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A calculation of the self-energy radiative correction to the energy level of an electron in
the 25,2, 2Py, or 2 P3,, state in a Coulomb field, with nuclear charge Z in the range

10—110, is described.

I. INTRODUCTION

This paper describes a calculation of the self-
energy radiative correction of order a to the energy
levels of the 2S1/2, 2P1/2, and 2P3/2 states for an
electron in a strong Coulomb field. The self-energy
correction is the real part of the energy-level shift
corresponding to the Feynman diagram in Fig. 1(a).
The method of calculation is similar to a method
previously employed to evaluate the 1.5, /,-state lev-
el shift."? Results of the calculation for the 2.5/,
and 2 P, /, states have been reported previously.’ In
this paper, results for the 2 P; /,-state level shift are
reported, and details of the calculation for all n =2
states are given. To order a, there is also a
vacuum-polarization level shift corresponding to
the Feynman diagram in Fig. 1(b).* To aid in appli-
cations, a tabulation of the Coulomb expectation
values of the Uehling potential,>® which gives the
dominant vacuum-polarization correction,* is in-
cluded here.

Radiative corrections for n=2 states have been
calculated to the lowest few orders in Za (see refer-
ences in Ref. 1), but to achieve good accuracy at
high Z, a calculation that includes all orders in Za
is needed. Evaluation of the radiative corrections is
necessary for an accurate theoretical prediction of
the energy levels in high-Z hydrogenlike atoms.”*
Recent experiments have extended the range of
measurements to Z=17 and 18.1%!' The
Coulomb-field values also provide a first approxi-
mation to both the radiative level shifts in high-Z

few-electron atoms'>!? and the radiative shifts of
|

inner levels of heavy neutral atoms.*~'® Compar-
ison of theory and experiment in these systems pro-
vides an important test of strong-field quantum
electrodynamics. These applications and related
theoretical work have been reviewed by Brodsky
and Mohr."’

The self-energy radiative level shift AE, of order
a, to all orders in Za, for level n is given by the
limit as the regulator parameter A— o0 of

(LY

In (1.1), the level shift is written in terms of a low-
energy part AE;, a high-energy part AEg(A), and
the mass renormalization counter term AE,(A), as
described in Ref. 1. Evaluation of AE; is described
in Sec. II. The high-energy part is further divided
into two parts AEy(A)=AEy,(A)+AEyg where
AEg,4(A) contains both the mass renormalization
divergence and the parts of AE4(A) that are of or-
der lower than (Za)*. Evaluation of AEg,(A) and
AEyp is discussed in Sec. III and Sec. IV, respec-
tively. The results of the self-energy calculation are
summarized in Sec. V. Coulomb expectation values
of the Uehling potential and consistency checks are
given in appendices.

II. THE LOW-ENERGY PART AE;

The real part of AE; is given by the principal
value integral'

R a a E, it 2 f® 2 2 i ij
e(AE)=—E,— P [ "dz ["dxx} [Tdexi S 3 fr0a)Glxn )l xoxn) @)

K ij=1

where =3 —i and f=3— J, and E, is the Dirac bound-state energy level. Units in which #, ¢, and m, have
unit magnitude are employed. In (2.1), f; and G are the components of the Dirac Coulomb radial wave func-
tions and Green’s functions, respectively, as defined in Ref. 1 (see also Appendix A). The functions 4%, which
depend on the bound-state angular-momentum-parity quantum number k, as well as the displayed variables,
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26 SELF-ENERGY OF THE n =2 STATES IN A STRONG .. 2339

are given for arbitrary «, by Eq. (I13.15) (equation numbers with a prefix I or II refer to equations in Ref. 1
and Ref. 2, respectively.) The special cases of interest here are S /, states (k, =—1):

4 d

Kk —1
dy, dy, + Va¥1 Jie Y201

AN (x3,%)=2(E, —2) | k|

A (x3,%)=2E, —z)k j JioW2)ii—01) 2.2)

A (x3,x))=2E, —z )KFyTJ'I( —0W2 1)

AP (x3,x1)=2E, —2) | k| ji—0W2 )it —01) ;

P|/2 states (Kn =1):

At g, )=2E, —2) | k| 1oy 2)jin1) »

(2.3)

d . ,
AP (x3,x,)=—2E, —Z)Kg;]ux)(h)h(—x)(h) ,

d . .
A (xp,x))=—2E, “Z)K‘—d Ji=0W2 1)
Y2

d d_ K2—

1
dyz dy, P Yy ]‘I” K>(J’2)II(—K)(J’1)

AP (x2,%))=2E,—2) | k|

and P;/, states (k, =—2):
2
+ 3

1

R

(Sk—Dik+1)
yi

29,2
(K+1)(22K2K+1) k(K1)
Ya)yi

A (xp,x1)=3(E,—2) |k |

1 4

1 4
y2 dy;

Y1 dy;

d d
yay1 dyy dy,

[Grk=Dk+D
v3

+ [(2k—1)(k+1)+6] ]J:(n(}’z)ﬂm()ﬂ)

d k—1
2——+
dy, Y2

2+_6__i_ 3K(K+1)
Y2 dys yz

k—1 . .
1 Ji—0W2 i —o1)

AP (xy,x1)=(E,—2) | k]|

Ji0W2)ioWn) (2.4)

b

d_
dY1

k—1 . .
Ji—0W2)i—01)

A2 (x3,x1)=(E, —2) |k | 4 Lk ; —1
1

6 d K(K+1)
+ —_——— O e |
V1 dye yl J1 Y2 oW
d d (2k—1)(k—1) |, .
A2 (x5, x)=(E, —2) |k | |2—— ——4+——" i _0W2)i—o1) s
2,X1 || dy, dy, VoVt Ju—e\V2 )1 —)\ V1

where j; is the spherical Bessel function with subscript /(«x)= | K—}-—;' | — %, and y;=(E, —z)x;, i=1,2.

The variables of integration in Eq. (2.1) are transformed according to

=ax,, r=x;/x, forx,>x
t=1—z/E, P 2 e 2o 2.5)

y=ax,, r=x,/x; forx,<x;
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where a =2(1—E?)'/2. The low-energy part is then
given by

Re(AE)=2[E, +5:(7)] , (2.6)
where

1 © 1
Sy=P [ dr ["dy [ drStryey) @)
and

o~ 9

(a) (b)

FIG. 1. Feynman diagrams for the lowest-order self-
energy (a) and vacuum polarization (b).

