.323( —5)
1.349( —5)
1.376( —5)
1.403( —5)
1.429( —5)
1.450( —5)
1.467( —5)
1.477{—5)
1.481(—5)

2.477{—5)
2.486( —5)
2.513(—5)
2.557( —5)
2.613(—5)
2.679( —5)
2.749( —5)
2.819(—5)
2.884{—5)
2.940( —5)
2.983(—5)
3.010(—5)
3.019(—5)

2.141(—4)
2.161(—4)
2.220( —4)
2.314(—4)
2.434( —4)
2.573( —4)
2.720( —4)
2.866( —4)
3.000( —4)
3.115(—4)
3.202( —4)
3.257( —4)
3.276( —4)

9.142{—4)
9.301(—4)
9.757( —4)
1.046( —3)
1.133(—3)
1.231(—3)
1.333(—3)
1.430( —4)
1.519(—3)
1.593( —3)
1.650( —3)
1.685( —3)
1.697( —3)

1.721( —3)
1.757( —3)
1.866( —3)
2.025( —3)
2.216( —3)
2.422( —3)
2.629( —3)
2.826( —3)
2.999(—3)
3.146( —3)
3.256( —3)
3.325( —3)
3.348( —3)

3.276( —3)
3.371(—3)
3.620( —3)
3.957( —3)
4.330( —3)
4.707{—3)
5.068( —3)
5.404( —3)
5.701( —3)
5.948( —3)
6.130(—3)
6.245( —3)
6.284( —3)

4.785( —3)
4.950( —3)
5.351(—3)
5.836( —3)
6.322( —3)
6.777{—3)
7.194( —3)
7.565( —3)
7.883( —3)
8.139(—3)
8.327( —3)
S.442( —3)
8.481( —3)

6.254( —3)
6.502( —3)
7.049( —3)
7.629( —3)
8.139(—3)
8.569( —3)
8.930( —3)
9.227( —3)
9.461( —3)
9.634( —3)
9.750( —3)
9.814( —3)
9.835( —3)

7.679( —3)
8.021( —3)
8.697( —3)
9.307( —3)
9.762( —3)
1.010( —2)
1.035( —2)
1.055( —3)
1.069( —2)
1.080( —2)
1.086( —2)
1.089( —2)
1.090( —2)

1100 1200 1332

0
5

10
15
30
45
60
75
90

105
120
135
150
165
180

9.506( —3)
1.028( —2)
1.087( —2)
1.123(—2)
1.147( —2)
1.165(—2)
1.182( —2)
1.196(—2)
1.208( —2)
1.216( —2)
1.221( —2)
1.223( —2)

1.041( -2)
1.124{—2)
1.178( —2)
1.208( —2)
1.228( —2)
1.247( —2)
1.265( —2)
1.283( —2)
1.299( —2)
1.311(—2)
1.318(—2)
1.320( —2)

1.095( —2)
1.181{—2}
1.233( —2)
1.260( —2)
1.279( —2)
1.298( —2)
1.319(—2)
1.340( —2)
1.358( —2)
1.372( —2)
1.381(—2)
1.384( —2)

1.237( —2)
1.327( —2)
1.371(—2)
1.392( —2)
1.412( —2)
1.438( —2)
1.468( —2)
1.497( —2)
1.523( —2)
1.543( —2)
1.556{—2)
1.560( —2)

1.375( —2)
1.467{—2)
1.503( —2)
1.523( —2)
1.549{—2)
1.584( —2)
1.623( —2)
1.661(—2)
1.694( —2)
1.719(—2)
1.734( —2)
1.739( —2)

9.060( —3) 9.893( —3) 1.040( —2) 1.169(—2) 1.294( —2) 1.416( —2)
1.430( —2)
1.466( —2)
1.509( —2)
1.601{—2)
1.632( —2)
1.654( —2)
1.687{—2)
1.732( —2)
1.780( —2)
1.825( —2)
1.864( —2)
1.893( —2)
1.911(—2)
1.917(—2)

1.534( —2)
1.551(—2)
1.592( —2)
1.640( —2)
1.731(—2)
1.758( —2)
1.784( —2)
1.826( —2)
1.880( —2)

