
PHYSICAL REVIEW A VOLUME 26, NUMBER 5 NOVEMBER 1982

Coulomb spectrum in crossed electric and magnetic fields:
Eigenstates of motion in double-minimum potential wells
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Two-dimensional electron layers when placed in perpendicular electric and magnetic
fields can have a potential well with two minima for the electronic motion normal to the
surface. Such double-minimum potential wells also arise for highly excited Rydberg states
of atoms in crossed electric and magnetic fields and in certain molecular potential curves.
We develop and apply a WKB formalism to such double-minimum wells and calculate the

energy splittings that arise when one is near "degeneracy, " that is, when either well, con-
sidered independently, can support a bound state at the same energy.

I. INTRODUCTION: THE DOUBLE-MINIMUM
POTENTIAL

Q = —,(» —1)/(»+1)=6.955X lo-', (lb)

where z=O marks the surface of the liquid and Q is

In recent years the study of electron layers on the
surface of liquid helium has been actively pursued. '

Because of the behavior as an almost free two-
dimensional gas, they are of interest for a variety of
reasons. A major one is that they represent analogs
of the three-dimensional gas in a metal but with the
added convenience that the number density can be
readily varied over many orders or magnitude by
changing the value of an external electric field that
clamps the electrons to the surface of the liquid. In
this manner, for instance, the first experimental ob-
servation of Wigner crystallization of an electron

gas has been demonstrated in this system. Other
recent experiments of "dimples" and lattices formed

by these dimples are examples of the interesting
phenomena displayed by these electron layers. Our
interest in this paper is not in the condensed-matter
aspects in the two dimensions of the layer but rath-
er in the atomiclike aspects of this system in the
other perpendicular direction normal to the surface.
The basic binding provided for motion along this
direction (the z direction in what follows) is the im-
age potential seen by an electron. ' Since liquid He
has a permittivity e which is only very slightly
larger than unity, this is a weak attractive image po-
tential, a one-dimensional Coulomb potential

V(z) = —Qe /z, z )0

with

the effective charge of the one-dimensional
Coulomb potential. For zg0 the liquid represents a
barrier to the electrons and given the other scale of
energies set in the problem by Q, the barrier is to a
first approximation infinitely high so that the boun-

dary condition can be taken to be that the electronic
wave function vanishes at z=0. More careful treat-
ments that go beyond this approximation are avail-
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FIG. 1. Potentials V{z) [Eq. {3)] for an electron on
the surface of liquid helium in crossed electric and mag-
netic fields plotted against the distance z from the sur-
face (at z=O) for two different values of e and B. e and
B values, as well as the cyclotron energies
~,(=AeB/me), are indicated alongside the appropriate
curve. The solid lines in the inner well (near z=O) give
roughly the positions of the ground-state energy in that
well. By "tuning" e and B, this may be made to corre-
spond to an eigenenergy in the outer well, whence a
doublet will arise when tunneling lifts this "degeneracy. "
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able in the literature but we restrict ourselves in
this paper to the initial approximation since it is
known to be quite accurate in practice. The z
motion then is quantized into energy levels

Qm—e /2fPn, n = 1,2, . . . . Note that there is an
exact correspondence to the l=0 radial problem of
the hydrogen atom. In actual experiments, an addi-
tional clamping electric field e has been applied in
the z direction. ' This added potential eez to V(z)
in (1) shifts the energy levels and the resulting
values are referred to as "electric subbands. " The
motion parallel to the surface is considered free in
the absence of other applied fields so that each of
the subbands is infinitely degenerate. Many such
subbands have been experimentally observed and
their energy positions satisfactorily accounted for. '

There have also been experiments in which addi-
tional magnetic fields tilted at an arbitrary angle to
the surface have been applied.

What is of interest to us in this paper is that by a
suitable arrangement of tilted magnetic fields and
the electric field along z, a novel double-minimum
potential well as in Fig. 1 can be formed for the z
motion. As the simplest example of such an ar-
rangement consider that the clamping electric field
is reversed and a magnetic field B is applied along
the surface, say in the x direction. Adopting a
gauge A =(0,—Bz,O) to describe this field, the com-
plete Hamiltonian takes the form

'2

H= + + Py-
2m 2@i 2'

an overall redefinition of the zero of the energy
scale by —,mco (z) . The problem we consider is,
therefore,

