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Exchange-induced dipole moments in atom pairs
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It is shown that an approach based on the use of label-free operators, which has been

used to evaluate the interaction energies of pairs, can be adapted to evaluating the induced
moments on each atom. Application of the method to H-H and H-He systems is given.

I. INTRODUCTION

The dipole moment induced on each atom of a
pair when their distance of separation R is large ar-
ises from dispersion interaction, ' and varies as
R . For smaller values of R at which overlap ef-
fects appear one would expect the exchange interac-
tion between the atomic electrons to contribute to
the induced moments. The effect of the antisym-

metry of the combined wave function on the in-

teraction energy of an atom pair is well known, ' but
the moments localized on the atoms and arising out
of this wave function have not received as much at-
tention. Only the lowest-order results for the dipole
moment of atom pairs have been obtained" with
some doubt expressed on whether the induced mo-
ment on each atom of a pair can be evaluated

separately, as had been claimed earlier.
The object of this paper is to present an evalua-

tion of the induced moments on each of a pair of
atoms through adaptation of techniques which have
been used in studying interatomic forces by pertur-
bation theoretic methods including exchange ef-
fects

the system are to be taken with wave functions
which are antisymmetric with respect to Xq+Ez
electrons. However, the operators associated with
properties of the individual atoms of the pair are
usually defined for a particular grouping of Nz
electrons on A and Ez electrons on B. The use of
label-free operators in the manner described below
incorporates exchange symmetry into the operators
associated with properties of individual atoms in a
straightforward way.

In Eq. (I) the part

~0 g ÃA ( i) +88 ( i) ]~i ~ (3a)

Hp ——Hg +Hg

and V by itself are not invariant with respect to an
exchange of electrons between the two atoms. For
developing a perturbation theory including ex-
change effects the unperturbed Hamiltonian must
be chosen to be invariant with respect to such an ex-
change, and this is achieved by writing the terms in
the Hamiltonian in the "label-free" form,

II. USE OF "LABEL-FREE"OPERATORS
=g V(t)A. (3b)

For two atoms A and B separated by the internu-
clear distance R, with A having Xz and B having

X~ electrons, the complete Hamiltonian

H=Hg+Hg+ V,

where V is the Coulomb interaction of the charged
particles of A and those of B, is symmetric with
respect to exchange of electrons between the two
atoms. The expectation values of the properties of

with each i corresponding to a particular grouping
of Xz electrons on 2 and Xz electrons on B, and

V~;~ is the interaction between the two atoms for
that particular grouping. And

p = (Ng +N )!/s(Ng!N !)tt

is the number of ways Xq electrons can be ex-
changed with X~ electrons. A; is a projection
operator having the following property.

If we start with a product wave function
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$A(„)(t)B(„)which is an eigenfunction of Ho, an an-

tisymmetric wave function can be constructed
through the usual procedure,

g,' '=f,g( —l)"~ [(ItA(, )PB(n, )]
V

~A ++A (i)~i

with a similar equation for Qz. If Qz ——Hz, for in-

stance, it is easy to see that

(4)

where I'„ is v consecutive permutations of electron
pairs one from each atom, and f„ is the factor that
normalizes P„' '. A; is defined through the equation

p y(o) f y(~)

with i here referring to the ith grouping of XA elec-
trons on A and NB on 8, as before. Obviously from
Eqs. (5) and (4),

Thus the appropriate definitions of the dipole mo-
ment operators of the individual atoms are

PA +PA (i)~i OB'gP'B(i)~i

Here pq(;] and p~(;~ are the dipole moments of A

and 8 for the ith grouping of electrons, as in Eqs.
(3a) and (3b).

Ai
—=1 . (6) III. SOME EXAMPLES

[HA(;)+HB(;)+ V(;)] is independent of the grouping
of the electrons, and hence of the index i. Thus,
adding Eqs. (3a) and (3b) and using (6) we get

4 p+P =Hg+Hg+V=H,

which, of course, is exchange symmetric. Also, by
construction A p and W are both exchange sym-
metric, and therefore can be the starting point for a
perturbation theory incorporating exchange ef-
fects. '

A suitable definition of an operator associated
with A (or 8) separately can be written analogously
as

We shall give here the exchange-induced dipole
moments for the hydrogen-hydrogen and
hydrogen-helium systems as a function of the
separation R. For large R when the overlap be-

tween the atomic orbitals is small, as already stated
the dominant contribution to the induced moments
is from the dispersion interaction and this leads to

1
&) A, B )

The explicit form of the constant of proportionality
has been obtained ignoring exchange effects.