1.648( —2)
1.668( —2)
1.715(—2)
1.767( —2)
1.856{—2)
1.882( —2)
1.914(—2)
1.965{—2)
2.026( —2)

1.794( —2)
1.81S(—2)
1.873( —2)
1.930{—2)
2.016(—2)
2.042( —2)
2.083( —2)
2.145( —2)
2.216( —2)

2.091(—2) 2.259( —2) 2.474( —2)

2.031(—2) 2.195(—2) 2.403( —2)

0
5

10
15
30
45
60
75
90

135

1.867( —2)
1.893(—2)
1.953( —2)
2.012{—2)
2.096( —2)
2.124( —2)
2.169(—2)
2.236( —2)
2.312(—2)
2.508( —2)

1500

1.972( —2)
2.002( —2)
2.068( —2)
2.130{—2)
2.211(—2)
2.241( —2)
2.294( —2)
2.367( —2)
2.449( —2)
2.657( —2)

2.074{—2)
2.108( —2)
2.180( —2)
2.244( —2)
2.323( —2)
2.357( —2)
2.416( —2)
2.496( —2)
2.583( —2)
2.803( —2)

1700

2.173(—2)
2.211(—2)
2.289( —2)
2.356( —2)
2.433( —2)
2.470( —2)
2.535( —2)
2.622( —2)
2.714(—2)
2.944( —2)

2.270( —2}
2.312(—2)
2.396(—2)
2.465( —2)
2.540( —2)
2.581(—2)
2.652( —2)
2.744( —2)
2.842( —2)
3.081(—2)

1900

2.364{—2)
2.411(—2)
2.501(—2)
2.571{—2)
2.644( —2)
2.690( —2)
2.767( —2)
2.S64( —2)
2.966( —2)
3.214( —2)

2.456( —2)
2.508( —2)
2.603( —2)
2.674{—2)
2.747( —2)
2.796( —2)
2.879( —2)
2.981(—2)
3.087( —2)
3.344( —2)

2754

3.0S3{—2)
3.176( —2)
3.308( —2)
3.3S2{—2)
3.453( —2)
3.530( —2)
3.648( —2)
3.783( —2)

4.496{—2)
4.735( —2)
4.918(—2)
4.981{—2)
5.062( —2)
5.210(—2)
5.405( —2)
5.609( —2)
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TABLE I. (Continued. )

104 2. 10 5.10'

0
1

2
3
5

10
15
30
45
60

5.319(—2)

5.676( —2)
5.864( —2)
5.914( —2)
6.012( —2)
6.210( —2)
6.452( —2)

6.49( —2)
6.56( —2)
6.70( —2)
6.85( —2)
7.05( —2)
7.21( —2)
7.24( —2)
7.39( —2)
7.67( —2)

8.81(—2)
9.05( —2)
9.39( —2)
9.60( —2)
9.80( —2)
9.87( —2)
9.89( —2)
1.02( —1)
1.07( —1)

1.23( —1)
1.32( —1)
1.37( —1)
1.39( —1)
1.39( —1)
1.39( —1)
1.40( —1)
1.48( —1)

most dense mesh in area (1), followed by areas (2)
and (3). This allowed us to concentrate the in-

tegration points in those areas where the integrands
varied most rapidly, thereby attaining the desired
accuracy with minimal computer time. For ener-

gies less than 5 MeV we still could achieve a rela-
tive error of about 10 . However, at still higher
energies, the computation time increases dramati-
cally, so that we could keep the errors only at the
10 level.

In order to test the high-energy limit of the
computation we have considered very large values
of v, such as v=10 and ~=10 . Extreme nurneri-

cal precautions had to be taken in these cases. We
were able to verify that the computed values of the
integrals approached their analytic limits. '

To conclude, we mention that for the numerical
integration of 5 from Eq. (15) we have used for
do~'/dQ its analytical form and for 5 an accurate
interpolation polynomial derived from the minimax
principle. Thus, the error on 6 is about the same
as on 5. Since an equation similar to Eq. (19)
holds also for 6, it is sufficient to consider the
case of EE=0.01.

