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Thermal heat-flux reduction in laser-produced plasmas
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It is shown that the non-Maxwellian heating by inverse bremsstrahlung which results in a
truncation of the tail of the electron-distribution function is responsible for a reduction of the
thermal conductivity in a smooth temperature gradient by.a factor of 3 to 4 from the Spitzer-
Hiarm conductivity. In a steep temperature gradient, the reduction is still a factor of about 1.5
from the recent nonlinear theories based on a Maxwellian electron-distribution source.

Thermal conduction plays an important role in the
transport of energy in laser-heated targets. Interpre-
tation of many experimental results suggests that the
heat flux may be much smaller than expected on the
basis of the classical Spitzer-Harm! (SH) theory.2
Actually it is currently admitted that the heat flux
cannot exceed a small fraction (typically 0.03) of the
so-called free streaming value g,= nemevd, where
ve=(T./m,)"* is the thermal velocity. One of the
most convincing explanations is based on the study
of the validity of the SH theory in steep temperature
gradient. The SH theory is based on a Chapman-
Enskog development® which assumes that the typical
collision mean free path A is smaller than the typical
temperature scale length L,. It has been pointed out
by Gray and Kilkenny* that in a completely ionized
gas, the heat flux is carried mainly by particles whose
velocity is between 3 to 4 times the thermal velocity
v, and whose electron-ion collision mean free path
A(v) =\ (v/v.)? is 100 to 300 times the thermal
mean free path A.. As a result, the SH theory is lim-
ited to very small temperature gradients, \./L,
< 2.1073. Numerical simulations®>~’ of heat transport
in laser-produced plasma indicates that in a steep
temperature gradient, the thermal heat flux on the
main body of the heat front is reduced by roughly
one order of magnitude below that given by the SH
description and is limited to about 0.1 g, while the
thermal conductivity at the base of the heat front
exceeds the SH conductivity, because of the nonlocal
heat transport due to hot, nearly collisionless, elec-
trons streaming away from the top of the heat front.

However, the SH theory and the numerical simula-
tions of Refs. 5—7 assume that the source-electron-
distribution function is a Maxwellian distribution. If
the light absorption is due to inverse bremsstrahlung,
Langdon® has demonstrated that the electron-
distribution function is far from a Maxwellian distri-
bution if Zv2/v2 > 1, where v is the peak velocity
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of oscillation of the electrons in the high-frequency
electric field, and Z is the ionization state. The
resulting ‘‘top-hatted’’ distribution function is depo-
pulated in the velocity range v > 3v,, which deter-
mines the heat conductivity in the SH theory. We
demonstrate in this Brief Report that such non-
Maxwellian effects may result in a reduction of the
thermal conductivity by a factor of 3 to 4 in the
linear regime. This result is in agreement with the
work of Dum® about the anomalous transport
due to ion sound (the electron heating due to an
isotropic turbulent ion sound spectra and to inverse
bremsstrahlung leads to the same electron-distribu-
tion function®!%). We also demonstrate that in a
steep temperature gradient, the heat transport is still
reduced compared with the Maxwellian source case.

We first suggest that this reduction is significant
even at low intensities (Zvi/v2 > 0.1) because
electron-electron collisions are not rapid enough to
fill out the high-velocity tail of the Maxwellian distri-
bution, which is responsible for the heat transport.
As a clue to this result, consider the ratio of the e
folding time for heating of the bulk plasma to the e-e
equilibration time 7, required to establish a Maxwel-
lian distribution in the range (3—4)v,. The heating
time is shorter than 7, when Zv/v2>0.1, in
which case non-Maxwellian heat transport is possible.
Note this limit is considerably lower than in the ab-
sorption problem,® where the absorption is due to the
bulk of the distribution function, mainly because of
the strong scaling of 7, with the velocity (7., « v?).
Furthermore, the heat transport itself tends to de-
populate the hot part of the distribution function of
the corona of laser-produced plasma.

To calculate the heat transport properties of a
non-Maxwellian plasma, we use a test isotropic-
distribution function of the form®

fow) =1n/4wT (3/n)1(n./v3) expl— (v/ve)"l . (1)
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n =2 for a Maxwellian distribution function, n =5
for a laser-heated-distribution function when e -e col-
lisions are neglected,® and for a plasma heated by
ion-sound turbulence,!® and » = « corresponds to the
water bag model. The temperature T, is given by

T.=mevl=m,(v¥/3)=IT(5/n)/3T(3/n)Imv} .