2 . .
S(ryty)=—2E,a~%’3 3 fir(rp/a)Gdry/a,y/a,E,(1—1))f{y/a)Al(ry/a,p /a) . 2.8)

k i,j=1

In (2.6) and (2.7) y=Za. This result takes into ac-
count the fact that the integrand in (2.1) is sys-
tematic under interchange of x; and x,.

The sum over « in (2.8) is evaluated essentially as
described in Ref. 2. In the present case, the method
of numerical evaluation of the radial Green’s func-
tions GY(x,,x,z) is extended as described in Ap-

pendix B to include the region
E(1S1/2)<2 <E(2P3/2)-
The coordinate integration
© 1
Sy(t,y)= fo dy fo drS(r,y,t,7) 2.9)

is evaluated as described in (I12.16)—(I12.20) with
the general state-dependent definition of g given by

1

9=

£_1y9
a

(2.10)
c=[1—EX1—1)*]'?, Re(c)>0.

In the remaining principal value integration over ¢,
1
Sy(y)=P [ dtSy(t,y), (2.11)

it is necessary to deal with the poles of the radial

S3(Y)=S31(y)+Sn(y),
: 1
Su()=P [ dx26,5,(2,x,7), N=16

.
Green’s function located at points where

z=E,(1—t) is a bound-state eigenvalue. For the
28,,,- and 2 P, /,-state evaluations there is one pole
in the integration range located at the 1S ,,-state
eigenvalue z=E(1S,,). For the 2P;,,-state
evaluation, there are poles at both the 1S ,-state
and 2.5 ;-2 P, s,-state eigenvalues in the integration
range. In all cases, the pole of the Green’s function
at the upper' end point of the range is dominated by
a third-order zero in the other factors. To evaluate
the principal value integrals, the integration interval
is divided into subintervals in such a way that each
pole of the integrand is located at the midpoint of a
subinterval. The integral over each subinterval con-
taining a pole is evaluated by applying an ordinary
Gauss-Legendre formula with an even number of
integration points. The fact that this procedure
gives the correct principal value integral is demon-
strated in Appendix C. In the 25, ,,- and 2P, ;-
state integrations, the pole 1is located at
ty,=1—-E(1S8,,,)/E(2S ), and the integration in-
terval is divided into the subintervals (0,2¢;) and
(2t1,1). The integration over ¢ is carried out ac-
cording to the following prescription:

(2.12)

1
Su(y)= [ dx3x*1—2)S,(2t; +(1-2t)x%y), N=13

where N is the number of integration points in the Gauss-Legendre quadrature formula. [The integrals are
mapped onto the interval (—1,1) by the appropriate linear variable change.] For the 2 P; /,-state integration,
the poles of S,(¢,y) are located at t,=1—E(2S,,,)/E(2P;;,) and t3=1—E(1S,,,)/E(2P;,,), and the in-
tegration subintervals are (0,21,), (2t,,2t; —2t,), and (2t; —2t,,1). The prescription employed to evaluate the
integrals is given by

S3(Y)=831(y)+ S5 (¥)+S3(7) ,

Su)=P [ dx 2,5,20x,7), N=4

Sn(P)=P [ dx(2t;-41,)5,(20, + (25— 41,)x,7), N=8

Su)= [ dx 3xH(1—263+20,)8,(25 2, + (1215 1 20,)x%), N=13 .

(2.13)
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The results of the numerical evaluation of S;3(y)
appear in Table I. Also listed, in Table II, are
values for the function f; (y) defined by

4
Re(AE; )= %<B>+%<V>+f:—3fL(7)

(2.14)

as derived from the corresponding values for S3(y).
(The functions f1, fua» fha> h1s has 3, hay fus,
and F employed in this paper differ by a factor n ~3,
where n is the principal quantum number of the
bound state, from the original functions defined in
Ref. 1.) The values for S;(y) are obtained with the
integration prescriptions in (II2.16), (I112.20),
(2.12), and (2.13) with the number of integration

TABLE 1. Calculated values for the function S;.

points N listed with each integral replaced by N + 1,
where I is displayed along with the corresponding
result in Tables I and II.

A check on the results for f; (y) is made by com-
paring the calculated values at the points
Z=10—-50 to the known values at Z=0. The
small-y limit is

lim [f, ()~ 38dln(y~)]=C, (2.15)
Y—

where [ is the orbital-angular-momentum quantum
number for the state, and the values for C, which
are deduced independently from the lowest-order
(in Za) self-energy calculations as described in Ref.

2, are listed in Table III. The function Af; (y), de-

fined by

S3(Za)
Z I 2S|/2 2P1/2 2})?9/2
10 —2 0.498 129 806 190 0.498 111311133 0.498 114990291
0 0.498 130481 221 0.498 111 669 323 0.498 115 349 590
2 0.498 130465 672 0.498 111661 382 0.498 115341 619
4 0.498 130465 255 0.498 111661065 0.498 115 341 305
20 0 0.492 635 523 496 0492419419 529
2 0.492 635523 517 0492419419 670 0.492 478 048 953
30 —2 0.483716911 856 0.482 846 496 567 0.483 142268 042
0 0.483716918 695 0.482 846 496 140 0.483 142285 880
2 0.483716918 740 0.482 846 496 064 0.483 142287238
40 2 0.471572459 393 0.469 275 647816 0.470 208 509 625
50 ) 0.456 376 188 639 0.451558017 369 0.453 833 654 276
0 0.456 376 185971 0.451 558 000 364 0.453 833751581
2 0.456 376 186 507 0451558000371 0.453 833757 899
60 2 0.438 268910487 0429521518829 0434242877428
70 2 0.417 345317 668 0.402980 135 273 0.411740 644 206
0 0.417 345276748 0.402 980080 547 0.411740829 189
2 0.417345279 154 0.402 980080 672 0.411740 822 445
80 2 0.393 627 172 834 0.371744 692 379 0.386726 533714
90 ) 0.367 006 960 282 0.335 639229 855 0.359709 129 629
0 0.367006 815022 0335639106511 0.359709 128 470
2 0.367006 819 538 0.335 639 107008 0.359709 013 409
4 0.359 708 972 648
100 0 0.331326331037
2 0.337 122 548 595 0.294522751917 0.331326 104 143
110 2 0.303067 361 184 0.248 321955071 0.302 366 391 453
0 0.303067 135 576 0.248 321 855 802 0.302 366 307973
2 0.303067 135 200 0.248 321857042 0.302 365952 329
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TABLE II. Calculated values for f; .

