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The consequences of exchange and the first quantum kinetic-energy correction are extra-

polated outward in the statistical atom, up to a sharp boundary. Possible locations of that

boundary are considered, and two are tested in the context of the diamagnetic susceptibility

of neutral and ionized atoms with closed-shell configurations. The comparisons with ex-

perimental values and with Hartree-Fock {HF) calculations are reasonably successful,

favoring one of the boundary options. An appendix presents, for neutral-atom energies, the
detailed comparison between the HF calculations at integer Z values and the continuous

curve of the statistical theory, with its known coefficients of Z' ', Z ', and Z' '. The de-

viation between the two oscillates smoothly, with decreasing amplitude and lengthening

period as Z increases; there is no striking evidence of shell structure. An asymmetry be-

tween positive and negative deviations suggests an additional, small multiple of Z. It pro-
duces agreement between the statistical and HF calculations to better than 0.1%, for
Z) 32.

The original Thomas-Fermi (TF) statistical
model of the atom —a semiclassical treatment re-

quiring large numbers of electrons —produced some
remarkable quasiquantitative results, particularly
for the total binding energies of neutral atoms. '

This invites attempts at quantitative improvement,
which naturally focus on the two regions where the
semiclassical approximation fails, and explicit
quantum considerations are required: the neighbor-
hood of the nucleus and the outer reaches of the
atom. Of these, the necessary changes in the treat-
ment of the strongly bound electrons near the nu-

cleus are clearer and also immediately rewarding,
for the correct quantum description of such essen-
tially hydrogenic electrons is, of course, well known.
Guiding the search for a more realistic approach to
the weakly bound electrons at the fringes of the
atom is the need to preserve the major appeal of the
TF method —simplicity. This has led to an "experi-
mental" program in which the effects of the lead-

ing exchange and kinetic-energy quantum correc-
tions are extrapolated into the outer regions, where
such effects are of controlling importance. The
merits of a particular extrapolation are judged by its
success in improving the poor performance shown

by TF in computing such properties as the diamag-

netic susceptibility of closed-shell atoms —the inert
gases. One such extrapolation has already been
described; it gave a significant, but hardly
overwhelming improvement. This paper is con-

cerned with another attempt, which produces some-

what more gratifying results, both for neutral and

ionized atoms.

MODIFIED TF THEORY

In the following we adopt atomic units: length,
the Bohr radius ao, and energy, e iao, twice the
binding energy of hydrogen. We shall also make
temporary use of an additional factor in specifying
energy and particle number, which is illustrated for
the particle density n by

n=3n n .

The various contributions to the energy E are then
exhibited as

3 gg3 l (Vn)
4~ /2

2
3K " ZV+ — +gn .
8 r

where the ellipsis represents the injunction to make
the necessary correction for strongly bound elec-
trons. Successively displayed here are the TF kinet-
ic energy, the leading exchange correction, the first
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quantum correction to the kinetic energy, the two
terms that express the electrostatic energy of the
charges in terms of the single-particle interaction
energy V(r), and, last, the relation between particle
density and particle number, as conveyed with the
aid of the Lagrange multiplier g.

Both n(r ) and V( r) are variables in this energy
expression. They obey the equations supplied by
the stationary property of E. That produces the
second-order Poisson differential equation for V,

correct contribution of strongly bound electrons, in
the manner of Ref. 3. Then we combine the field
energy density term of (2) with the related structure
in (8) to produce

2
3~ Z
8 r

2

V V+—,(10)
8 r

Z 4—V V+ —= n (=urn),
r 3' (3)

in which

V= V+(+ p
"-1/3

and also a second-order differential equation for n.
The resulting fourth-order differential equation for
V is too complicated, and there is the danger of tak-
ing too seriously the initial terms of an infinite
series of quantum corrections. The first attempt at
a simple extrapolation ignored the quantum correc-
tions to the density; the TF density (/=0)

nrF ——( —2V) / (4)

was inserted in E to produce a functional of the sin-

gle variable

which, under the assumption of a small difference
between n and p, is such that

v= v+ ( —2V)'" .
6m.