V(z)=oo, z &0

Qe 2 —eez+ —mco z, z &0. (3)2 2

z 2

This potential is also relevant to the study of highly
excited Rydberg states of atoms in external static
fields. In recent years such studies have shown that
a particularly interesting regime is the one of
"strong mixing" right around the ionization thresh-
old when the external field is on par with the
Coulomb field. A characteristic resonance pattern
develops which has been partially accounted for
by considering the motion of the electron in the re-
sulting combined nonseparable potential as corn-
posed of coupled motion in perpendicular direc-
tions. Some of these directions correspond to
bound-state motion, others to escape to infinity, and
the combination leads to the resonances. Most
studies have dealt with electric or magnetic fields
alone though a situation where crossed electric and
magnetic fields are present due to a motional Stark
effect has been studied experimentally and theoreti-
cally. The more general instance of arbitrary e and
B leading to double-minimum potentials has only
been discussed qualitatively. ' We note that an
electric field in the z direction and a magnetic field
in the x direction gives a potential for an atom with
nulcear charge Q which takes the following form
for a certain slice (x =y=0) of the coordinates:

2
—eez, z &0. (2) V= — —eez+ —,mco z (4)

Our interest is in the z motion but some remarks are
in order regarding the other dimensions. P„com-
pletely separates from the problem, is a conserved
quantum number, and represents a remaining de-

generacy of every level. P~ too is conserved because
it commutes with H. The problem, therefore,
reduces to a one-dimensional one with a combina-
tion of an image potential, a linear potential, and a
harmonic-oscillator well centered at z =cP„/eB.
Such a combination has the generic form of a
double-minimum potential. In our calculations, we
restrict ourselves to P„=O when the potential takes
the form shown in Fig. 1. We note that upon
minimizing the energy with respect to P~, the
minimum lies at (P~) =mco(z) where co:eB/mc-
is the cyclotron frequency. Since e and 8 are un-

specified our results for ((P~)=O,e,B) can be
mapped on to those where (P„) has been mini-
mized by the replacement e —mes (z)/e~e and

This potential is, therefore, very similar to (3) ex-
cept that for z &0 it is a steeply rising potential in-
stead of a barrier at z=0. Figure 2 gives an exam-
ple for certain values of e and B. Since it would be
of interest to excite atomic levels which fall in the
range of energies where there is substantial localiza-
tion in the outer valley, we present sample calcula-
tions applicable to this model as well.

Finally, as an example of double-minimum po-
tentials that have recently been of interest in other
areas, we apply our formalism to certain prob-
lems"' in molecular physics.

II. WKB CALCULATIONS OF ENERGY LEVELS
IN THE DOUBLE-MINIMUM WELL

In this section, we consider bound-state energy
levels in the double-minimum potential wells dis-
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FIG. 2. Plot of a certain slice (x=O, y=O) of the po-
tential for the hydrogen atom [Eq. (4), Q=1] when sub-

jected to crossed electric and magnetic fields appie
along —z and x, respectively.

Z(A)

FIG. 3. Example of a double-minimum potential con-
12.sidered in the molecular-physics literature (Re .

This corresponds to a "Morse potential + Gaussian
hump. " Relevant parameters are given in Re ~ 12.

k (z)= [2m (E —V) ffP] ' ~ = ia. (z) .

The quantization for the individual wells follows, of
course, when the tunneling through the barrier is
negligible, that is, P ~ ao, so that

A, =(nx+ —,)n, o=(n + —, n. .1
(8)

cussed above. A particularly interesting cir-
cumstance arises when the two wells, considered in-

dependently, can each support a level at the same
energy. The fact that the wells are connected wi,
in fact, lead to a lifting of this degeneracy. The
splitting between the two resulting levels will be a
measure of the tunneling probability across the bar-
rier separating the wells. Many such examples are
familiar in the physics literature when the two wells

are identical. ' The asymmetrical double-well prob-
e ~

lem has seen less investigation though it is of in-
11,12terest in the molecular-physics literature.

We use the WKB method to calculate the energy
levels and the splitting. In a situation such as in

Fig. 3 and an energy corresponding to the line

Z1,Z2~Z3 Z4 1t is a straightforward matter to apply
14the usual WKB connection formulas (based on

Airy functions) at the turning points to get the fol-
lowing quantization condition:

1

cotA, coto = —, exp( —2P ),

where

For an energy Eo when such conditions (8) are satis-
f d the resulting doublet of energy levels upon lift-ie, e

ithing of the degeneracy are at Eo+5 wit

15=—, exp( —Po)
dA do
dE 0 dE

—1/2

The above expressions suffice for many purposes
but can be improved upon, particularly when the
barrier width becomes very small, that is when z2
and z3 in Fig. 3 gets very close to each other. In
that situation, the underlying basis of the above
derivation, that WKB solutions across a turning
point can be matched through solutions of a linear
potential that locally coincides with V(z), becomes
inadequate. Instead, the potential in the vicinity of
z2 and z3 is better described as an inverted harmon-
ic oscillator or parabolic potential. Connection for-
mulas based on Weber functions which now replace
Airy functions as the appropriate ones have been es-
tablished by Miller and Good. ' Child' has used
these to develop WKB expressions for a wide
variety of situations. For the double-minimum
well, the required modifications of (5), (8), and (9)

and

Z2 Z4

k(z)dz, o = f k(z)dz,
Z1 Z3

P = I a(z)dz [1+exp(2$ )]' —exp(P )