IV. RESULTS

We have computed the radiative corrections to
the photoeffect (under the limitations discussed in
Sec. II) for a wide range of incident photon ener-

gies and emission angles, covering all situations of
practical interest. In Table I we present our results
for (a/m. )5 as a function of co and 8, given that
~=0.01mc . The range of incident photon ener-

gies extends from 0.5 keV to 50 MeU. For ener-

gies up to 1.3 MeV the range of 8 was from 0 to
180'. For higher energies, due to limitations on
computer time, we give results for (a/n )5 at only

TABLE II. Values of the radiative correction
—(a/~)h as a function of the photon energy u. We
have taken EE=0.01mc . Numbers in parentheses
denote powers of 10.

—(a/n. )h

0.5 keV
1

10
50

100
200
300
400
500
600
662
700
800
900

1000
1100
1200
1332
1400
1500
1600
1700
1800
1900
2000
2754
5000

10 MeV
20
50

1.372( —5)
2.735( —5)
2.629( —4)
1.193(—3)
2.226( —3)
4.072( —3)
5.742( —3)
7.306( —3)
8.797( —3)
1.169(—2)
1.110(—2)
1.164( —2)
1.298( —2)
1.429( —2)
1.555( —2)
1.682( —2)
1.803( —2)
1.959( —2)
2.036( —2)
2.148( —2)
2.256( —2)
2.362( —2)
2.465( —2)
2.566( —2)
2.664( —2)
3.35( —2)
4.84( —2)
6.97( —2)
9.44( —2)
1.32( —1)

those angles for which the Sauter cross section is
large, and neglect the angular range over which the
Sauter cross section has decreased 3 orders of mag-



DAVID J. BOTTO AND MIHAI GAVRILA 26

nitude from its peak value. ' (At such large ener-

gies and angles the photoeffect cannot be detected

by present experimental techniques. ) In Table II
we give our results for the co dependence of the in-

tegrated correction (a/m)h for a sample of the in-

cident photon energies. We estimate that the
values given in Table I and II are accurate to about
the last digit displayed (see the discussion in Sec.
III}.

Table I combined with Eq. (19) shows that, for
hE/Ey « 1, (a/~)5 is always negative and de-

creases with increasing 8. This agrees with both
the low- and high-energy limiting forms, Eqs. (12)
and (13). Consequently, the radiative corrections
decrease the basic photoeffect cross section.

The variation of (a/~)5 is rather weak over the
angular range of the peak of the Sauter cross sec-
tion. This means that the corrective term
(cz/~)5 do» '/d 0, has an angular dependence simi-

lar to that of the Sauter cross section do+' /dQ it-
self (i.e., has a sharp maximum shifting towards
zero angle with increasing energy}. Below 500
keV, (a/n )5 decreases smoothly as 8 increases;
above this energy a slight shoulder sets in. '

As the photon energy increases, (a/m)5 increases
in magnitude (becomes more negative). At low en-

ergies, below a few keV, it is very small, less than
0.02%. The agreement with the analytic, nonrela-
tivistic formula of Eq. (12) is quite good in this
case. (For co & 5 keV, the agreement is to within

1%, but for co=100 keV it is only to within 30%.)
At energies of about 500 keV, (a/m. )5 becomes of
the order of 1%, and at 5 MeV it has grown to
about S%%uo.

At very high energies one may compare the nu-

merical results with Eq. (13). This comparison is
hindered by the fact that the terms of O(1) with
respect to ~ contained in Eq. (13) could not be
determined analytically. Note that these terms are,
in fact, of the form

To circumvent this difficulty we have subtracted
the values of the analytic expression contained in 5
of Eq. (13) from the numerical results, thus obtain-

ing the unkown term O(1). This was done at the
two highest energies of our calculation, co=20
MeV (&=78) and co=50 MeV (~=196). The re-

sults are given in Table III. By comparing them
we find in both cases that, for the lower values of
Wic, O(1) is very well represented by 3v ~. As v tc

increases beyond a certain value (about 3.03 for
co=20 MeV, and 3.57 for co=50 MeV) the agree-
ment deteriorates. This is not surprising in view of
the fact that the corrective term A in Eq. (20) con-
tains terms which can become large when ~ in-

creases towards r. Consequently, we infer from
Table III that, to a good approximation,

P(s) =3~ic . (21)

By combining Eqs. (13), (20), and (21) we now
have an improved formula for the high-energy lim-

it. Note that the relative error the A of Eq. (20)
transmits to 5 decreases with the energy.

