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Formation of the chemical bond and orbital contraction
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Various criteria for orbital contraction, most of them independent of the variational prin-

ciple and based rather on formal properties of the exact wave function, all indicate that the
formation of the chemical bond in H2 or H2 is accompanied by orbital contraction. Par-
tially basing his argument on previous work by Pettifor, Heine recently criticized
Ruedenberg s analysis of the chemical bond, especially the concept of orbital contraction.
We show this to be due to interpretative problems of the linear-combination-of-atomic-

orbital (LCAO) concept. The consequences for LCAO band-structure calculations are dis-

cussed.

I. INTRODUCTION

A recent review by Heine' contains a chapter,
"LCAO: From Under a Cloud to Out in the Sun, "
which sounds rather unfriendly towards quantum
chemistry in general and to the famous Ruedenberg
analysis of the chemical bond in particular. Heine
claims that "the contraction of the wave func-
tion. . . (upon formation of the covalent bond in
Hq+ or H2). . . is known to be spurious, " referring
to an older paper by Pettifor where it was stated
that "the bonding eigenfunction (of H2+) does not
display the contractive behavior predicted by the
variational LCAO wave function. "

There is a difference between Pettifor and
Heine inasmuch as Pettifor is critical only concern-
ing the use of the concept of orbital contraction
outside the linear-combination-of-atomic-orbital
(LCAO) context, whereas Heine criticizes this con-

cept even within the LCAO scheme (using, howev-

er, arguments from the non-LCAO work of Petti-
for}. We shall demonstrate that independently of
the LCAO scheme and of the particular criterion
chosen, there exists a contraction of the electronic
charge associated with the formation of the chemi-
cal bond in H2+ or H2, and that Heine's criticism is
due to some misinterpretation of the LCAO
scheme.

II. ORBITAL CONTRACTION
AND DEFORMATION

In the simple LCAO approximation one describes
a molecular orbital (MO) as a linear combination of

where yq and yz are hydrogenlike orbitals,

tp(r)=N'exp( —a ~R; r~ ), i =A—,B (2)

and Rz and Rs are the positions of the nuclei A and
8. In Secs. II to VIII we only consider the 10.

g
state.

This simple LCAO ansatz cannot be exact. It is,
however, possible to write the exact wave function
of H2+ as (1) in terms of two functions q~ and qs
[not of the form (2)], which are invariant with

respect to symmetry operations that leave the nuclei
invariant and which are exchanged by symmetry
operations that exchange the nuclei. There is, in
fact, not a single "primitive function" yz that "gen-
erates" the exact P(r) according to (1) but rather an
equivalence class of yz. One can improve the yz
in (1) from that given by (2) towards an "exact"
primitive function, and in this way be guided by
some criteria that the exact 1b should satisfy, the
most common criterion —but not the only possible
one—being the variation principle. The modifica-
tions of the y; given by (2) towards an exact primi-
tive function are mainly of two types:

(1} Contraction or expansion This ca.n be
achieved by changing the orbital exponent a in (2)
from 1 to a & 1, or to a & 1, respectively. Alterna-
tively and more generally, one can admix other
basis functions with local angular momentum I =0
and different a's and/or different principal quan-

atomic orbitals (AO's). For the 1crs and lcr„state
of H2+ we may write

g(r)=N [tp„(r)+qtt(r)],
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turn number.
(2) Angular deformation, polarization T. o take

care of this, one has to admix basis functions with
local angular momentum l+0, mainly p-AO's.

Table I shows the effect of the simplest types of
contraction, of angular deformation, and of the two
together on the energy of H2+ at R =2ao (which is
close to the equilibrium distance) with the deforma-
tion parameters determined by the variation princi-
ple. 7 9 Contraction (by changing a) is obviously
more effective (with an energy lowering of 0.033
a.u.) than angular deformation (by adding a p-type
AO)—energy lowering 0.012 a.u.—while the joint
effect is nearly additive. Further angular deforma-
tion by addition of a d-type AO improves the ener-

gy by another 0.002 a.u. , while the remaining differ-
ence of 0.0006 a.u. to the exact energy is recovered
if one accounts for more sophisticated radial defor- .

mation (inclusion of 2s and 3p) as well as for angu-
lar deformation by adding AO's with 1=3 and
l =4. A unique decomposition of the energy ac-
cording to l values is not possible in view of the
basis overcompleteness problem (see also Refs. 6
and 9).