fL(Za)
VA I 281 2P, 2P;,
10 —2 6.076 095 88 0.858 329 67 0.598 34601
0 6.26653343 0.959 38108 0.69971020
2 6.262 14663 0.957 14085 0.697 46148
4 6.26202911 0.95705128 0.697 37291
20 0 4.80561597 0.99520613
2 4.805616 34 0.995208 61 0.71187875
30 -2 4.08194409 1.050354 37 0.73023195
0 4.08196791 1.05035288 0.730294 08
2 4.081968 07 1.05035262 0.730298 81
40 2 3.654071 85 1.122942 51 0.751 46826
50 -2 3.39057222 1.21571300 0.774774 40
0 3.39057102 1.21570533 0.774 818 33
2 3.39057126 1.21570533 0.774 821 18
60 2 3.237888 10 1.33373219 0.80008792
70 -2 3.17339798 1.485493 30 0.827 15444
0 3.17339317 1.485486 87 0.827176 17
2 3.17339346 1.485486 88 0.827 17538
80 2 3.19229244 1.68511101 0.856 11165
90 -2 3.306 32063 1.95753791 0.88702057
0 3.306314 38 1.95753260 0.88702052
2 3.306314 57 1.95753262 0.88701557
4 0.88701382
100 0 0.92008078
2 3.55281650 2.35100471 0.920074 38
110 -2 4.028 836 34 2.973 949 50 0.95553018
0 4.028 83199 2.97394758 0.955528 58
2 4.028 83198 2.97394761 0.95552172
AfL(Y)=FL(y)—$81oln(y™>)—C (2.16) UM —
is plotted in Fig. 2. The calculated values are con- zor- 25, -
sistent with the limit Af; (0)=0. +2 P, .
Another check on the calculation of the low- Sy Ps/2
energy part, valid for any Z, is made by examining E x
the imaginary part of the low-energy part Im(AE; ), g—* o= «
which is simply related to the one-photon radiative
decay rate of the bound state. This test, described 0.5 x
in detail in Appendix D, yields satisfactory results. | .
- s °
TABLE III. Values for the constant C. © *
State C l l | I :
o I0 20 30 40 50
281, —1.1915 5
2P, 0.9400
2P, 0.6900

FIG. 2. Calculated values for the function Af;.
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III. THE HIGH-ENERGY PART AEy,(A)
The high-energy part AEy,(A) is given by

4
AEz (M= | (5 1A= )(B) — (V) + ‘nL3fH,4(?’) 3.1)

as derived in Ref. 1. The function fy, is the sum

4
fua=Faa )+ 3, hi(y) . 3.2)

i=1

The function f}4 is

4

(1—E>?)(342E?) 4—9E2 4 3E}
”%f}lu('}’)= n n 1 n

—=In2——— " " 1In(14+E3) [(V
SEX1+E)  ? ag? T e )

s 9-—3E? )
+l-4'— A2 In(1+E,)

n

((1—B/E,)V) . (3.3)

The energy and expectation values in (3.3) are explicitly

-172

E,= |1 , .

+ [n— k| + (-] ’ (3.4a)
& (n— | =92 4+,2

V)=— ’ :

( ) (K2—‘}’2)1/2 {[n_ |K| +(K2__,y2)1/2]2+,y2}3/2 (3.4b)
4

1—B/E,)WV)=——L n— |kl _ .

{A-B/E,)V) K= [n— || +(E =2 [n— | k| + 2=y 2P 492)32 (4o

Here, « is the angular-momentum-parity quantum number of the bound state. Numerical values for f},(y)

are listed in Tables IV—VIL. The small-y limit of £} ,(7) is
57 1 9 3 1
f,&A(O):(;—;1n2);—(;—;1n2)m. 3.5)

The four functions h;, i =1,2,3,4, are

TABLE IV. Calculated values for £}, hy, h, h3, hs, and fy, for the 25, state.

z fha(Za) hi(Za) hy(Za) hy(Za) hy(Za) fuaZa)
10 —0.988 462 0.127250 —0.231184 0.047 569 —0.362001 —1.406 829
20 —1.003798 0.115839 ~0.216887 0.052313 —0.358937 —1.411471
30 —1.030396 0.104 631 —0.207015 0.058 827 —0.360575 —1.434529
40 —1.069 984 0.093039 —0.200039 0.067280 —0.366373 —1.476077
50 —1.125389 0.080399 —0.194.906 0.078032 —0.376 044 —1.537909
60 —1.201096 0.065 905 ~0.190717 0.091649 —0.389491 ~1.623751
70 —1.304319 0.048495 ~0.186 520 0.109003 —~0.406779 ~1.740121
80 —1.447 140 0.026 636 —0.181089 0.131469 —0.428 142 —1.898 267
90 —1.651160 —0.002132 —0.172575 0.161371 ~0.454038 ~2.118534
100 —1.959025 —0.042260 —0.157780 0.203061 —0.485308 —2.441313

110 —2.468758 —0.103330 —0.130322 0.266 094 —0.523 601 —2.959917
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TABLE V. Calculated values for f}iy, b1, ha, b3, hs, and fyg, for the 2 Py, state.