Now we try to incorporate some effects of the
quantum corrections. To that end, we write

-+ & V2-1/3

incorporates the constant g. Accordingly, we have

p(V+()=pV — p (12)

1

2

2

The Poisson equation produced by varying V,

(13)

and, as already found in Ref. 3, the additional
density-dependent term that emerges here is just
two-ninths of the exchange contribution (for which

we are content to write n ~p~ )

The resulting energy functional of the variables

p( r) and V( r ) is (tentatively)

1 (d~) 3 5/3 11 3 ~/3
32 ' 10P 94P +P

I

~n ~ ~l(d )
3 -s/3 1 (Vn)
10 72

n
f (d~) 3 -5/3

4
p~ (14)

A further consequence of (6) is given by

f (dr)n(v+g)

= f (dr) p(v+() ——, Vp' V' V+-
r

together with an additional singular term:

—, f (dr)Vp' V —= , nZP' (r=—0),

is entirely consistent with Eq. (3), for the difference
of the two versions,

V (V—V)= (n p), —
3'

is obeyed, both sides having the value (1/6n. )V~p'

The related consequence that the volume integrals
of p and n are equal,

X= f (dr)p(r}, (16)

also follows from the stationary property with
respect to infinitesimal variations of g. The defini-
tion (11) shows that

which is completely deleted on removing the in-

5v=g',

and therefore
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5E=g I (dr)p N—=0.
The variation of p in Eq. (13) produces the alge-

braic equation

number limit,

11V=-
9m.

11
p

9m
(22)

-2/3 1 1 2 )/3
P 9 P = 2~~

which is solved by

(19)

(20)

—V=O: p = + =2-;O.$/3 11 11 11
9m 9m 9m

' (21)

Here is a possible model of an atom with a definite
boundary, outside of which p, and n, can be set
equal to zero. We shall take it somewhat seriously.
Another possibility consists in the further continua-
tion of the positive-root solution to its ultimate real

In the TF region, where n and p differ relatively lit-
tle and —V is a large number in our units, only the
positive root in Eq. (20) is physically acceptable. If
one extrapolates that choice toward smaller values
of —V, a qualitatively new situation is first encoun-
tered for —V=O, where

beyond which the statistical model is replaced by

p =0.
The Thomas-Fermi-Dirac equation, not surpris-

ingly, involves an equation analogous to (19), with
replaced by unity. Neither of the above possibil-

ities (mutatis mutandis) is usually adopted in the
literature of this equation. Instead, an appeal is
made to the physical requirement that the total en-

ergy be a minimum at the correct position of the
boundary —a statement related to the continuity of
the energy density at that boundary. But, in doing
this, the energy forms applicable in the dense interi-
or of the atom are extrapolated to the boundary,
without regard to the possible occurrence of addi-
tional, otherwise innocuous terms, that could, for
example, assure the boundary continuity of the en-

ergy density independently of the position of that
boundary. We develop this point in the context of
the provisional energy expression (13), now rewrit-

ten, for a spherically symmetrical system, by em-

ploying (19) to reexpress p V:

E —'Z2= d
' 5/3 11 1 ~/3 3~ d — Zdff ——
p + P V+-

3m o ' 9 4m 8 dr r gN . — (23)

To begin, observe that the volume integral of the
Poisson equation (14), extended up to the atomic ra-
dius rp, gives

Vb = V(r0), (27)

supplies the form of g in terms of the characteris-
tics of the boundary:

or

2d — Z 4—4mr p
— V+ — = N =4mN,
t& l'

p0 3' (24)
+Vb .

fp

V+
d — Z —N

r
(25)

which supplies the limiting value of dV/dr for
r ~ra —0. On the other side of the boundary, ac-
cording to (17), we have

Note that, in the examples (21) and (22), Vb is in-

dependent of r0 We restric. t ourselves to this situa-
tion.

The contribution to E [Eq. (23)], associated with
(apart from a minus sign) the electrostatic energy of
the electrons for r & rp, is the radial integral

Z —Nr & ro V= V+g. =—
r

displaying the net charge of an atom with nuclear
charge Z and N electrons. The comparison of (25)
and (26) shows that d V/dr is continuous across the
boundary, as expected from the boundedness of p in
the Poisson equation. The inference that V is also
continuous, with the boundary value

d Ndf I"
2 p dP' f'

N2

2I"p

N2 —2NZ
b

2Tp

That combines with gN to produce—

(29)

(30)
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1 d rV+Z
2 dl' I"

Now we use the rearrangement

1 d r( V—Vb)
2 dT

2

Z /2ro,

provided that

r~O: rV(r)+Z~O,

(32)

(33)

