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The following test can distinguish regular from irregular orbits, even in marginal cases.
A small sphere in phase space, initially centered at the starting point of the orbit, evolves
into an ellipsoid by virtue of the Hamiltonian equations of motion. This ellipsoid rotates
and vibrates "erratically" as its center moves along the classical trajectory. However, the
proposed test involves only consecutive shapes of the ellipsoid as the orbit happens to
pass in the vicinity of its initial point. The major axis of the ellipsoid then increases with
time in a way which is roughly linear for regular orbits, and roughly exponential for ir-
regular ones. Moreover, if the orbit is regular, the behavior of the angle between the ma-
jor axis and the tangent to the trajectory indicates the smoothness of the invariant torus
containing the orbit. This angle tends to a constant if the torus is very smooth, and oscil-
lates if the torus has a complicated shape in the vicinity of the initial point.

I. INTRODUCTION

The stability of classical orbits is a problem of
paramount importance in many applications, such
as celestial mechanics, high-energy accelerators,
magnetic fusion and also, in the light of the
correspondence principle, in molecular physics. '

It is well known that there are two types of classi-
cal Hamiltonian orbits for a system with E degrees
of freedom. If there are X isolating constants of
the motion, the orbits lie on X-dimensional tori in
phase space and are called "regular. " They are
multiply periodic in time and a cluster of points
placed on neighboring orbits spreads at a rate
which is roughly linear in time. Otherwise the or-
bits are "irregular" or "chaotic" (possibly ergodic)
and the rate of divergence of neighboring orbits is
roughly exponential.

In a strict mathematical sense, all these nondissi-
pative orbits are "unstable" because they do not
tend to an equilibrium position. However, the
difference between linear and exponential instabili-

ty is crucial. As the irregular orbits are not con-
strained to lie on X-dimensional tori, the points
which belonged to the initial cluster will be found,
after a finite time, arbitrarily close to any point of
the accessible region of phase space. This "mix-
ing" behavior is usually construed as the rationale
for irreversibility in statistical physics.

Unfortunately, it is in general very difficult to
prove the existence or nonexistence of E—l isolat-
ing constants of the motion, in addition to the
Hamiltonian. They may be formally constructed
by perturbation methods, but the convergence of

the perturbation series is problematic. Early inves-
tigations appeared to indicate that the series con-
verged in some parts of phase space and diverged
in others, but there was no satisfactory method
for determining the domain of convergence or the
onset of stochasticity. It is known today that
there are in fact small irregular regions arbitrarily
close to any point of a regular region. These
small stochastic regions are trapped between in-
variant tori and very precise calculations are re-
quired to find them (an example will be given
below). It may also happen that a trajectory just
beyond the boundary of the regular domain may
remain there for a long period of time before dis-
closing its chaotic nature. ' '" Strictly speaking, no
numerical experiment can ever prove the existence
of invariant tori, ' because it is always conceivable
that high-order iterates may diverge from the torus
suggested by earlier iterates. Conversely, it may
happen that there is a method in what may seem
to be chaos and points which look random actually
do lie on some definite but very complicated torus.

However, periodic orbits, which form a set of
measure zero, allow a mathematically meaningful
formulation of the problem. ' Intuitively, the idea
is to consider a trajectory passing very close to a
fixed point (i.e., a point lying on a periodic orbit).
This trajectory will return periodically very close
to that point. We can then observe whether, after
an integral number of periods, the "distance" from
the fixed point increases linearly or exponentially
(or otherwise). In this paper, we seek a suitable
modification of this method which can be used to
determine the stability of a given nonperiadic tra-
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jectory.
Conceptually, we could seek a fixed point not

too far from the given trajectory, which is always
possible in principle. ' Indeed, for most Hamil-
tonian systems, the periodic solutions are "dense"
among all bounded solutions. This in turn allows
all bounded solutions to be approximated arbitrari-

ly well by periodic solutions. ' Unfortunately, this
approach is rarely practical, because a good ap-
proximation usually requires a period which is
inordinately long (a Poincare recurrence).