The total elgctron-distribution function is expanded
as f=fo+ f-V/v.!! In the presence of small gra-
dients, the kinetic equation for f is given by

Fi==A) [V fo— (e/m)(3fo/3)E] . (2)
Using the zero-current condition, one obtains

g=[£ . 5nTB/m) ., 3]a)

o 2% T 12T 2| L,

_[1 I'(8/n) "H—l] NOR @

6 T'(6/n) L,

where u =v/vy, L,=T/(dT/dx), and
L,=n./(dn./dx). For Coulomb scattering
A(v) =x.(v/v.)* and the heat flux q is given by

q/qf=_ (KIAC/LI'*'Kn)\e/Ln) ’ 4)
where
K,=a(7b—5c), K,=2a(b—c) ,

a=[r(3/n)1*2[3/T(5/n)1"2, b=T(10/n)/12, and
c=[Ir(8/n)]%9T(6/n). These transport coefficients
agree with the ones given by Dum.® As already
pointed out by Dum® and Shkarofsky!! we note that
there is a heat-flow term associated with the density
gradient if n # 2. This is linked with the fact that
non-Maxwellian distribution functions (n = 2) of the
form (1) do not correspond to steady-state solutions
of the Vlasov equation when VT,=0 and Vn, #0.
In Fig. 1(a), we have plotted the transport coefficient
as functions of n. We observe that the linear thermal
conductivity is divided by about 4 between n =2
(Maxwellian) and » =5 (inverse bremsstrahlung
heating). If one assumes that the pressure is almost
constant on the body of the heat front, L, =—L,,
and the heat flux is divided by about 3 between n =2
and 5.

We now evaluate the limit of validity of the linear
theory for a finite temperature gradient. We expect
the linear theory to be valid if | £1/fo| < 1 for the
particles which effectively carry the heat flux. To ob-
tain a precise criterium, we ask | f1/fol < 1 for the
velocity v* corresponding to the maximum of the dif-
ferential heat flux Q (v) = (4wm,/6)v’f1 dv, where
g=J, @(v)dv. This velocity is such that Q (v*)
> 0 and 3Q (v*)/3v=0. [See the inset of Fig. 1(b).]
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FIG. 1. (a) Transport coefficients K,/K,? and K, /K,?
as functions of the exponent n in Eq. (1). K,(Z) is the usual
Spitzer-Hdrm value of K,, corresponding to n=2. (b)
Characteristic velocity v* corresponding to the maximum of
the differential heat flux Q (v), and characteristic heat flux
q* obtained when the temperature gradient is such that
| f1/fol =1for v=2v*. gr=n,m,v] is the free streaming
limit. # is the exponent in Eq. (1).

The value of v*/v, when Vn,=0 is reported in

Fig. 1(b) as a function of n. We note that, as n in-
creases, the heat flux is due to electrons of compara-
tively lower velocities: v*/v,=3.71 for n =2 and
v*/v,=2.75 for n =5. This suggests that the linear
theory is valid for comparatively larger temperature
gradients. In fact, computing \./L, such that

| £1/fol =1 for v=1v*, we obtain (A./L,)*=0.002 for
n=2and (\.,/L;)*=0.005 for n =5. The corre-
sponding heat flux are q"‘/qf-—- 0.093 for n =2 and
q"/q;=0.064 for n =5. ¢* is reported in Fig. 1(b) as
a function of ».

When A./L; > (\./L,)* a nonlinear and nonlocal
theory is necessary.’ 12 We expect that the thermal
heat flux on the main body of the heat front will be a
function of the ratio \./L,, as suggested by Shvarts
et al.® in the n =2 case. A possible approximation is
the harmonic mean function g, given by q,,_1 =(g")!
+¢~1, where q is given by Eq. (4). On the other
hand, the heat flux at the base of the heat front,
though exceeding the linear heat flux given by Eq.
(4), because of the nonlocal heat transport due to the
hot electrons streaming away from the top of the heat
front, is smaller in the » =5 than in the n =2 case,
because of the depletion of the distribution function
in the high-velocity range.

In summary, the non-Maxwellian distribution from
inverse bremsstrahlung results in a factor of 1.5
(large temperature gradients) to 4 (small temperature
gradients) reduction in transport, which may explain
submicron wavelength laser experiments. !

One of us (P.M.) acknowledges useful discussions
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