[r(V—Vb)+Z]
+

dr 2r

(31)

more rapidly than r '~ (which is consistent with the
Poisson equation that V obeys). We use the abbrevi-
ation

to express the part of this negative electrostatic en-

ergy that occupies the interior of the atom,
0(r(rp. The radial integral of the last term in
(31) equals

&(p) = 4
3m

-5/3 M/3
5 9 4g

to convey the present position concerning E:

(34)

r

Po

E ——,Z = f dr r [g'(p) g'(pb)] ——— r(V —Vb)
(Z N) —

~V—NVb,
2Pp

(35}

except that we have taken the liberty of adding a
constant:

, &O«—Pb—}~

2 1/2
11 — 11

Pb = + —2Vb+
9m 9m.

(36)

It is intended as a conceivable example of effects
that are associated with the boundary, rather than

the interior of the atom.
The introduction of this constant in no way af-

fects the derivation of the differential equation

obeyed by V(r), in consequence of the stationary

property of E Indeed, fr.om the property of p ex-

pressed by

I

And, inasmuch as pb [Eq. (36)] is a fixed number

for a given boundary condition, and rp increases
even less rapidly than Z (see Table I), the additional

energy constant is far below the level of the leading

asymptotic terms, of orders Z ~, Z ~, and Z ~

(which are compared with Hartree-Fock calcula-
tions for neutral atoms in the Appendix).

In computing BE/Bra, we must take into account
the induced change of p. But that is removed by
the stationary property, except for the boundary
term

dV dV—r05V(ro)ro (t'0) = rp (ro)
dr

2

(39)

which evaluation expresses the maintenance of the
boundary value Vb

..

Sg(-)= 4 —"" "-S-'"= 4-SV
P =3 P +9 P P =3 P

(V+5V)(rp+5ro)= (V1' )o (40)

(37)
This piece is added to the contribution of the expli-
cit ro dependence in (35) to give

we again deduce the Poisson equation

(rV}= p
4

dp
2 3' Z=N Z =N+2

TABLE I. Values of yo for inert atoms and related
ions. The left- and right-hand columns refer to the boun-
dary conditions (1) and (2), respectively, of Eq. (48).

4 — 11—2V+
3m.

' 2 1/2
11+

(38)

10
18
36
54

2.805 3.737
3.010 3.957
3.231 4.191
3.349 4.316

2.296 2.569
2.551 2.865
2.821 3.179
2.964 3.343

1.928 2.050
2.206 2.359
2.504 2.692
2.662 2.868
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2

The cancellation of the last two terms on the right-
hand side, according to the boundary condition (25),
conveys the continuity of the electrostatic energy
density derived from V(r). The cancellation of the
first two terms on the right-hand side exhibits the
continuity (with the null external value) of the g'

part of the energy density, which has been achieved

by the supplemental term (36) independently of the
value of rp Ha.d we not included that otherwise in-

nocuous term, the inference would be

d 2y y3/2

2 i /2
dg

(45)

which is the equation introduced in Ref. 3.
The boundary condition at the origin, conveying

(33), is

r

BE 2 1 dV 1 Z —X=r [8'(p ) N'(—P )]+—r (r ) —— =0. (41)
Bra 2 dr 2 ra

I

Under the circumstances (P/y)'/ » —, it reduces to
the form of the TF equation. Retaining the first
two terms of an expansion in powers of —, replaces
(44) with

11 5
@(Pb) 0 Pb 9 4m

P(0)=6m. (11/2) / Z =1.46136Z, (46)

'2

V —15 1 11
16 2 9m

(42) while Eq. (25), referring to the atomic edge, be-
comes

Indeed, with the substitution —,~1, this value of
Pb becomes the one ordinarily cited for the TFD
equation.

The point of the preceding discussion is simply
that the sharp boundary of the semiclassical TFD
theory (modified by the first quantum correction to
the kinetic energy) involves more than what is
known about the interior of the atom, and no clear-
cut basis for locating that boundary exists. Of
course, a sharp boundary is a fiction; it does not oc-
cur in a proper quantum-mechanical treatment —a
subject to which we shall return elsewhere. We
proceed here in an experimental way, by examining
how the diamagnetic susceptibility, of atoms and
ions having inert-gas electronic configurations, de-

pends on the choice of boundary. The possibilities
will be limited to (21) and (22)—the option of (42) is
essentially indistinguishable numerically from the
latter.