On the other hand, if we attempt a straightfor-
ward generalization of the above method by fol-

lowing the entire time behavior of small deviations
from arbitrary nonperiodic orbits, another difficul-

ty appears. The "distance" between neighboring
orbits does not increase monotonically, but fluctu-

ates wildly as it increases. ' ' Although a limiting
behavior can in principle be defined, ' the time
necessary to attain it may be so long that an
answer cannot be given. '

In this article we propose a new, efficient
method to distinguish regular from irregular orbits,
including marginal cases such as small stochastic
domains trapped within regular tori. The idea is
to consider the evolution of a small domain of
phase space, which is initially an infinitesimal
"sphere" centered at the starting point of the orbit.
As time passes, this sphere becomes an ellipsoid

which rotates and vibrates erratically while its
center moves along the orbit. Now, if the orbit
were periodic, it would be enough to consider con-
secutive shapes of the ellipsoid as its center passes
through a fixed point in order to have an unam-

biguous stability criterion. For a nonperiodic orbit
we intuitively expect, and our numerical calcula-
tions confirm, that a similar stability criterion is

obtained by considering successive shapes of the el-

lipsoid as its center passes in the uicinity of the ini-

tial point of the orbit. If the orbit is regular, the
major axis increases almost linearly with time, oth-

erwise it increases almost exponentially. The large
fluctuations mentioned above do not appear if we

consider only points of the orbit which are reason-

ably close to the initial point.
Another interesting indicator is the "angle" be-

tween the major axis of the ellipsoid and the
tangent to a regular orbit. This angle tends to a
constant if the invariant torus is very smooth, and
oscillates if the torus has a complicated shape in
the vicinity of the initial point.

In Sec. II of this paper, we discuss the equations
of motion of the ellipsoid and show why we expect

its elongation to behave about linearly or exponen-
tially in time when the center of the ellipsoid is
close to the initial point. In Sec. III, we illustrate
these equations of motion by numerical calcula-
tions for several orbits of the Henon-Heiles
model. Finally in Sec. IV, we compare various
known tests of stability, in particular, when the
latter is marginal.

However, before we proceed with the calcula-
tions, we still must explain why we wrote geome-
tric terms such as distance, sphere, angle, etc., us-

ing quotation marks. The reason is that phase
space has no metric structure ' and the distance
between two points which grows with time, linear-

ly or exponentially, cannot be a concept invariant
under canonical transformations. Nevertheless, as
will be seen in the next section, the asymptotic rate
of growth of the distance is canonically invariant.
It is not affected by the arbitrariness of the Eu-
clidean metric which we introduce in phase space.

It is, in fact, possible to reformulate our test in a
canonically invariant way, without using any Eu-
clidean metric (see Appendix B). We prefer, how-

ever, the geometrically intuitive approach used
below.

II. I.INEARIZED EQUATIONS
OF MOTION

Some parts of this section are not new, but are
included in order to define the notation and for the
sake of completeness. We consider a Hamiltonian
H(r ) where r is the "vector" with components

qi q„, pi p„. The equations of motion are

r& gij
BH

Brj

BH
Pi Iij ~ ~ Pk ™ikPk~

Orjork

It is well known that linearized stability is only an
approximation and may lack some essential fea-
tures of the full nonlinear problem. However, it is
a very expedient and usually reliable means to as-

where g;j is the symplectic matrix

9iJ IJi ~i +8j
and repeated indices imply summation, as usual.

To test the stability of the orbit given by (1), we
consider an infinitesimal deviation r; ~r;+ep; and
linearize (1), to obtain
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sess the properties of a physical system.
Note that

and

TrM =0,

S=MS,

and S(0)=I. We have

— =(DetS)Tr(S 'S)=0,
dt

by virtue of (7} and (4},so that

DetS = 1

where the tide denotes the transposed matrix. The
antisymmetric part of M rotates the vector p and
the symmetric part stretches and compresses p.

After a time t, we obtain

)o(t) =S(t}p(0),
where the transfer matrix S(t) satisfies

exponentially with the number of periods. If
~

A,
~

& 1, it is paired with
~

A,
~

& 1, so that one
eigenvector is growing as the other is shrinking.
On the other hand, if A, =e', the corresponding
eigenvector will have its phase rotated but will not
grow.