The LCAO approximation, especially with the
inclusion of radial and angular deformation, is a
very powerful tool in general. Therefore the defini-
tion of atomic-orbital contraction as given above is
a useful one.

Heine' claims that the contraction, which is so
effective for the energy, is an artifact of the varia-
tional approach, and that it is more physical to
choose a=1 in Eqs. (1) and (2). However, we shall

III. LONG-RANGE BEHAVIOR
OF THE WAVE FUNCTION

Alrichs et a/. " have shown that the exact elec-
tron density of the ground state of a molecule de-
cays according to'

(„) (1+r)(Q+i)/v 2e —i ~2' (3)

show that several other criteria, most of them in-

dependent of the variation principle, lead to an op-
timum a & 1, and confirm that the formation of the
chemical bond in H2+ is associated with orbital
contraction.

If one has at one's disposition a wave function
that is not obtained by the LCAO approach, e.g.,
that constructed by Pettifor via a multiple-
scattering technique or the virtually exact one'0

based on the separation of the Schrodinger equation
in elliptic coordinates, then it is much easier to
study the local properties of the entire MO rather
than to analyze it in terms of its AO components.
However, one must then be very careful in drawing
conclusions concerning the LCAO approach from
such a local analysis. The main reason for this dif-
ficulty is that AO's overlap and that the MO near
nucleus 3 is not only determined by the AO yz, but
also by a contribution of ys which extends into the
region of nucleus A. The erroneous conclusions of
Heine and Pettifor are due to a confusion of local
properties of the MO near the nuclei with properties
of the AO's.

TABLE I. Energies E (in hartree) and scaling factors
a for LCAO wave functions of H2+ ( lo.

~ state).

AO's —E(a =1) —E(a =a,~t) a,pt Remarks

1s

1s,2p
1s,2p, 3d
Exact

0.553 77
0.565 91

0.586 51
0.599 80
0.60202
0.602 62

1.239 a,c
1.255 b,c,d
1.246 e

f
'Reference 7.
bReference 8.
'These values have been recalculated by us; they some-
what differ from those in the original references.
Independent optimization (Ref. 9) of a for the 1s and

2p-AO leads to a(1s)=1.246, a(2p) =1.482, and —E
=0.600 36.
'Reference 9; the indicated value corresponds actually to
independent optimization of the three a s, i.e., to
a(1s)=1.246, a(2p)=1. 133, and a(3d)=1.319; the en-

ergy with a single a should only be slightly higher.
Reference 10.

1(tii-exp( —1.Or ),
P + —(1+r)0 exp( —1.485r),

(4)

independent of the angle. Note that the virtually
exact wave functions of Ref. 10 do satisfy (4).

As far as the long-range behavior of the wave
function of H2+ is concerned, there is obviously a
contraction as compared to the H atom. An LCAO
function of type (1) and (2) simulates the asymptotic
behavior of the exact wave function best if one
chooses

u= 1.485 .

where Q is the charge of the system, and e the first
ionization potential (IP). The exact IP's of H and
Hz+ (vertical at R =2ao) are 0.5 a.u. and 1.10262
a.u., respectively, corresponding to the following
asymptotic behavior of the wave function:
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IV. SHORT-RANGE BEHAVIOR
OF THE WAVE FUNCTION

A. Density at the nucleus

In Table II the electron density at the nucleus for
the H atom and for various descriptions of H2+ are
collected. The classical superposition of two half
H-atom densities raises the density already some-
what (since the wave function at the other nucleus
also contributes). The interference terms in the
LCAQ wave function lower this density and one
has to contract the AO's to arrive at the exact H2+
density. In order to reproduce the exact density
with a simple LCAO function of Eqs. (1) and (2)
one must choose

and this behavior was indeed observed by Pettifor.
The averaged logarithmic derivative of the LCAO
wave function is

tf »frcAo. /dr = —a/( I +e ") .