DIAMAGNETIC SUSCEPTIBILITY

First we simplify matters by adopting new scales
for r and V,

—yp (yp)+P(yp)= 1 — P(0) .dP N
Z

(47)

As for the individual outer boundary values of P,
they are given by

(1) Eq. (21): P/y(yp)= —, ,

(2) Eq. (22): y /y (yp) =0 .
(48)

where, expressed in atomic units,

I=—, f (dr)r n

Values of yp produced by numerical integration
of the differential equation, for these two boundary
conditions, are listed in Table I. The numbers refer
to the purely diamagnetic closed-shell neutral atoms
Ne, Ar, Kr, and Xe, along with the singly and dou-

bly charged positive ions having those electronic
configurations.

The molar diamagnetic susceptibility can be writ-
ten

'2
1—X=, , Nga pl =4.752X10 I, (49)'137'

' 1/2
4 11

3m 2
I

r =0.995 34',
(43)

In view of the r factor here, no error is introduced
on modifying Eq. (3) as indicated by

'2
1 11 1 11 ((l(y)

2 9m- 2 (3m y

The differential equation (38) now reads
' 1/2 3

dy
(44)

f (dr) —V— (51)

the latter rearrangement exploits the null value of
V+(Z N)/r outside—the atom. The replacement
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of V by V, in accordance with (11}and (28), con-
verts this into

1 11—V+ Vb ———
2 3~

p(y) 4(yo }

Xo

Po

dr r —V+Vb—
0

Z —N
]/3 11

' 1/2

+-,' (53)

Z —N 1 )/3+ + p
ro 6m

Then the introduction of such relations as

1/2
1 4 11 1

r 3K 2

yields the final form for numerical integration:

' 1/2
3m 11

32 2 I, dye+ „ I—, dyy(y0}'" , y—o-
xo

1

33
—m. ( —, ) '~yo(Z N) —. (54)

The overall numerical coefficient has the value
0.6907; the multiple of y o(Z N) equ—als 0.2436.

While the experimental values of the susceptibili-

ty are well established for the neutral atoms, those
for the ions are unavoidably uncertain owing to the
necessity of measuring them in ionic crystals. An
independent input is provided by Hartree-Fock cal-
culations. For the neutral atoms those calculated
values exceed the accurately measured ones by
amounts ranging from 5 to 13% (Ne: 9.9%, Ar:
5.3%, Kr: 8.7%, Xe: 13.0%%uo}. We have assumed,

quite arbitrarily, that the HF numbers are in excess

by fractional amounts that are characteristic of the
electronic configuration alone —the same for all Z
with a given N. The adjusted Hartree-Fock (AHF}
numbers thus produced are listed in Table II, along
with the experimental values and the two sets of
theoretical predictions, which are displayed in the
same manner as in Table I.

Looking at the results for neutral atoms, one gets
the distinct impression that boundary condition (1)
has outperformed boundary condition (2); and, the
agreement with experiment is to within 3 percent
for Z =18 and 54. (A larger error for Z =10 is
understandable; Z =36 seems to exhibit a quantum
oscillation. ) That same level of accuracy applies to
all six numbers for N =18 and 54, when compared
with the experimental values. Agreement with the

AHF numbers appears at roughly the 10% level for
the 9 entries of N = 18, 36, 54.
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TABLE II. Comparison of adjusted HF and experimental values for I with Eq. (54) predic-
tions. Left- and right-hand columns refer to the boundary conditions (1) and (2), respectively,
of Eq. (48).

N Z AHF Expt. Theor. AHF/Theor. (%) Expt. /Theor. (%)

10
10
11
12

1.42
0.97
0.72

1.42
1.28
0.91

2.71
1.75
1.22

3.32
1.85
1.24

52 43
55 52
59 58

52 43
73 69
75 73

18

36

18
19
20

36
37
38

4.12
3.09
2.44

6.06
4.88
4.09

4.12
3.07
2.25

6.06
4.63
3.79

4.24
3.04
2.30

6.91
5.42
4.42

5.00
3.19
2.35

7.83
5-.66
4.51

97 82
102 97
106 104

88 77
90 86
93 91

97 82
101 96
98 96

88 77
85 82
86 84

54
54
55
56

9.24
7.75
6.71

9.24
7.39
6.10

9.01
7.37
6.22

10.04
7.66
6.33

103 92
105 101
108 106

103 92
100 96
98 96
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TABLE III. Comparison of nonrelativistic HF with
statistical calculations of total atomic binding energy, for
various values of Z.