For the H-H case,

$2 2

Hp(&) = — I( 1
— +
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Pq(1]= —er1, JM~(2~ ———er2
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= —e ( r 2

—R ), )M B ( 2 )
——e ( r (

—R )

go=fo[&(l)fo(r()I)'(2)ko(
I

r2 —R
I

) &(2)ko(r2)P(l)(()o(
I
r) R

I )] '

1
Po(r) = 3, exp( r/ao) . —
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Here a and P are the spin functions.
If a@P, both (p, q) and (p, s) vanish in the

leading order, indicating that hydrogen atoms in

opposite spin states will not produce exchange-
induced dipole moments. If a =P, we get

T(R):&—0o( I
r RI )

I
r

I do(r)&

&pa&=-&p~ &

In this case T(R)=(R /2)S(R), so that

(13)

(14)

fo ——I2[1—S (R)]]

where the overlap integral S(R) is

S(R)= 1+ R 1R'
ap 3 ap

exp( —R/ao) .

with

( )
S(R)T(R)
1 —S2(R }

(12)

The integrals for ( p, z ) and ( p s ) are done trivially
to give the result

( )
eR S (R}

1 —S (R)
(15)

Thus, although the total dipole moment of the two
atoms vanishes, each atom develops a moment
directed toward the other. Furthermore, for R ~0,
(p, z ) diverges as 1/R and for R~ao it tends to
zero.

For the H-He case with the hydrogen at the ori-
gin and the helium at R, we pick

01 NH(1)NH (2 3)

42 4(2)NH (1 3) y3 NH(3)(t'H (2 1)

Po=fo(01+42+03)~ fo= I3[1—S2H H~(R)] I

with the overlap integral SH H, (R) given by

~Z3
SH H, (R}=

3 Jd r exp
map

I' z
exp( —

~

r —R~ }
ap ap

1
$H(1) =a(1) exp( r1/ao), —

(
3 )1/2

(2 3)= p[ — (
~

r2 —R
~
+

~
r3 —R

~
)], with Z= —„;

Kap 2 ap

ap=32Z'~'
R

1 RZ 1

(Z —1) ao 4Z (Z —1)
exp( —ZR /ao)

1

(Z2 1)3
R 1

exp( —R /ao)
4(Z —1) (16)

Here,

pH ———e(r1A1+ r2A2+ r3A3);
PHe= —e[(r2+ r3 —2R)A1+(r1+ r3 —2R)A2+(r1+ r2 —2R)A3] .

%e then get

eSH H, (R)TH H, (R)
PH

1 —SH H, (R}
where

(17)

(18)

vz'
He(R)= 3 rd rexp

map

z
~

r —R~ exp( — )
ap ap

x —=R/ap

=32apZ
exp( —x) 24x +x '(Z' —1)'—8x '(Z' 1)+24

X 4x(Z —1)

exp( —Zx) 6Zx+x (Z —1)+6
x(Z —1)
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and

(21)

As can be seen in Fig. 1, ( pH) starts from zero,
attains a sharp peak at (R/ao) =0.5, and then de-

cays exponentially. The form of (Ju, H, & is qualita-
tively similar, although the magnitude of the in-

duced moment is smaller, as may be expected for a
more tightly bound system. (p, H& and (p, H, & are
directed toward each other.

IV. CONCLUSION

The above examples illustrate the point that the
use of label-free operators enables us to evaluate the
exchange-induced dipole moments on the individual
atoms of a pair in a simple unambiguous manner.
It would be reasonable to expect a peaking of the in-

duced moment when the atoms are unlike, as in the
H-He system, at sufficiently small R.

For values of R when the overlap is small but not
completely negligible, use of wave functions ob-

tained by exchange-corrected perturbation theory'
leads to a smooth transitition from the strong over-

lap region to the dispersion-induced region.
One of the limitations of the method given above

is that from the manner of construction of g'„' in

Eq. (4), it is obvious that it corresponds to a partic-
ular total spin projection which is the sum of the
spin projections of A and 8; however, total spin of
the composite system is left undefined. The degen-

eracy associated with this lack of definition of the
total spin can be handled by an adaptation of degen-

erate perturbation theory, and we shall not deal
with the question here.
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FIG. 1. Exchange-induced dipole moments in H-H
(curves 1 and 2) and H-He (curves 3 for H and 4 for He)
systems; 8 is in units of ap and the dipole moments are in
units of (eap). For H-He system, Z =—.
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