It thus seems surprising that we may also have a
linear growth law. The latter arises because A, =1
is a doubly degenerate eigenvalue of S, whenever a
periodic orbit passes through its initial point. This
can be shown as follows. First, we note that p; =r';
is a trivial solution of (3), corresponding to two
points Inoving on the same orbit, separated by an
infinitesimal time interval e. Therefore for a com-
plete period we have Sdr/dt=dr/dt, so that
indeed A, =1 is an eigenvalue. This eigenvalue
must be doubly degenerate, because the product of
all eigenvalues is DetS =1 and all the other eigen-
values are paired as A, and A,

The crucial property of this doubly degenerate
eigenvalue is that it has only a single eigenvector
(namely p =d r/dt). As a simple illustration of
this property, consider the symplectic matrix

is constant. This is Liouville s theorem. More-
over, if we denote by p the transposed (row vector)
of p, we have

1 a
C(a):= (13)

d(i ini"z)

dt
=p i(Mri+ AM)p 2 0, ——

by virtue of (3) and (5). Therefore

p ~SgSp2 ——p &gp2

for any pi and p2 and it follows that

(10)

(14)

Note that

It has a degenerate eigenvalue A. = 1 and the only
corresponding eigenvector is

1V=
0

SgS=q, (12) C(a)C(b) =C(a +b) (15)

so that S belongs to the symplectic group. It
then follows (see Appendix A) that the eigenvalues
of S are paired as iL and A,

' and in particular
complex eigenvalues lie on the unit circle. This
property is important at the boundary between reg-
ular and irregular regions, as will be shown below.

Had we chosen a different canonical system, the
new components of p would be linear combina-
tions of the old ones, and therefore the new S ma-
trix would be related to the old one by a similarity
transformation This cannot a. ffect the eigenvalues
A, , which are canonical invariants at each point of
phase space.

Consider now the special case of a periodic orbit,
and let S denote the transfer matrix for one com-
plete period. The transfer matrix for n periods is
S" and its eigenvalues are A,". If some

~

A,
~

is
larger than 1, the corresponding eigenvector grows

C(a)u=u —av,
or more generally,

[C(a)]"(xu+yv)=xu+(y nax)v . —

(17)

(18)

We see that repeated applications of C(a) do not
affect the u component, but the v component in-
creases linearly. The same property naturally
holds for higher dimensional symplectic matrices,
unless there is an additional degeneracy. For ex-
ample, if the unit eigenvalue is fourfold degenerate,

and, in particular,

[C(a)]"=C(na),

so that one of the matrix elements indeed grows
linearly with n.

If we introduce the conjugate vector u =i)v, we
have
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B=S-'S-' (19)

by Eq. (6). The eigenvalues of the symmetric ma-
trix B are the inverse squares of the ellipsoid
semiaxes. It is thus more convenient to consider

A =B '=SS, (20)

which satisfies the equations of motion

A =MA+AM, (21)

because of Eq. (7). Note that DetA = 1, by Eq. (9).
We could have reduced by one the dimensionality
of the ellipsoid, by considering only its intersection
with the energy surface, but this would mar the

simplicity of Eq. (21).
To characterize the aspect ratio of the ellipsoid

we may compute its major axis, but it is much
easier, and almost equivalent, to consider

TrA =g(S~J) (22)

which is the sum of the squares of the semiaxes,
because one of the axes will become considerably
longer than all the others. From the preceding ar-
gument, we thus expect that for large t

the corresponding eigenvector may grow quadrati-
cally with time, etc. Although such a degeneracy
would normally be considered as accidental, it does
happen at the transition from regular to irregular
regions, when A, +A. ', which must be real as
shown in Appendix A, grows from 2—e to 2+@
(see Fig. 1).

We now consider, instead of a single vector p,
all the vectors initially lying on a unit sphere

(pc) = l. After a time t, this sphere becomes an
ellipsoid pBp =1, where

if the orbit is regular, and

In(TrA)/t ~P, (24)

if it is chaotic. The coefficient p is equal to twice
the sum of the positive Lyapunov characteristic
numbersj' ' also called KSS entropy.