We may proceed similarly in the case of the
high-energy expression of 6 given by Eq. (16).
Here we can write the unknown O(1) term as

V. DISCUSSION

O(1)=c +P',

where c is a constant and P' is a function of r van-

ishing for ~~ 00. The value of c can be calculated
analytically given the form of P(lc) of Eq. (21).
The result is c =5@2=7.07. This is quite con-
sistent with the values obtained by subtracting the
analytic part of Eq. (16) from the numerical results
for 5 at 20 and 50 MeV given in Table II. We
thus find O(1)=6.84 and O(1)=7.19, respectively.

0 (1)=P(a)+%, (20) A. Exponentiation

where P is an unknown function of s., and 9F con-
tains terms of order 1/~ or higher, vanishing in the

limit r~ 00 at finite s [e.g., Ic/r, lc (ln r)/r, etc.].

When considering our corrected photoeffect
cross section der+(EE)/dQ of Eqs. (3), (6), and (7),
we find that for ~—+0 it has the unphysical

TABLE III. Momentum-transfer dependence of the quantity O(1) appearing in Eq. (13),
as derived from the comparison with the numerical data at co=20 MeV and co=50 MeV.

~ (MeV 0.988 0.995 1.54 2.03 3.03 3.57 5.24 6.98

20
50

2.93
3.01

4.66 6.11 8.67
10.50 13.69

15.84
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do(AE) " cr'"'(AE)

dQ „ 0 dQ
(22)

Alternatively, Eq. (22) can be viewed as the cross
section corresponding to an energy loss of the
ejected electron smaller than ~, with all possible
soft-photon events accounted for.

To deal in general with a sum like Eq. (22), is a
formidable problem. However, the aspects related
to its infrared behavior have been extracted in an

elegant manner for a general elementary process
(e.g., see Yennie, Frautschi, and Suura, Ref. 21,
Sec. 4). Thus it can be shown that der(~)/dQ is
finite in the limit A, —+0, i.e., free of infrared diver-
gences to all orders in a (real photon divergences
cancel those related to virtual photons) and that
this is a consequence of their cancellation to lowest
order in a. Moreover, the lowest-order result [such
as our Eq. (3)] enables us to obtain the 6E depen-
dence of the global do.(AE)/dQ for 4E «1, by a

feature that it becomes negative and diverges loga-
rithmically. The case when for some reason a
transition probability calculated by perturbation
theory becomes large and/or negative indicates
that the limits of validity of the theory have been

violated. In order to be able to also encompass the
~~0 case, a higher order in a calculation of the
radiative corrections is needed.

The calculation of I involved only one virtual
and one real soft photon (see the diagrams in Figs.
3 and 6 of I). It was thus implied that among the
undetected soft-photon emissions occurring in the
range hE, the one for a single photon has a proba-
bility dominating the others (see Sec. II). Actually,
for extremely small values of bE, the probabiltiy
for emission of several photons becomes compar-
able to that for single-photon emission, even

though the latter is of lower order in a. We have
thus to deal with generalized forms of the Comp-
ton effect in which, for example, n photons of total
energy within the range AE are emitted. This is
characterized by a cross section do'"' (AE)/dQ,
which we shall assume includes virtual-photon ra-
diative corrections to all orders. (The result is kept
finite and mathematically well defined at the ex-

pense of introducing the finite photon mass A..)
These partial cross sections do'"' (hE)/ d 0 have

then to be summed over all n values (n =0, 1,2. . .;
the n =0 case has also to be included) in order to
get the global cross section da(~)/ dQ for the

photoeffect with the emission of an arbitrary num-

ber of undetected soft photons, of total energy in

the interval hE:

procedure which has been termed "exponentia-
tion, " because the hE-dependent terms add up to
give an exponential (see also Refs. 22 and 23). We
shall now apply this procedure to the case of the
photoeffect.