VA [ Za) hi(Za) hy(Za) hy(Za) hy(Za) fuaZa)
10 —0.988462 0.069 822 —0.090528 0.010873 —0.089114 —1.087410
20 —1.003 798 0.070915 —0.093 455 0.011588 —0.091679 —1.106429
30 —1.030396 0.072 663 —0.098 597 0.012 898 —0.096 104 —1.139536
40 —1.069984 0.074996 —0.106 390 0.014991 —0.102678 —1.189065
50 —1.125389 0.077 806 —0.117525 0.018175 —0.111863 —1.258797
60 —1.201096 0.080907 —0.133069 0.022935 —0.124 357 —1.354 680
70 —1.304 319 0.083957 —0.154671 0.030060 —0.141212 —1.486 185
80 —1.447140 0.086292 —0.184959 0.040 873 —0.164034 —1.668 969
90 —1.651160 0.086 568 —0.228 348 0.057731 —0.195383 —1.930593

100 —1.959025 0.081 847 —0.292 853 0.085230 —0.239612 —2.324413

110 —2.468758 0.064 809 —0.394 875 0.133 690 —0.304933 —2.970066

4 0
L= +E, [ dop'l1aip) P+ (22017101607,

4 o0
Lohn=Gm—50+ [T dop'l12:0) *~ 1 22p) 10267

4 [

f;hg,(y): fo dp p*gT (p)(Ve)(p)+g3 (p)(VE)(p)1Q5(p?) , (3.6)

4 0
i’—;h4(y)=E{' fo dp p*[g1 (P)(Vg)i(p)—g3 (P)(V)r(p)1Q4(p?) .

The functions Q;, i=1,2,3,4, are displayed in (I4.18) and (I4.19). The “radial” components of the
momentum-space wave functions g, g,, and the related functions (¥g);, (¥g),, are listed in Appendix A. The
integrals in (3.6) were evaluated by 60-point Gaussian quadrature with the aid of a new variable of integration
x defined by

1—x?
p=(1__E3)1/2___2_

in h],h2 5

x3
p=(—EH2 =2 iy p, 3.7)
X

The results are listed in Tables IV — VI as are the results for the total fy,. The small-y limits of the functions

TABLE VI. Calculated values for f4, k1, Ay, h3, hs, and fra for the 2 P3 ), state.

VA fii(Za) h(Za) hy(Za) hi(Za) hy(Za) fuaZa)
10 —0.378702 0.019 323 —0.087988 0.010742 —0.088 560 —0.525185
20 —0.279 881 0.018 966 —0.088 361 0.011023 —0.089 395 —0.527 649
30 —0.381863 0.018 375 —0.088978 0.011483 —0.090726 —0.531709
40 —0.384674 0.017 542 —0.089 829 0.012 124 —0.092516 —0.537353
50 —0.388 349 0.016452 —0.090904 0.012948 —0.094733 —0.544 586
60 —0.392937 0.015083 —0.092 188 0.013 960 —0.097 350 —0.553431
70 —0.398 502 0.013411 —0.093 663 0.015168 —0.100 340 —0.563927
80 —0.405125 0.011 406 —0.095 309 0.016577 —0.103 676 —0.576 127
90 —0.412905 0.009 034 —0.097 100 0.018192 —0.107 326 —0.590 104

100 —0.421967 0.006 260 —0.099 005 0.020019 —0.111255 —0.605948

110 —0.432466 0.003 047 —0.100989 0.022 059 —0.115423 —0.623773
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h;(y) are
32 1 111 1 1
0= 105 21 84 n+ 10 K(21+1) ’
1
h;(0)=(21n2— 2y 1 —1 — —_—
2(0)=(21In2 — 453 )21+1 +( 2) +( In2— ) PRI (3.8)
31 1 4 8 1 4
h3(0)=(5 —31n2) |n SR h4(0)=(4In2—3) [n REYI
The small-y limit for the total fy,(7) is
1 1 1 3 9, 1
0)=(4r —In2)~ —2In2) = +(5 ——— (52— :
SHa(0)=(5 n)n ( 2)21 +( In2 )K(21+1)+(21n2 4)|K! (3.9)
IV. THE HIGH-ENERGY REMAINDER AE;
The high-energy remainder is
ia
AEHﬂz—E CHdzf dx2x2f dxlxlguzl[f,(xz )GH (x2,%1,2)fj(x1)A4,(x2,%1)
—[3(x2)GH (x2,%1,2) 7 (x1) 4 (x2,x1)] 4.1)

with 7, j as in Eq. (2.1). In (4.1) the contour Cy extends from —ioo to O and from 0 to i 0. In the regions
Im(z) >0 and Im(z) <O, separate branches of the function b are specified by the definition

b=—i[(E,—2)*]"?, Re(b)>0. 4.2)

The function b enters the integrand of (4.1) via Egs. (4.3) below. The functions f;, i =1,2, are the components
of the radial wave function as before, and the functions Gg’ « are defined in (I5.5). Here, the functions 4, and
AY are as defined in (15.8), with the explicit formulas (see also Ref. 14)

A (x2,x1)=— Elfl- 3 [(k+Kp k4K, + 1D ="'+ 1)]
n r

X {1100 (ke )0 | 1k (i, )"0 ) 2jp(ibx RV (ibx S )

Al Gepe =~ 2L S [, ety Memsy + D= 10 1)
n 14

X (1001 —1, )0 | 1) (— 1, )"0 ) 2jplibx  ImiP (ibx ) ,

AP (x,,%, )=2J—"—L 3 [(k—kp N k—kK, — 1) =1'(I'+1)]
2Kk, T
4.3)
X {1 —K)0l(K, )0 | I — ) (k, 'O 2jp(ibx R (ibx )

A2 (x,,x, )=—I?—L'—(—|— > [(k—k N k—k, +1)=1"(I'+1)]
2Kk, T
X (1)L (—1,)0 | () (— K, )0 Y2jplibx ki (ibx . ) ,

A2 (x5, )= — %’%L S [8cky -+ (k— iy Nk — sy — ) —I'(I'+ 1]
n 14

XU —K)01 (k)0 | 1 — 1) (1, 'O )2 ibx R (ibx . ) .
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In (4.3), j is the spherical Bessel function, 4V is the spherical Hankel function of the first kind,
X . =min(x,x,), x, =max(x;,x;), { ) denotes vector addition coefficients in the notation of Edmonds,?
and /' is summed over non-negative integers for which the coefficients are nonzero.