The limiting values (23) and (24) are attained
Uery slowly for nonperiodic orbits, if the values of t
are sampled at arbitrary constant intervals. How-
ever, as will be shown in Sec. III, if we consider
the ellipsoid only when its center passes in the vi-

cinity of the original point, the convergence of (23)
and (24) is quite rapid.

Another interesting question is whether the elon-
gation of the ellipsoid is mostly longitudinal (paral-
lel to the tangent to the orbit in phase space) or
transverse. For a regular orbit the argument lead-

ing to Eq. (18) shows that the linear growth of p is
parallel to the invariant eigenvector v =d r/dt be-
cause the other eigenvectors are only multiplied by
phase factors A, =e' . One is thus tempted to infer
that the points in the ellipsoid spread only in a
direction parallel to dr/dt and that there is no
spreading in directions orthogonal to d r/dt How-.
ever, this is a fallacy because the transfer matrix S
is not symmetric but symplectic, and its eigenvec-
tors are not orthogonal with respect to the Euclide-
an metric which we introduced to define a sphere,
etc. When a vector p which is "orthogonal" to
d r /dt is written as a linear combination of eigen-
vectors of S, it usually has a component along
d r/dt, and therefore will grow linearly. (For an
irregular orbit there is, of course, no question that
the exponential growth is transverse. )

Therefore a potentially useful parameter is

(TrA )'~ /t ~a . (23)
y= 1 (A()r;rj/r TrA)—, (25)

which does not involve explicitly the time, contrary
to a or p. For a periodic orbit y tends to a limit
because one of the eigenvalues of A is considerably
larger than the others. We then have y=sin2$,
where P is the angle between d r /dt and the major
axis of the ellipsoid. For a nonperiodic orbit we
likewise expect y to tend to a limit when we com-
pare points in the vicinity of the original point.
This will be illustrated in the following section.

FIG. 1. Confluence of eigenvalues for marginally
stable (left) or unstable (right) periodic orbits. The four
neighboring eigenvalues of the transfer matrix are 1, 1,
and exp(+is) or exp(+e), respectively. The arrows indi-

cate the transition from regularity to stochasticity. Oth-
er eigenvalues (for X)2 degrees of freedom) have not
been shown.

III. NUMERICAL SIMULATIONS

H=(p„+p~+x +y )/2+x y —y /3, (26)

We have applied the proposed test to a large
number of orbits of the Henon-Heiles Hamiltoni-
an"
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which is extensively documented in the literature.
The calculations were performed in double preci-
sion (16 digits) with an IBM 370/168 computer.
The differential equations were integrated by a
Runge-Kutta method (subroutine DVERK of the
IMSL library ). The time step was 1/128, which
gave results almost identical to a time step of 1/32.
To test the accuracy of the calculations we checked
the constancy of H (it was conserved to better than
one part in 2X 10' after a million time steps) and
also that DetS =1 (Liouville's theorem). However,
the elements of S are large and the unit deter-
minant results from the small difference of large
numbers. Therefore we could only expect to get

~

DetS —1
~

&&10 ' (TrA)

in view of Eq. (22), which was indeed well satis-
fied. (Incidentally, this shows why TrS, which os-
cillates between large positive and negative values,
cannot be as good an indicator as TrA. ) The most
stringent test of numerical accuracy is shown in

Fig. 2. After 3358 turns (a "turn" is the crossing
of the x =0 plane with x & 0) corresponding to
t =21 506.3, the value of y cannot be in error by
more than 2& 10 ",as a larger error would cause
a noticeable misalignment of the points in the
graph.

The "vicinity" of the initial point, where we cal-
culated and recorded the values of a, p, and y, was
defined by the following criteria. The point
reached at some iteration was deemed "close" to
the initial point and recorded if its distance was
less than 10 and also less than (a) the distance at
the preceding step, (b) that at the following step,

I yl

TABLE I. Initial values of y and y for ten orbits.