To this end it is useful to divide 5 as was done
in Eqs. (6)—(8). Then, following Ref. 21, we infer
the corrected cross section for the photoeffect, as-

suming hE «1, to be

do.l(.
.(~) do.x (a/~)

(0)

dQ dQ
(23)

Whereas the exponentiation of (a/m. )5& follows
from the general proof, it is not clear if also some
terms of 50 should be included under the exponen-
tial. Since only the case when (a/m. )50 is rather
small is of practical interest, we have written its
contribution to Eq. (23) to first order only, as it
appeared in Eq. (3). The quantity 5o can be ob-
tained directly from Table I since, by its definition
in Eqs. (6)—(8), we have 50——5—A ln0.01.

do.~(EE)/dQ of Eq. (23) is a generalization of
our original Eq. (3), valid now for any hE « I,
and in particular for EE~O. The result is not
only free of singularities for ~~0, but actually
vanishes in the limit. Indeed, from Eq. (7) we
have

(a/m)51
(~)(a/m)A (24)

—A lnhE «1,a
(2S)

Eq. (23) reduces to our Eq. (3). In view of the
smallness of nA /m. , the condition Eq. (2S) can be
violated only under extreme circumstances. Thus,
even for co as high as 10 MeV, hE would have to
be of the order of 10 ' in order that the quantity
on the left-hand side of Eq. (25) be 0.4. This indi-
cates that for our problem exponentiation can be
neglected from a quantitative point of view.

Because the factor Eq. (24) is angle independent,

Since A &0 for all P, this factor vanishes for
EE~0, as does the cross section Eq. (23). This
fact has an important implication. It means that a
"pure" photoeffect (i.e., the case when the emitted
electron would lose no energy in the form of pho-
tons) cannot occur in reality. This is entirely simi-
lar to what happens in electron scattering by a po-
tential, where a purely elastic collision (with no
photons emitted) cannot occur as well. '

For not too small values of hE, such that
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the considerations above can be extended to the
angle-integrated cross section Eq. (14).

B. Electron energy distribution
in theory and experiment

So far we have described the physics of our pro-

cess in terms of the energy-resolution-type cross
section der~(EE)/dQ. However, one may adopt
an alternative point of view. Since in the final
state of the process the emission of the electron is
accompanied by that of photons, the electron (of
final energy E) will suffer some energy loss

e=EI E(0&—e&Ef) with respect to the value Ef
predicted by the photoeffect energy conservation
Eq. (1). The energy-loss distribution can be
represented by a cross section of the form
d cr~/dad Q. Evidently, the connection

dos(~} f
as d'ox

(26)
dQ "o dedQ

should hold.
We are now interested in deriving the expression

of d o.~/dedQ, since this is the quantity primarily
obtained in experiments rather than do+(KE)/dQ

deox�

/dad Q can be derived from Eq. (26) by sim-

ply taking the derivative of do~(bE)/dQ with

respect to hE. Using the expression derived in Eq.
(23) we thus find

2 + =—AP'" ' ' l+ &0 (27)
dedQ m dQ

This form of the energy spectrum is valid only for
sufficiently small e (e« 1). In cases of physical
interest Eq. (27) represents a decreasing function of
e, which is singular for e~O, but the singularity

is evidently integrable.
Notice that we could not have used our original

Eq. (3) to derive deox/dedQ because of the un-

desirable feature that, for b,E~O, Eq. (3}becomes
singular, in contradiciton to Eq. (26).

The basic information yielded by photoeffect
coincidence experiments (i.e., the ejected electron is
detected in coincidence with the E x rays) is the
energy spectrum of electrons in the vicinity of the
photoelectric peak. For the case of angle-resolved

experiements, the experimental spectrum, denoted
by d o~/dad 0, can be obtained from the theoreti-
cal one in Eq. (27) by convoluting the latter with
the (sample + spectrometer) transmission function,
allowing for the energy spread in the initial beam,
etc. The convolution is possible because the singu-

(28)

where on the right-hand side we now have our
theoretical cross section Eq. (3). Thus, the condi-
tion hE && I indicates the limitation to be im-

posed on hE under which our Eq. (3) can be com-
pared directly with the experimental data.

The above discussion for the differential cross
section Eq. (3) can be readily extended to the case
of the total cross section Eq. (14).