[1+exp(2$)]' +exp(P)
1X=(ni+ —,)n. , o =(n +-, )~,

(10)
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TABLE I. Doublet splittings 6' '( =25) of the nz ——0 level at energy Eo of a surface state
electron on liquid He in crossed e and B fields obtained by the usual WKB method [Eq. (9)].
The potential is given by Eq. (3) with Q=6.955 X 10 '. For any e and 8, Eo corresponds to
the eigenenergy in either well with quantum numbers nz and n if tunneling is neglected. %co,
is the cyclotron energy {=AeB/mc).

{V/cm)

82.800
82.991
83.876
84.010
84.747
84.993
85.806
86.012
86.859
86.992

B
(kG)

4.8281
2.9895
4.8843
3.0165
4.7814
2.9899
4.8337
3.0161
4.8856
2.9913

2
42

2
42

3
45

3
45

3
48

(mev)

—0.7523
—0.7546
—0.7535
—0.7558
—0.7547
—0.7570
—0.7559
—0.7582
—0.7571
—0.7595

~c
(peV)

S5.89
34.61
56.34
34.92
55.35
34.61
55.96
34.92
56.56
34.63

g(0)

()L4eV)

0.51
1.69
0.57
1.84
0.76
2.01
0.84
2.18
0.93
2.36

where

[1+exp(2$o)]'~ —exp(go)

[1+exp(2/0)]'~z+exp($0)
~ —1/2 —1/2

di,
dE 0

(12)

A, —:A, ——,p( 2$/—n ), o—:o ——,p( 2$/m. )—
with

p(x)=argI ( —, + , ix)+ —,x—1—ln—
2

(14)
The above expressions reduce to the earlier ones
when exp(2$) »1. Finally, in cases such as those
shown in Fig. 1 where there is an infinite barrier at
z=O so that zt ——0 and the wave function must van-

ish there, one has to make the standard modifica-

where

an6

i f —kdz
2+

y= f kdz+ f kdz,
g2+

zo being the point at which the barrier maximum is

tion' of replacing A, by A, —m. /4, though in our cal-
culation we have replaced A, by A, —~/2 to obtain
the well-known hydrogenic energy levels in the
inner well in the absence of e and 8 fields.

For energies above the barrier maximum, if the
relation E —V=O has two real roots (z&,z4) and two
complex-conjugate roots [z2, Im(z2+) &0], then Eq.
(10) is replaced by

exp(P )cos(A, —o +y)cos A+o =—
[1+exp(2$ )]'i

TABLE II. Same as in Table I, but now Eo(= —0.9443 meV) is kept fixed, and modified
WKB values b, ' ' [Eq. (12)], with dp/dE neglected] are also displayed for comparison with
6' ' [Eq. (9), evaluated at Eo].

(V/cm)

224.84
225.17
225.56
226.04
226.63

(kG)

8.8886
9.1131
9.3655
9.6527
9.9850

fico,

(peV)

102.9
105.5
108.4
111.7
115.6

g(0)

(~ev)

64.21
64.39
64.52
64.58
64.54

g(m)

(peV)

56.79
57.09
S7.38
57.64
57.82
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TABLE III. Similar to Table II, but now the results correspond to the atomic potential

[Eq. (4)]. Eo( = —56.076 meV) corresponds to the ni =17 Rydberg level in crossed e and B:
A,(E0)=(17——).2m. Note the rapid increase in 5 s with increase in n .

(V/cm)

6812.9
6662.8
6557.5
6478.1

6415.7

B
(kG)

54.642
51.329
48.897
46.980
45.408

71a

0
5

10
15
20

fuu,

(meV)

0.633
0.594
0.566
0.544
0.526

g(0)

(peV)

4.12
35.75
70.84

100.8
124.8

g(m)

(qeV)

4.13
35.53
69.08
95.54

114.5

located. The limits z2,z3 for the integrals A.,o. are
now replaced by zc. In doing the P integration, that
branch of k is chosen which renders P negative.
For energies considerably higher than the barrier
maximum, both p and the right-hand side of Eq.
(15) vanish and one recovers the usual WKB condi-
tion for eigenvalues, viz. ,

cos(A, +o ) =0 . (18)