At the internuclear distance R =2ao the LCAO
wave functions fulfill criterion (7) for

a=1.109,

which again demonstrates orbital contraction.
Parenthetically we note that Heine' as well as

Pettifor give incorrect expressions for
d IngLcAoldr. The former sets it equal to —a; the
latter's equation (46) is equivalent to
—a/(1+a 'e ").

a=1.179S .
V. ELECTRON DENSITY
AT THE BOND CENTER

B. Cusp condition

(Bl(/Br), „=—Z„P(R„) . (7)

Trivially, the spherically symmetric component of a
one-center expansion of a molecular orbital around
either hydrogen atom therefore behaves as

fo(const) exp( —1.0r)[1+0(r )] (8)

TABLE II. Density at the nucleus in e/(ao)' for H2+

at 8 =2ao.

Equation (3) is an exact relation for the wave
function at large distances. There exist still other
properties of the exact wave function which can be
derived in a precise formal manner. One of them is
the cusp condition, ' well known in quantum chem-
istry. Kato' has shown that the spherically aver-

aged logarithmic derivative of the wave function at
the position of a nucleus is given by its nuclear
charge: +=1.141 . (10)

Strangely enough Pettifor compares the ratio

q,„„,=0.384 with that obtained for a single isolated
hydrogen ground-state atom, which is qH ——0.368.
Now it is apparent that, already upon classical su-

perposition of two atomic charge distributions, the
density increases more in the overlap region than it
does near the nuclei, so that q increases. Thus, the
inequality q,»«) qH exhibits the fact that the
charge distribution of a molecule is more extended
than that of a single atom. Only a considerable
swelling of the single atom would bring its q ratio

Pettifor defines the 1=0 component l(o of a
one-center expansion of the H2+ MO around one
nucleus, and then introduces the ratio q =1(o (bond

center)/go(r =0) as a criterion for orbital contrac-
tion (Table III). This ratio is 0.442 for the LCAO
(—MO) with a =1. The ratio for the exact eigen-
function is lower: 0.384. Thus even Pettifor's cri-
terion supports the idea of orbital contraction to-
wards the nuclei. The latter q ratio is reproduced

by a LCAO( —MO) with

Half a free H atom
Superimposed atoms with a =1
Eqs. (1) and (2) with a=1
Eqs. (1) and (2) with a=aD'
"Exact" H2+ [Ref. 10(f)]b

0.1592
0.1621
0.1292
0.2094
0.2094

0.1592
0.1621
0.2877
0.2056
0.2056

TABLE III. q values (see text).

Free H atom (a=1)
H2+, LCAO with a=1.183

0.368

'aD ——1.1795 for 1o.g; a~ ——0.8643 for 1o„.
"Bates et al. [Ref. 10(f)] have tabulated wave functions
that are not normalized to unity (

~ ~g ~

i2=0. 8378 for log
and 1.7339 for 1'„)but they have drawn contour maps
for normalized wave functions; Pettifor (Ref. 3) has
plotted their unnormalized wave functions.

Expanded H atom (a =0.957)
H2+, LCAO with a=1.141
H2+, exact value

H2+, LCAO with =1.0

0.384

0.442
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up to that of the molecule. Conversely only a con-
siderable shrinkage of the constituent AO's y„yb
would bring the q ratio of g, as given by Eq. (1),
down to the value of the isolated atom. In fact, a P
with a =1.183 would be needed to this end and this
a happens to be larger than the aforementioned
value a =1.141. Pettifor's interpretation that this
implies an "orbital expansion" only refers to the
trivial fact that bonding molecular orbitals in mole-
cules and solids are more extended than atomic or-
bitals in isolated atoms.

VI. VIRIAL THEOREM

pseudopotential concept. '

We see that the long-range behavior requires a
strong contraction (a=1.5), the behavior near the
nucleus a rather weak contraction (a= 1.1 for the
correct cusp, a=1.18 for the correct density at the
nucleus), while for the energy (and the right balance
between kinetic and potential energy) which is
mostly determined by the intermediate region, an
intermediate contraction (a = 1.25) is best (see
Table IV)."

VII. SIMULTANEOUS ORBITAL
CONTRACTION AND DEFORMATION

At the molecular equilibrium distance, the exact
wave function obeys the simple virial law

2(»= —(V) .

This can be fulfilled by scaling a in the wave func-
tion (1) to the value

a = 1.239, (12)

which also minimizes the energy within the
minimal basis-LCAO approach.