The integral over z in (4.1) is transformed according to

i ®© . .
—5 Jo, dzWzb)=Re [~ du Wiiu,u+iE,) , 4.4)

valid when W*(iu,u +iE,)=W(—iu,u —iE,) as in Eq. (4.1). In terms of the new variables » and y defined in
(2.5), t=(u?+1)""2—u, and the function fyp defined by

4
AEyp= % f}"fHB('V)

we have
1 © 1
fHB('}’)= fo dt fo dy fO drS(r’y’t’?’) s

where

S(ry,t,y)= 3, T(ry,t,y)

k=1

and

4.5)

(4.6)

4.7

3.2,5 2 ..
T,((r,y,t,y)=—'1;:~a%—(l+t‘2) > > Re[f,-(ry/a)Gg,,‘(ry/a,y/a,z)fj(y/a)AK(ry/a,y/a)

signs i,j =1
of x

—f7 (9 /0)GY ((ry /a,p /a,2)f; (r /@A (ry fay /a)] . (48)

Individual terms in the sum in (4.8) are calculated as described in Ref. 2. The sum over « in (4.7) is terminat-
ed when « is larger than 3(¢ +¢ ')y /(4a)+ 3 and (see Ref. 2)

max( | Ty |, | Teei|s | Taca | | Tees |y | Tuea | )< 10741 —1?) . 4.9)

The validity of this procedure was checked by
reducing the error estimate (10™*) in (4.9) by two
orders of magnitude in certain evaluations of fyp,
and by the test calculation described in Appendix E.
As another check, in the evaluation of the 2 P;,,
level shift, the estimated remainder from the sum
over k was integrated over 7, y, and t, and found to
give a negligible contribution to fyp.

Numerical integration of S(r,y,t,y) is carried out
by applying a Gauss-Legendre formula for integrals
over the interval (0,1) and a Gauss-Laguerre formu-
la for the integral over the interval (0, 0 ), with new
variables of integration displayed below. The in-
tegral over 7 in (4.6) is evaluated by

1
$ipy)= [ dx 2xS(x%y,1,y), 0<g<1
1
Si(y,t,y)= fo dx S(x,y,t,y), 1<g<12
(4.10)

1
Sy, t,y)= fo dx %S(l—llx/q,y,t,y)
+€, ¢>12

where
q=y/(ta)—y/2 4.11)

and N =6 in each case. The residual € is discussed
in Ref. 2. The integration over y is done in two
parts:

Sult,)= [ dx xS, (4x%1,y), N=14
(4.12a)
Snt,y)= ["dxS\(4+4x,t,y), N=3.
(4.12b)
And finally
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1
Suly)= [ dxSult,y), i=1,2 (4.13)

with N =4.

Calculated results for S3; and S, appear in Table
VII. As in Sec. II, each integral was evaluated with
N +1 integration points, where N is the number as-
sociated with each integral in (4.10), (4.12), and
(4.13) and the value of I is listed with the corre-
sponding result in the table. Results for fyp

Sup(V)=S31(y)+Sn(y) (4.14)

appear in Table VIII. The number in parentheses in
that table is the estimated uncertainty in the last
figure, based on the apparent stability of the values
as the number of integration points is vVaried. This
method of calculation and uncertainty estimation

2347

has been tested as described in Appendix E.

The values for the function fyz(y) are compared
to the exact values of fy3(0) in Fig. 3. The values
of fx5(0) follow from (I5.11),

1 17 4

1
fHB(O)__—m (7—3 1n2)510+(%—21n2);

+ (%—an) Ltk _il—l

(4.15)

There is apparent consistency between the calculat-
ed values and the values at y=0.
The calculated values for the function fyp for

TABLE VII. Calculated values for the functions S3; and S3,.

S31(Za) S;z(Za)
VA I 251 2Py 2P, 281 2P, 2P,
10 —1 0.064913 0.046 609 —0.026039 —0.025263
0 0.066 534 0.042 865 —0.027 381 —0.026 586
1 0.065 356 0.042 534 —0.027 355 —0.026 630
20 0 0.139 546 0.046 464 —0.029374
1 0.139 821 0.046 141 —0.029060 —0.027634 —0.027 101 —0.011569
30 —1 0.224 700 0.055 333 —0.023011 —0.026 357 —0.025 862 —0.009968
0 0.219352 0.052 740 —0.026 665 —0.027768 —0.027 336 —0.011744
1 0.219 508 0.052557 —0.026373 —0.027 808 —0.027433 —0.011770
40 1 0.304 853 0.062910 —0.022 858 —0.027 876 —0.027 627 —0.011829
50 —1 0.404218 0.080 364 —0.016462 —0.026 165 —0.025 882 —0.009714
0.399 568 0.078 813 —0.018954 —0.027766 —0.027599 —0.011692
1 0.399 594 0.078 942 —0.018579 —0.027 830 —0.027 677 —0.011738
60 1 0.508 264 0.103414 —0.013632 —0.027 640 —0.027572 —0.011495
70 —1 0.642 345 0.142460 —0.006218 —0.026036 —0.026172 —0.009 894
0.638 193 0.140732 —0.008 475 —0.027451 —0.027 345 —0.011184
1 0.637 546 0.140 832 —0.008 148 —0.027 347 —0.027 268 —0.011102
80 1 0.798 127 0.199 069 —0.002299 —0.027069 —0.026796 —0.010585
90 —1 1.013412 0.296 042 0.005 486 —0.026031 —0.025464 —0.009277
1.009 604 0.293 068 0.003 427 —0.026915 —0.026490 —0.010110
1 1.007 993 0.292 834 0.003 642 —0.026 680 —0.026 327 —0.009 966
100 1 1.300956 0.452056 0.009 169 —0.025 605 —0.026078 —0.009234
110 —1 1.752 620 0.756 189 0.014959 —0.021 687 —0.025488 —0.007931
0 1.753713 0.748 067 0.013120 —0.023047 —0.026 240 —0.008 488
1 1.752211 0.747 028 0.013280 —0.022 875 —0.026051 —0.008315
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TABLE VIII. Values and estimated uncertainties for fyp.

fHB(Za)
Z 281n 2Py 2P
10 0.038(2) 0.0159(4)
20 0.1122(4) 0.0190(4) —0.0406(4)
30 0.1917(3) 0.0251(4) —0.0381(4)
40 0.2770(3) 0.0353(4) —0.0347(4)
50 0.3718(2) 0.0513(3) —0.0303(4)
60 0.4806(4) 0.0758(3) —0.0251(4)
70 0.6102(8) 0.1136(3) —0.01934)
80 0.771(2) 0.1723(3) —0.0129(4)
90 0.981(3) 0.2665(3) —0.0063(4)
100 1.275(3) 0.426(1) —0.0001(4)
110 1.729(3) 0.721(2) 0.0050(4)

the 2 P,,, state appear to be consistent with the
functional form 4 +By? for small Z. Interpolation
with such a function between Z=0 and Z =20
yields fyp(10a)= —0.0419(4) for the 2 P;, state.