We have applied the above results to the potential
in Eq. (2). Eo is chosen to be the ground state in
the inner well: ni =0. The values of e and B are
"tuned" as to bring levels in the outer well to coin-
cide with Ec. Table I gives the values of the doub-

let spacings b, ( =25) obtained from Eq. (9) for sam-

ple values of small and large n All th. e integrals
required for presenting the results in Tables I—IV
can be expressed in analytical form' in terms of
complete elliptic integrals of the first, second, and
third kind and have been evaluated quite con-
veniently using a standard algorithm. ' A represen-
tative potential curve is shown in Fig. 1 for which
@=85 V/cm and B=5 kG. Since the barrier width
is quite appreciable here, use of Eq. (9) is justified.
The spacings are roughly of the order of peV and
the doublet structure may not be fully resolved in
an experimental investigation. Table II presents re-

suits for another situation where the parameters are
chosen so as to make the barrier at energy Eo very
small (see the curve for @=225 V/cm and B=9 kG
in Fig. 1). The splittings are, therefore, much
larger. The doublet separations now are well within
the range of experimental accuracy and the field
strengths are quite reasonable for an experimental
observation of this phenomenon. It goes without
saying that the sensitive dependence on tunneling
which is, further, very sensitive to the width of the
barrier, makes this phenomenon extremely sensitive
to the values of e and B. We also compare in Table
II the doublet spacings given by the simpler expres-
sion (9) with those obtained from the more accurate
Eq. (12) where, however, we have assumed

(dp/dE)o 0. To our ——knowledge, these may be the
first actual numerical comparison of these alterna-
tive expressions. Table III gives sample results for
the similar atomic potential problem in Eq. (4).
Once again, the values of the electric and magnetic
field strengths have been chosen to be those reason-
able for such experiments on Rydberg states in
external fields.

Finally, we report some results on double-
minimum potentials that have been considered in
the molecular-physics literature. Table IV displays
the first eight eigenvalues corresponding to an

TABLE IV. First eight eigenvalues of a symmetric double-minimum potential (Ref. 20)
corresponding to an anharmonic oscillator. 0: usual WKB method [Eqs. (5) and (18)]. m:
modified WKB method [Eqs. {10)and (15)]. a: numerically obtained values {Ref. 20).

g(0) .

—4.3683
—4.2833
—0.0119

1.7587
4.7478
8.2573

12.181
16.460

E(m)

—4.4094
—4.3282

0.0608
1.5825
4.8432
8.2814

12.206
16.479

E(a)

—4.4368
—4.3498

0.0242
1.5671
4.8312
8.2758

12.203
16.478

E(a) g(0)

—0.0685
—0.0665

0.0361
—0.1916

0.0834
0.0185
0.022
0.018

E(a) E(m)

—0.0274
—0.0216
—0.0366
—0.0154
—0.0120
—0.0056
—0.003
—0.001
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E(0)

(cm-')

3207.9
4244.2
5158.9
6140.8
7122.6
7642.7
8960.0
9146.2

10247

E(m)

(cm-')

3201.1
4234.9
5147.9
6071.6
7103.2
7625.0
8932.5
9105.7

10227

3205.3
4227.3
5144.3
6064.2
7092.7
7614.6
8911.5
9095.7

10208

TABLE V. Usual and modified WKB results for the
eigenenergies of an asymmetric double-minimum poten-
tial considered in Ref. 12. 0: usual WKB. m: modi-
fied WKB. a: numerically obtained values (Ref. 12).
Only those eigenvalues that correspond to four real
turning points are shown.

ly shows the marked improvement of the modified
WKB values over those due to the usual %KB
method. As expected, the WKB results improve
with increasing quantum number with the exception
of the n =2 level. Here, the modified WKB value is
at least of the correct sign, unlike the usual one, but
is numerically inaccurate, perhaps, due to the very
close proximity of two (complex) turning points.

Table V shows the corresponding results for
another potential curve shown in Fig. 3, which is a
superposition of a Gaussian hump and a Morse po-
tential. We show only those eigenvalues that corre-
spond to four real turning points and compare these
with numerically calculated eigenvalues. ' The re-

quired integrals in this case have been evaluated nu-

merically using Gaussian quadrature. Once again,
an overall improvement due to the application of
the modified WKB formalism may be noted.

anharmonic-os illator potential calculated using
both modified [Eqs. (10) and (15)] and usual [Eqs.
(5) and (18)] WKB methods for energies both below

and above the barrier height (taken to be zero). The
potential used is the same as what is called V2 in
Ref. 11 and was also used by Ezawa et al. to corn-

pute the eigenvalues employing more accurate nu-

merical methods. A comparison of the WKB re-

sults with the values obtained by Ezawa et al. clear-
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