Orbit

D
stable periodic

unstable periodic
6

I
E
I.
M

0
0.302 666 817

—0.185405 087
0.07

—0.12
0.35
0.33
0.3318
0.332

—0.011

0
0
0
0.08
0.1

0.06
0.06
0.0599
0.05995
0

and (c) the last recorded distance multiplied by
e~ ~2, where p means the last recorded value of p
and T is the time elapsed since that record. The
third condition was obviously necessary to give
chaotic orbits a chance to pass again in the vicinity
of the original point. We did not seek points of
closest approach by interpolating between consecu-
tive iterations, because this led to no improvement
in the results.

Table I gives the initial y and y of the orbits
which we investigated. All these orbits had initial-
ly x =0 and x &0. The value of x was given by
the energy which was 1/8 for all orbits, except for
orbit D, which had energy 1/12. (Orbits D, E, G,
and I are the same as in Ref. 25, others have been
labeled arbitrarily. )

Orbit D is well known to be regular. ' ' Its
Poincare surface of section in the vicinity of the
origin is given by Fig. 2. The parameters a and y
are nearly constant for t & 1000, as shown by Fig.
3. The behavior at the selected points shows none
of the oscillations which would be observed if we

10
-101 '

159?r2348

-2184+1?61
~r

1174
-2771

0.187- -0.61

10 — -3358

10-' 10-6 105 y

FIG. 2. Surface of section of the D orbit in the vicin-

ity of the initial point y =y=0. The ratio y /y is virtu-

ally constant, as expected for a smooth curve. The
number of turns required to reach each point has been
indicated. Negative serial numbers denote negative y.
(For the entire oval shaped section, see Fig. 3 of Ref. 20
or Fig. 1 of Ref. 26.)

0.186- x X - 0.60

I
I f I I

I

1=104 t = 2xl04

FIG. 3. The parameters a (dots) and y (crosses) of
the regular D orbit are very nearly constant for t & 1000.
Note that the vertical scales do not start from zero.
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0.15-

y TrA

-15 030-

—0.06

0.10- -10 0.29-

—0.04

0.05—
X ~

~o ~ ~ ~ ~ QO —5 0.28—
—0.02

0
t =10 t =100 t =1000

0 I I 1 I

t =100
I I I I I I I I

I

t =1000

FIG. 4. Stable periodic orbit starting at elliptic fixed
point. The parameter a (dots) tends to 0.049 and the
transverse cross section of the ellipsoid (proportional to
y TrA, shown by crosses) seems to be bounded, so that
y~Oas t 2.

took constant time intervals (see Fig. 11 of Ref. 16
or Fig. 1 of Ref. 17).

Even more regular results are displayed in Fig. 4
for a stable periodic orbit starting at an elliptic
fixed point. The value of a stabilizes after only
200 time units (30 turns) but y was found to de-

crease roughly as t . We then plotted y TrA
which, by Eq. (25), gives a measure of the projec-
tion of the ellipsoid on a hyperplane orthogonal to
d r/dt. This quantity appears to be bounded, as if
the growth of the ellipsoid indeed was parallel to
d r ddt. It is, however, quite possible that a much

FIG. 6. The parameters a (dots) and y (crosses) for
the regular orbit G. Note that the scale of a does not
start from zero.

longer run would have finally given a nonvanishing
limit for y.

The opposite extreme is Fig. 5, giving P and y

a, P
100—

0.40— -o.bO

x x

0.59— ~ —0.89

t=Q t =70 0.1
I

100 200

FIG. 5. The parameters P (dots) and y (crosses) for
an unstable periodic orbit starting at a hyperbolic fixed
point. Both parameters are fairly constant after only a
few turns. Note that the vertical scales do not start
from zero.

FIG. 7. The parameters a (dots) and p (crosses) for
the chaotic orbit E. This orbit was calculated up to
t =2000 but did not satisfy the criterion for recording
new points in the vicinity of its origin. .
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the Poincarc surface of section, Fig. 9. The latter
consists of a chain of seven very narrow islands
and the initial point is on the "outer shore" of one
of them. However, the island is so narrow that
part of its "inner shore" is also included in the vi-

cinity of the initial point, as defined by our cri-
teria. If we had more stringent criteria for "vicini-
ty,

" Fig. 8 would show only some of the points be-
longing to the outer shore, but it would have re-
quired a much longer time to collect enough
points.