V. CONCLUSION

The total self-energy level shift is expressed in
terms of the function F,(Za) defined by
a (Za)*

AE, =255

F(Za)m,c?. (5.1

The function F is the sum
F,(Za)=f(Za)+fys(Za)+ fyp(Za) , (5.2)

where the separate contributions on the right-hand
side appear in Eqgs. (2.14), (3.2), and (4.14). Results
of this calculation of F appear in Table IX.

T | T T T
04+ x —
o "Sglzz
— ‘3-— + 172 x —
o
o °2P;,,
c‘_I
A o2t ) —
3
o
- x
« Ol —
* +
O — + ® L] 8 ° —
| | L | |
0] 10 20 30 40 50

z

FIG. 3.
Sus(y)—fup(0).

The function F for the 2 S/, state is qualitatively
similar to the corresponding function for the 15/,
state.> The difference between the values of the
function F for the 2 P,,, and 2 P;,, states, i.e., the
radiative correction to the fine structure changes
sign near Z =90 due to the rapid increase of F for
the 2P1/2 state.
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APPENDIX A

Calculated values for the difference

This appendix lists wave functions and related
functions for the n =2 Dirac Coulomb states.

TABLE IX. Results of the self-energy calculation.

F(Za)
z 281, 2Py, 2P,
10 4.893(2) —0.1145(4) 0.1303(4)
20 3.5063(4) —0.0922(4) 0.1436(4)
30 2.8391(3) —0.0641(4) 0.1604(4)
40 2.4550(3) —0.0308(4) 0.1794(4)
50 2.2244(2) 0.0082(3) 0.1999(4)
60 2.0948(4) 0.0549(3) 0.2215(4)
70 2.0435(8) 0.1129(3) 0.2440(4)
80 2.065(2) 0.1884(3) 0.2671(4)
90 2.169(3) 0.2934(3) 0.2906(4)
100 2.387(3) 0.453(1) 0.3141(4)
110 2.798(3) 0.725(2) 0.3367(4)
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In the notation®!

F1OXE (%)

U= e o™ (£)

(A1)

the radial wave functions are for the 2.5/, state:
f1x)=N2(1+E)[EQE —1)—yx /2E]x % ~7/E
Fr(x)= —NY2(1—E)[(E+1)2E —1)—yx /2E]x ~8 /2 ;

2 P, , state:
FixX)=NY2(1+E)\?[(E—1)2E +1)—yx /2E]x 3¢ ~7</%E |

f20)=—N3"?(1—E)"[EQE +1)—yx /2E]x % ~7/*E ;
2 P, , state:

fl(X).:Né/Z(1+E1)1/2xl—8'e—’yx/2 , f2(x)=—N§/2(1—E’)1/2x1_8'e_7”‘/2 , (A2c)
where

y=Za, 8=1—(1—2, E=(1-8/2)'?, §=2—(4—y)"?, E'=1-87/2,
N, =(y/EP~%/[E(2E —1)2I"(3—28)], N,=(y/E)*~®/[E(2E+1)2I'(3-28)], (A3)
Ny=y""B[2r(5-28")] .

(A2a)

(A2b)

The momentum-space wave functions, defined by

g21(pXK (p)

2\ -3 3, ,—iB T (R)=
$n(B)=2m) 32 [ dx e~ 1T Ty (3) 22 (oI (P)

(A4)

and the functions defined by
(V,)(B)=2m) 7" [ dx e P IV (R), (%)= VNP (AS)
(V) pX* (B)
are for the 2.5, ), state:
g1(p)=M{*(1+E)"[EQE—1)C,—C3], g (p)=—M}{*(1—E)[(E+1)2E —1)D,—D,],

(Vg)l(p)=—%M%”(l-{-E)VZ[E(ZE—1)C1—C2] , (A6a)

(Vg)z(p)=—ZI’EZ—M}/Z(l_E>“2[(E+1)(2E_1)D1~Dz] ;
2P1/2 state:

g1(p)=—iMY*(1+E)"[(E—1)2E+1)D,—Ds], g (p)=—iMy*(1—E)"*[EQE+1)C,—Cs],

(Vg)l(p)=i~2’%M;’2(1+E)‘/2[(E—1)(2E+1)1)l —-D,], (A6b)

(Vg)z(p)=i—27%M§/2(1—E)"2[E(2E+1)cl—cz] ;
2P3/2 state:

gi(p)=—iMY*(1+E"HDY), g(p)=iM3y*(1—E")/*3D3/q'—C%), (A6c)
C

2 2
(Vg)1<p)=i3;—M§’2(1+E'>1/2<D'2> ) (Vg)z(p)=—iJ’Z—M;”u_E')VZ(sD', /q'—C3) .
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In Egs. (A6a)—(A6c)

q=2Ep/v, ¢'=2p/v,

sin[(m —8)tan—q]
q( 1 +q2)(m——8)/2

C,,=T(m—8)

, m=12,...