The constructive interference of Ruedenberg, or
the contragadience of Goddard, ' in the LCAO ap-
proximation results in a decrease of the kinetic en-

ergy. In order to restore the virial -relation the
LCAO wave function must be reorganized to in-
crease (T) and to decrease (V). This can be
achieved by localizing the electron density (contrac-
tion, with an increase of ( T )) in those parts of
space where the valence electrons feel a very deep
effective potential (thus decreasing (V)). In the
case of H2 or H2 this area is the vicinity of the nu-

clei. Consequently there will be a contraction of the
LCAO( —MO) towards the nuclei. (In the case of
nonhydrogen atoms, the situation is more in-

volved, ' ' among other things owing to the occu-
pied core shells, and is easily understood within the

We know from Table I and the discussion of Sec.
II that the best a in the sense of the variation prin-
ciple is nearly the same for a wave function without
and with angular deformation. We have also deter-
mined the a for an (ls/2p)-LCAO wave function
such that it reproduces the exact density at the nu-

clei, or the exact cusp relation. We have found,
respectively,

a=1.208, a=1.142 (13)

to be compared with the variational optimum
a=1.255, while the long-range behavior still re-
quires a=1.485. We see that the optimum a ac-
cording to the various criteria are now somewhat
closer. For a sufficiently large AO expansion a sin-

gle a should satisfy all criteria and this has to be
the one which is correct for the long-range behavior
(admixture of a function with a smaller a would

spoil the behavior for large r). One sees, in fact,
from Wasserman's results that the variationally op-
timum a appears to converge to 1.5 for large AO
basis sets.

The relatively small importance of orbital defor-
mation in the LCAO description (as compared to
the local one-center expansion ) is due to the fact
that the bulk of the local asymmetry of the MO (the

TABLE IV. Optimum a values for various criteria in H2+(1o~), H2+(1o.„), and

H,(1'r,,').

Criterion

Cusp condition
Density at

nucleus
Variation

principle
Long-range

behavior

Important for

Small r

Small r

Intermediate r

Large r

Hg+( lo.
g )

R =2ap

1.109

1.180

1.239

1.485

H2+( lo.„)
R =2ap

0.797

0.864

0.901

1.156

H2(1 'Xg+ )

R =1.4ap

1.189

1.198'

1.190

1.100

'Corresponding to the density at the nucleus of 0.2300e/(ap) from Ref. 22.
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"lopsidedness" regarded as essential by Heine') is
achieved by the overlap of the AO's. In a local
single-center expansion like that of Pettifor the lo-
cal asymmetry can only be taken care of by substan-
tial admixture of functions with I & 0, mainly p and
d functions, such that these functions become much
more important than in the LCAO framework.

VIII. OTHER EXPECTATION VALUES

The criteria discussed so far are by no means ex-
haustive. Another measure of orbital contraction is,
e.g., the expectation value (x ), where x is a coor-
dinate perpendicular to the bond axis. While
(x ) =1 in the isolated atoms, it is only 0.6415 in
H2+ which indicates contraction perpendicular to
the bond. ' The LCAO wave function reproduces
this value for

a=1.300 . (14)

A related quantity is the expectation value

of the kinetic energy perpendicular to the bond.
Ruedenberg et al. pointed out that the increase in
the kinetic energy required by the virial theorem
takes mainly place perpendicular to the bond axis.
T„ increases from 0.167 a.u. in the atom to 0.231
a.u. in H2, indicating charge contraction towards
the molecular axis. The lowering of the kinetic en-

ergy shows up in the direction of the bond

(T~~ =0.140 a.u.). An LCAO wave function with

a=1.26 (15)

approximately reproduces both components of the
kinetic energy.

IX. ANTIBONDING 1cr„STATE OF H2+

AND THE Hg MOLECULE

While the formation of the bonding los MO in
H2+ is accompanied by AO contraction, an analo-
gous AO expansion is found for the antibonding
lo„state. We consider this state at the equilibrium
distance (R =2ap) of the 1crs state.