We thus obtained an unexpected bonus from our
use of an extended vicinity of the initial point.
The multiple limit behavior of a and y neatly indi-
cates that the invariant torus is not smooth but
rather has a complicated shape within this vicinity.

An enlarged view of the gap between two islands
is shown in Fig. 10. We have drawn the sections
of additional stable orbits, E, I., and M. There
must be a hyperbolic fixed point somewhere be-
tween them and by further enlarging this area, one
would finally obtain a chaotic orbit trapped be-
tween the regular orbits E, I., and M. As the
latter are extremely close to each other, no drawing
(on a reasonable scale) would ever disclose the
chaotic nature of this trapped irregular region.

Orbit N shown in Fig. 11 is another example of
such a trapped irregular region. Its surface of sec-
tion looks perfectly regular but the results of our
test, given by Fig. 12, unmistakably disclose that it
is not. The Lyapunov characteristic number is of
course very small, about 0.002. Finally, Fig. 13
shows an enlarged view of the surface of section of
orbit N, near its origin. There can be no doubt as
to its chaotic nature. The clustering of points sug-
gests that orbit X is in fact very close to some un-
stable periodic orbit with 232 turns.

aIy

OUTER S~ORE

x x x x x INNER SHORE
0

~ INNER SHORE

x x x x x OUTER SHORE

I I
I

~ I I I

5xIO 1010

FIG. 8. The parameters a (dots) and y (crosses) for
the regular orbit I. The different limits of a and y, for
t & 6000, correspond to different regions of the invariant
torus (the outer shore and inner shore of one of the is-
lands of Fig. 9).

for an unstable periodic orbit, starting at a hyper-
bolic fixed point. Just a few turns are needed to
obtain P=0.38, while y tends to 1 (the ellipsoid
growth is mostly transverse).

We also tested our method with three orbits
which are well documented by Powell and Per-
cival. 5 Orbit G, which is regular, gave a nearly
constant a for t & 300, as shown in Fig. 6. On the
other hand, orbit E is clearly shown by Fig. 7 to be
chaotic. The most interesting case is orbit I, which
Flg. 4 of Rcf. 25 shows hcsltatlng bctwccn llncal
and exponential growth. Our results, shown in
Fig. 8, indicate a clearly regular behavior, but o.
and y seem to oscillate between two limits. This
unexpected behavior becomes clear when we draw