Cm_1 cos[(m —8)tan"!q] (A7)
D,, =—q———l"(m —8) q(l+q2)(”‘“5)/2 , m=12,...
26—28E2 26—25E2 28—28'
T QE—1T(G-28) " 2 mPQE+1I(G3—28) " 0 ay’T(5—28")
and C,,,D,, are obtained by replacing ¢q and 8 by ¢’ and &' in C,,,,D,,.
The transforms of the square of the Coulomb wave functions, defined by
2 ™ o _
L,w= [ d’|9,(3)|? —= fo dx xe " f1(x)+f3(x)] (A8)
are for the 15, /, state:
25—2
Lu)=—t— 14 ; (A9a)
W=175 " ap
2S1/2 state:
L(u):zf(ﬁl’—a)u+4E(1—E2)u/y+E<1+E>(2E—1)(u/y)2](1+uE/y>28“‘ ; (A9b)
2Py, state:
L(u):zﬁz/—a)[l+4E(1—E2)u /Y +E(1—E)QE +1)(u/y *I(1+uE /y)®~*; (A9¢)
2P3/2 state:
Lw)===L—(14u/p)®*. (A9d)

2(2-8')
APPENDIX B

In the numerical evaluation of the radial Green’s
functions for the low-energy part, the domain of
one of the parameters of the Whittaker functions is
larger for the n =2 states calculation than it is for
the n =1 state calculation. The necessary modifica-
tions of the method (in Ref. 2) of evaluation of
these functions is summarized here.

The domain of the parameters for Mq,g(x) and
Wqp(x) is here within the limits ———;—<a < %,
0< B <500, 0<x <500, B+%—a> —2. The effect
of the extended domain of the parameters is to
modify the conditions governing the truncation of
the summations. In the present evaluation, Eq.
(II D3) is replaced by

0

> T(n)

n=N+1

N+2

1
Ni+2—x | T(N +1)|

<

for N+2>x and N>0. (Bl)

I

The condition on Eq. (IID11) is replaced by
N+2>max(28++,0x) with 6 as given by
(IID12).

APPENDIX C

The method of evaluation of principal value in-
tegrals, described in Sec. II, is examined in more de-
tail in this appendix. Consider a function f(x)
which is analytic on the interval (—1,1) except for
a pole at x =0. We may write

f(x>=§+g(x> , (1)

where R is the residue of the pole of f(x), and g(x)
is analytic on the interval (—1,1). Then the princi-
pal value integral of f(x) is given by

1
K=p [ axfe= [ drgx). (€2

The integral in (C2) is numerically evaluated by
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simply applying an N-point Gaussian quadrature
formula, with the provision that N is even. In par-
ticular,

N N
K~ wif(x;)=3 wglx;), N even

i=1 i=1
(C3)

where w; and x; are the weights and evaluation
points of the quadrature formula. The validity of
this method follows from the fact that the pole
term vanishes identically in (C3) because of the
symmetry of the weights and evaluation points in
the quadrature formula, i.e., w;=wy,i_; and
Xi=—Xy41-i» i=1,2,...,N. Hence, the theoreti-
cal accuracy of this method is the same as that of
the quadrature formula applied to the analytic func-
tion g(x). In any numerical calculation, there will
be an additional error associated with the fact that
the function f(x) is evaluated only approximately.
This numerical error may be enhanced due to can-
cellations between the values of f(x) at integration
points near the pole at x=0. In this calculation,
such numerical error is negligible.

APPENDIX D

This appendix describes the residue test of the
numerical evaluation program for the low-energy
part. The imaginary part of the lowest-order self-
energy of a state is proportional to the sum of all
one-photon decay rates to states of lower energy,

Im(AE,,)=-—-;—2A(n—>m), E, <E,. (D1)

We also know from inspection of (I3.8) that

Im(AE,)=m 3 R,,, E, <E, (D2)

where R,, is the residue of the pole of the integrand
at E,, in the integral over k in Eq. (I3.8). Hence,
identifying the transition rate to a state m with the
residue of the pole at E,,,,

A(n—->m)=—-27R,, , (D3)

TABLE X. M1 decay rate 4(2S,,,—18,,).

Z I A/Qa)
50 0 2.500480x 108
1 2.498047x 108
exact 2.497968x 108
100 0 4.544803% 1073

exact 4.544 668 103

TABLE XI. E1 decay rate A (2P, ,,—18,,).

VA I A/Q2a)
50 0 3.5126830x10~*
1 3.5126828x10~*
exact 3.5126827x10~*
100 0 5.862496 11073
exact 5.8624961x 103
or

A(n—>m)=—2atlir:1 [(t —1,)S,(8,7)], (D4)

where t,, is the location of the pole, in terms of the
variable ¢ defined in (2.5), corresponding to state m.
Numerical values for the limit in (D4) are obtained
by evaluating the function (¢ —t,,)S,(¢,y) at the
points t =t,, —2€, t,, —€, t,, +€, t,, +2€ and apply-
ing a third-degree polynomial interpolation to find
the value at t =¢,,. The value employed for € was
e=10"3, except in one transition where €= 10~*
was employed. This result for the decay rate is
compared to an independent exact numerical calcu-
lation based on standard relativistic formulas for
the one-photon decay rates. The results are shown
in Tables X —XIII (in units of m,c2/#). In those
tables, the value for the integration index I, dis-
cussed in Sec. II, is listed with the corresponding in-
tegrated and interpolated values. The interpolated
decay rates all have absolute errors less than
3% 10~° (not including the factor a) and show good
convergence to the exact values as the number of in-
tegration points is increased.

APPENDIX E

This appendix describes a procedure employed to
check the high-energy parts of the calculation. The
test indicates that computational errors are unlikely,
and shows that the degree of stability of the calcu-
lated values for the high-energy remainder, as the

TABLE XII. E1,M2 decay rate A(2P;,—18S,,),
€e=—4.