With a=1 one gets the energy —0.16085 a.u. ,
whereas the minimum of the energy —0.165 81 a.u.
(to be compared with the exact energy'a"' of
—0.16753 a.u.) is obtained for a=0.9005. The a

'values required for the correct long-range behavior,
the correct density at the nucleus, and the correct

cusp are collected and compared with those for the
10.

g state in Table IV. Three of the four criteria im-

ply orbital expansion, only the long-range behavior,
which requires very strong contraction for the log
state, wants a slight contraction. As for the 1o.

g
state, the highest exponent is needed for the long-
range behavior and the lowest one for the cusp,
while the best values for the energy and for the den-

sity at the nucleus are rather close.
Admixture of a p-AO does, unlike for the 10.

g
state, not lower the energy to any significant extent
(only in the 7th decimal place). (It is similarly inef-
fective to use a Guillemin-Zener-type function, ' ' '

which is very good for the los state. )

One might suspect that the contraction in Hz+
(mainly that needed for the long-range behavior) is

not due to bonding but due to the net positive
charge. That this net charge plays some role is con-
firmed by the a & 1 value for the long-range
behavior of the 1o„state. Nevertheless the results
for the two-electron system H2 in the bonding
ground state are qualitatively similar to those for
the 10.

g state of H2+. The optimum a values, ac-
cording to three criteria, for the H2 ground state at
its equilibrium distance are in the range 1.1 to 1.2
and certainly indicate AO contraction (see Table
IV). Now the long-range behavior requires the least
contraction (probably because there is no net charge
as in H2+).

It is obvious that for a valid description of both
the bonding and the antibonding MO of H2+ or H2
AO's with rather different a are needed. However,
the discussion of, for example, the band structure of
solid metallic hydrogen in LCAO terms would be-
come more complicated by the use of different
AO's for the bottom and the top of the band. A
compromise, though a poor one, would be to use the
uncontracted AO with a=1. A better choice is
suggested by quantum chemical experience, namely,
to take at least two AO's per atom with different a
(double-g basis). Noting that the derivative of a ls-
AO with respect to a is a 2s-AO, one may alterna-
tively choose a Is and a 2s function with a=1.
One then gets the energies —0.589 16 arid
—0.16624 a.u. for the los and lcr„st tesa, respec-
tively, which are slightly lower than those obtained

by optimizing a for either state individually.

X. CONCLUSION

If we compare the molecular wave function with
the superposition of unmodified atomic densities or
unmodified atomic orbitals (LCAO approach, cf.
Heine' ), then the formation of a chemical bond,
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especially in the case of hydrogen, is accompanied
by charge and orbital contraction. This statement
holds regardless of which criterion is chosen, al-

though the very strong contraction needed for the
correct long-range behavior in H2+ is partially due
to the positive charge. The suggestion of Pettifor
to compare the molecular or crystal density with
the density of a single atom does not yield any in-

sight. Furthermore this comparison is of no conse-
quence for the LCAO approach. Finally, it is in-

consistent to take a criterion which is defined in the
local single center expansion approach and then in-

terpret the results in terms of the multicenter
LCAO approach.

Since Heine has based his comments on orbital
contraction or expansion on a study of the H2+ sys-

tem, it has been legitimate for us to concentrate on
the same system. One should, however, not forget
that the hydrogen atom is unique in the sense that it
does not possess occupied inner shells. So not all
results of this study can be generalized to bonds be-

tween arbitrary atoms.
The formation of a bond usually increases the

lowest ionization potential, such that the long-range
behavior requires contraction of the valence AO's.
This may not be very relevant for solid-state prob-
lems, except possibly for surface states. Contrac-
tion in the intermediate region in order to restore
the virial relation does also generally take place, al-

though the interplay between kinetic and potential
energy is usually more complicated than in H2+ or
H2.

The spatial region near the nucleus is of special
importance only for bonds to hydrogen. The dis-
cussion of Sec. IV cannot be generalized to atoms
with occupied cores. The Pauli principle keeps the
valence electrons outside the core, or in other
words, core-valence orthogonality automatically re-
stores the cusp condition for overlapping atoms
quite accurately without any AO contraction or ex-
pansion. Therefore using a single unmodified set of
AO's (or a so-called unscaled single-g set) is a
reasonable approximation in semiquantitative calcu-
lations of the valence band of molecules or solids.
Of course, significant improvement is obtained with
basis sets more flexible in the valence shell. Espe-
cially for the 3d shell of transition metals, where
there is no occupied core shell of the same symme-
try, at least a double-g basis is inevitable, since
atomic and molecular calculations show significant
density differences within the 3d shell for different
states.
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