O6 I r~ I I I I I I I I I I I

0.4

Z

2
4
6
8

10
12
16
20
24
28
32
36
42
48
54
60
66
72
80
88
96

104
112
120

1.4308
1.8216
2.0922
2.3365
2.5709
2.7724
3.1053
3.3838
3.6220
3.8439
4.0534
4.2470
4.5073
4.7440
4.9603
5.1577
5.3450
5.5252
5.7528
5.9644
6.1617
6.3492
6.5271
6.6948

1.3656
1.7807
2.0909
2.3449
2.5630
2.7558
3.0885
3.3723
3.6221
3.8465
4.0513
4.2402
4.4997
4.7362
4.9542
5.1570
5.3470
5.5260
5.7502
5.9601
6.1579
6.3451
6.5232
6.6930

4.8
2.3
0.063

—0.36
0.31
0.60
0.54
0.34

—0.003
—0.068

0.052
0.16
0.17
0.16
0.12
0.014

—0.037
—0.014

0.045
0.072
0.062
0.065
0.060
0.027

APPENDIX

EHF ~ 2
Z Estat ~ 2

Z (EHF ~Estat o~0

~ 0,2-
O
I—

hl 0
O

-0.2-

~ ~ ~ ~ ~ ~

/

/ ytytt~/
i/

+

+~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

+ ~ + ++++++++++++++++' ~4 y ~~ ++
~ ~ ~ ~ +
+ +++

-0.4-
I I I I I I I I I I I I

50 60 90 120
Z

FIG. 1. Graphical presentation of Table III (dots) and
Table IV (crosses).

1.5375Z —1+0.5398Z—Z2
2

(56)

It is interesting to compare these values with the ac-
curate HF nonrelativistic calculations, in order to
see the degree of agreement, and the nature of the
deviation, between calculations that refer to specif-
ic, integer values of Z, and those inferred from the
continuous curve of the statistical theory. That is
presented in Table III, where —,Z is adopted as an
energy unit, so that

—E,i„(Z)= 0.768 75Z

——,Z +0.2699Z (55)

TABLE IV. Percentage deviation between HF ener-
gies and the statistical energy curve of Eq. (59).

Z

2
4
6
8

10
12
16
20
24
28
32
36

—0.68
0.19

—1.1
—1.1
—0.28

0.15
0.24
0.12

—0.18
—0.21
—0.064

0.062

Z

42
48
54
60
66
72
80
88
96

104
112
120

0.089
0.099
0.067

—0.035
—0.080
—0.052

0.013
0.044
0.036
0.042
0.039
0.008

The asymptotic expansion of the nonrelativistic
total binding energy, for neutral atoms, has the fol-
lowing leading terms in the statistical theory ':

which has the advantage of limiting the range of
variation over the usual periodic table from roughly
one to six.

It is seen that EHF oscillates quite smoothly
about E„„.(That is even more striking when the
complete set of Z values is examined; see Fig. 1.)
The oscillations decrease in amplitude (with an ex-
ception to be noted later) and increase in period as
Z grows larger. In particular, nothing at all
dramatic occurs at the positions of closed-shell
atoms, ' which encourages a hope that further re-
finement of the statistical model could incorporate
those oscillations. We also remark that for Z & 54
the oscillation amplitude is below the 0.1% level.

The exception cited above concerns the negative
excursions for Z & 10, which are smaller in ampli-
tude than both the preceding and following positive
swings. This suggests that —E„,t is slightly too
small; matters might be improved by including yet
another term in the asymptotic expansion. In this
connection we remark that rewriting the differential
equation of (44) in TF units, according to the
transform ations
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y =(6~)-'/'( —", )'"Z-'"x,

P(y) =6sr( —, )
/ Zf (x),

yields

(57)
—EHF/' —,Z and"

= 1.5375Z' —1+0.5398Z—Z
2

1/2 3
d f ~ f + ~~ (6„)—2/3Z —2/3 (58)
dx

+0.15Z (59)

exhibiting the expansion parameter Z . We
therefore expect that the next contribution in (56) is
a multiple of Z '. As an example, we exhibit in
Table IV the fractional deviation between

Once past Z =4, the maximum amplitudes of the
successive swings do decrease steadily with increas-
ing values of Z. And, now, one is already below the
0.1% level at Z =32.
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