VA I A/Q2a)
50 0 3.3480677x 10~*
2 3.348068 1 10~*
exact 3.348068 1 10~*
100 0 4.7109360x 103
2 4.7109364x 1073
exact 47109364103
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number of integration points is varied, is a valid TABLE XIII. E1,M2,M1,E2 decay rate
measure of the accuracy of the values. A(2P3/,—281/2,2P1p2)

:I'he procedure is to calculate a test energy-level Z 1 A/(2a)
shift AEr both by the method employed to calcu- 5
late AEg, (method A: Sec. III) and by the method 50 0 9.502578 X 10

2 9.496 500 10~°

employed to calculate AEyp (method B: Sec. IV),

-9
and then compare the results. The favorable out- exact 9:496 625X10_5
. . . 5 100 0 2.155226X 10
come is taken as evidence for the validity of the ) 2155223 % 105
methods and programs gmployed in both cases. exact 2:155 222%10-5
The test energy-level shift is
ia - - = NS

AEr=—2% [ &, [ @ 9] (Z)a, ch dz GT(xz,xl,z)a"tﬁn(xl);e be, (E1)

where p= | X,—X, |, Gr is the kernel corresponding to the operator
' 1
Gr(z2)=V——V (E2)

(Ho—z) ~
V is the Coulomb potential, and H, is the free Dirac Hamiltonian Hy=a P+ . This operator is analytically
similar to G of Sec. IV, and is sufficiently simple that method A may be applied to calculate AE.
For method A, we find
AEr=Z(VITi(p")+BT2(pY)+ & FT3(p1V) , (E3)

where

T,(p)=—+Im fldt 201442414 11’ 1
g 0 (14122 2p24+(1—iE,1)?

(1—¢2)3 1—iE,t
(1412 [tp2+(1—iEt)*? |’
1 813 1 2t (1—12)? 1—iE,t
T,(p)=Re | dt - , E4
2P fo (1412)? t2p*4+(1—iE,t)? (1423 [2p2+(1—iE,t)*]? (E4)
Ty(p?)=+Re [ dr L2 | Lo 1[(E, +p)t] —tan~"[(E Y p—
2 0 2% |2p n " 1—iE,t
t(141) 1 B t(1—22)
1—iE,t tp*4(1—iE,t)?  [tp*+(1—iE,t)*]?

TABLE XIV. Results of the test calculation.

VA Method I FT(2S1/2) FT(2P1/2) FT(2P3/2)
20 B 0 —0.3195 —0.1448 —0.1381
20 A —0.3189 —0.1449 —0.1382
60 B 0 —0.1661 —0.1837 —0.1243
60 B 1 —0.1663 —0.1835 —0.1242
60 A —0.1661 —0.1834 —0.1241
100 B ) 0.0652 —0.2610 —0.0962
100 B 1 0.0664 —0.2608 —0.0959
100 A 0.0675 —0.2607 —0.0959
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The integrals in (E4) are evaluated numerically, and the matrix elements in (E3) are evaluated as in method

A

To apply method B, the function G(X,,X,z) is expanded in spin-angle eigenfunctions in analogy with for-
mula (I A14). The radial functions in this case are for x; > x, [the symmetry conditions (IA'18) apply here]

2 2
z . ,
G}},‘(xz,xl,z)=—2xy2xl (z+1)~c—[(x%+x%)j+h+—2x2x1]_h_]
142z +2xz% | 2641 .
* 1—z

,},2

2x2x1

12
GT,K(xbxl’Z):

_ i
||
%

2X,5X

21
GT,K(xZ’xI’Z):

T
,}/2

2X,X 1

2
Gr(x2,x1,2)=—

1—2z —2z?

Z[(x5+x7)j b +2x3x1j ]

2k—1 .,

]+h+—i~'—:—l(x2j_h++x1j+h_)} } ,

%[(2K22~1)x2j_h_ F 2224 Dxj oy ]

b

(ES)

%[(2Kzz+l)xli+hJr +(2kz>—1)xj_h_]
2 (x5 +x7)j_hy +2x,x1j 4 h_] ] )

2
(z —l)zc—[(x%+x%)j_,h_ —2xox1j hy]

Joh —i——(xpj h_+xyj_h.)

14z

where  ji=j|c+1/2) —12licx;) and h
=h(|l,‘)i1/2|_1/2(l'cx1), C=(1—22)1/2, Re(C)>O.
Method B is then applied with the replacement
GY.—G¥..

The results of both methods of calculation appear
in Table XIV. The results of method A should be
exact to the number of figures shown. For method
B, the parameter I in Table XIV is defined as in
Sec. IV. The results are written in terms of the
function f defined by

4
AE;= % %fT(y) . (E6)

The agreement between the two methods is con-
sistent with the estimated uncertainties listed in
Table VIII.

APPENDIX F

Wichmann and Kroll have shown that the effect
of vacuum polarization on Coulomb energy levels is
dominated by the Uehling potential over a wide
range of Z.* As an aid in evaluating radiative level
shifts in a Coulomb field, calculated values for the
Uehling potential shifts are give here.

’

Y

|
The Uehling potential U(x) in a Coulomb field

i85’6

Ulx)= _%y f1°° dt (12 —1)1/2

2 1 e—21x
X |—=+— (F1)
32730 | x
Hence, the energy-level shift is
AEy= [ d |4,(3) U, (F2)
or
AEy=—Zy [ " dr(>~ ' 2L
v 1 KT R PA S B
(F3)
where
3 oy 28"
L= [ d* | ¢,(%)] —. (F4)

The transforms of the square of the wave function
L, are listed in Appendix A. In terms of the new

variable x =1—(1—¢72)!? and the function Hy
defined by
4
AEy =T Hy(yim,e? (F5)
T n
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TABLE XV. Calculated values for the function Hy.

HU(Za)
VA 1S, 281 2Py, 2Py

10 —0.249449 —0.250399 —0.000335 —0.000069

20 —0.240914 —0.244 587 —0.001 370 —0.000255

30 —0.238 684 —0.246936 —0.003 257 —0.000536

40 —0.242087 —0.257197 —0.006 323 —0.000902

50 —0.251334 —0.276418 —0.011150 —0.001 349

60 —0.267463 —0.307 130 —0.018773 —0.001 876

70 —0.292 650 —0.354174 —0.031087 —0.002 490

80 —0.331025 —0.426 679 —0.051786 —0.003 199

90 —0.390672 —0.542 896 —0.088728 —0.004019

100 —0.489026 —0.743 531 —0.160837 —0.004 969

110 —0.670610 —1.136909 —0.323108 —0.006075
we have To reduce the effect of the singularity at x =0 on
11n P 5 242x —x? the numerical accuracy, a new variable of integra-
Hyly)=— 3 ? f o dx(1—x) W tion s, where x =s5, is employed in the numerical

XL,[2/(2x —x2)!/?] .
(F6)

evaluation of (F6). Integration over s by 20-point
Gauss-Legendre quadrature yields the results listed
in Table XV.22
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