C. aZ and screening corrections

Our calculation was based on a hydrogenlike
model and was carried out to lowest order in aZ.
We shall now briefly comment on its limitations
and suggest possible improvements.

We first notice that for small Z atoms, con-
sistency requires that the basic Sauter cross section
du+'/d Q should be replaced in Eq. (3) by its first
order in aZ corrected version, dos '/dQ (in this
case aZ is not very different from a). An expres-
sion for do.z'/dQ was derived by Gavrila, see
also Nagel. Unfortunately, do&'/dQ can itself
be applied only to very low values of Z, because it
turns out that the effective-expansion parameter of
the basic cross section is not aZ, but rather ~aZ
(see Ref. 4). However, it is possible that by replac-
ing do~'/dQ by Pratt's modification of the
Sauter-Gavrila formula, or by a numerical
evaluation of the basic (Coulomb) cross section,
the validity of Eq. (3) may be substantially extend-
ed towards higher Z values, at the high energies we
are considering.

The electron-screening corrections to the Cou-
lomb field model were analyzed for the basic pho-
toeffect cross section by Pratt and collaborators
(e.g., see Ref. 4). By applying their "normalization
screening theory, "which is valid for tightly bound
electrons and high photon energies, the screening

larity at e=O of d o.z/dad Q is integrable.
When ignoring the energy spread in the initial

beam, d o.~/dad Q essentially vanishes for e & —I,
where I is the half-width of the transmission func-
tion, then rises sharply to finite maximum around
@=I, to decrease more slowly for e& I . One may
calculate the area under the curve d oz /dad Q
from e= —I to some e=hE of our choice
(LhL &Ef). This will give the number of counts in

this energy interval. If bL is chosen such that
hE && I (and, on the other hand, hE « 1), it fol-
lows that

).as d ox dos(b, E)
J P dpdQ dQ
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corrections appear as constants multiplying the
Coulomb cross sections. The natural question
arises if this procedure could be extended to the
case of the radiative corrections. An inspection of
the matrix elements of Fig. 3 in I, shows that this
is indeed the case for some of them, but that the
rest would require a more elaborate analysis. If
indeed the screening corrections could be factored
out as in the normalization screening theory for all
matrix elements, the replacement in Eq. (3) of
do~'/dQ by the Coulomb cross section corrected
for screening (or, equivalently, by a numerical
evaluation for a realistic self-consistent potential)

may correct, approximately, both for screening and
for higher Z effects (as discussed above). Howev-

er, an independent study would be required to
analyze the extent to which such a procedure
would be applicable.
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APPENDIX
In the following we would like to correct some

misprints contained in papers I and II.

Paper I. Following Eq. (2.2), the expression of
E; should read E; =(1—a 2}+'~~. In Eq. (5.21},the
imaginary part of L2(1+~) should be
—i~in(1+~). Further, Eq. (7.3) should read

(a/m)5 0.009(ln2~ —1.50)—0.011 .

This changes slightly the numerical estimates fol-
lowing Eq. (7.3), but we shall not correct them
here since they are superseded by the present com-
putation.

In Eq. (7.4) the notation a was inadvertently
used for the momentum transfer, whereas
throughout the paper ~ represents the square of the
momentum transfer [see Eq. (5.6)]. Then, at the
end of the Appendix, after Eq. (A.S), the expres-
sion "physical photoeffect cross section" should
read "physical (renormalized) photoeffect matrix
element. "

Paper II. In the first sentence of the paragraph
beginning after Eq. (4}, the word "including"
should be replaced by "excluding. " In Eq. (7) a
factor a should be added to the right-hand side.
Further, in the second line of Eq. (15) the factor
—

~ p —k [ should be replaced by —ln
I p —k

I
.

Then, in Ref. 15 the phrase "is equal to 1 for any
aZ~O. . ." should read "is equal to 1 for any aZ,
and, for aZ~O. . .."

Finally we would like to add that in Eq. (12) of
Ref. 1 of the present paper, the high-energy ex-

pression of 5 was incorrectly stated, and should
read as given in Eq. (7.2) in I. Also, the sentence
following Eq. (12) should be deleted.
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