IjI
0.08—

INITIAL

0 ~ ~ ~ ~

POINT
~ ~ ~

~ 000 roe0.06-

0.04—

0.02—

~ ~ 0
0 ~ ~ ~ 0

0
~ ~ ~ ~

$0 ~ 0

~ ~ ~~ ~
~ ~

~~~ ~
~ 0

00

~ ~ ~ ~

~ ~
0

~ ~
II I

I I
I I

0403

FIG. 9. The I orbit is regular and consists of seven narrow islands. This figure shows all points from 0 to 153 and a
few additional ones near the initial point (0.35, 0.06). The small circle around the initial point is the vicinity where we
record the shape of the ellipsoid. The coordinates of point 2198 were found (0.349999, 0.0600000) so that this is al-
rnost a fixed point.
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lyl

0.06—

0.059
0.32 0.33 0.34

FIG. 10. Enlarged view of the gap between two is-

lands of orbit I (see Fig. 9). The surfaces of sections of
orbits E, I., and M show that there is a seventh-order

hyperbolic fixed point and there must be a chaotic orbit

trapped somewhere between these orbits.

IV. CONCLUSION

In this article we have proposed an efficient and
relatively easy method to test the stability of a
classical Hamiltonian orbit. This method is an im-
provement of the one which consists in following
the separation of neighboring orbits. It is more re-
liable and accurate, especially in the case of margi-
nal stability. It has the additional advantage of in-

dicating whether or not the invariant torus has a
smooth shape in the vicinity of the initial point.

There are two other widely used tests for regu-
larity. One is to draw a Poincare surface of sec-
tion and to assess, by visual inspection, whether
the points appear to lie on a reasonable curve. As
the example of Figs. 11 and 13 show, this method
is not reliable in marginal cases such as a narrow

chaotic region trapped between regular tori.
The other test, which we did not use here, is

Fourier transforming the motion to find its spec-
trum. ' ' Ideally, a regular motion would give a
line spectrum with few, strong components; an ir-
regular one would give a complicated spectrum
with many weak components. We feel that this
test is ambiguous, especially in marginal cases.
(An extreme counterexample is an unstable periodic
orbit, such as the one of Fig. S, which must have a
very simple line spectrum. )

It is of course possible to imagine marginal cases
for which no method yields a result within a preset
time. However, in most cases, the method describ-
ing in this article can yield a clear answer with a
high degree of reliability.

Note added. The linear separation rate of regular
orbits was proved by Casati et al. for integrable
Hamiltonians (our proof is less direct, but does not
require integrability). There are, however, "pseu-
dointegrable" Hamiltonians for which infini-
tesimally close orbits separate linearly, but are
nevertheless chaotic. The simplest example is a
polygonal enclosure ' ' where the chaotic property
does not arise from the exponential divergence of
neighboring trajectories, but from their occasional-

ly hitting the polygon on different sides of a ver-

tex. Our stability test, which tacitly assumes dif-
ferentiable potentials, is not applicable to these
cases.
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FIG. 11. Surface of section of orbit S. The figure shows all points from 0 to 51 and 24 additional points in selected
areas. This orbit seemed regular when drawn with a reasonable scale (1 unit=1 meter) but is in fact chaotic, as shown
in Fig. 13.
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I yl

0.003-

334
102

—0.01
0.002—

~ -529
631 167 ~ -65

~ 399
-761

X
X

X X
X

X

0.001—

-181
747

-645' ~51
283

0 I I I I 0
t=0 t=5000

FIG. &2. The parameters a (dots) and P (crosses) for
orbit N. For t & 1000, the behavior seems regular
(a~const) but for t & 3000 we clearly see that it is
chaotic (P~const).

-348
~ -580,~-116

0
-0.0113 -0.0112 -0.0111
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FIG. 13. The origin of orbit N seen "under a micro-
scope." Points with negative serial numbers are those
with negative y. The chaotic nature of the orbit is con-
spicuous. The clustering of points shows that it is very
close to a periodic orbit with 232 turns.
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APPENDIX 8: A CANONICALLY
INVARIANT METHOD

APPENDIX A: EIGENVALUES OF
REAL SYMPLECTIC MATRICES

In this appendix, we show that the eigenvalues

of S are paired as A, and A,
' and, in particular,

complex eigenvalues lie on the unit circle. Let v

be an eigenvector of S belonging to the eigenvalue
A, . We have S 'v=A, 'v and thus, by Eq. (12),

As explained at the end of the Introduction, no-

tions such as distance, sphere, angle, etc., imply the
use of a Euclidean metric in phase space, which
cannot be canonically invariant. It is possible to
reformulate our test in a way which makes no use

of a Euclidean metric (and therefore makes no ap-

peal to geometrical intuition) but is manifestly in-

variant under canonical transformations.
Indeed, an expression such as

Sgv=gS-'v=1-'gv . (Al)

Therefore t) v is an eigenvector of S belonging to
the eigenvalue A, '. But S and S have the same
eigenvalues (since they have the same characteristic
equation), therefore all these eigenvalues are paired:
X and X-'.

Moreover, since S is real, its complex eigen-
values are also paired as A, and A,*. %e now show
that this must be the same pairing as before, i.e.,
we cannot have four distinct eigenvalues z, z*, z
and z' '. Indeed, from Sv =z'v' and (Al) we
have

v S'Qv =z v 'Qv =z v Iv

where v denotes the transposed of V.
then v'gv is generally not zero, so that z*=z

BH
()r;Br

dppk=
d

'gp ~ (BI)

is canonically invariant. (The simpler expression

(B2)

cannot be used for this purpose because it is con-
stant by energy conservation. ) It is then found that
for a regular orbit, Z increases quadratically with
time, and for a chaotic orbit, Z increases exponen-
tially.

This result is independent of the initial choice of
p (except for a set of measure zero) because almost
any p will tend to align itself parallel to the long-
est axis of the ellipsoid defined in Sec. II.
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