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Population trapping in a multilevel system
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In a two-photon resonant three-level system, population can be trapped in a nonin-

teracting superposition state. We demonstrate that this phenomenon persists in a mul-

tilevel system in which the final state is replaced by a number of nondegenerate states.
The magnitude of the trapped population depends only on the matrix elements between

the pair of two-photon resonant levels and the intermediate level. A dressed-state ap-
proach is also considered.

In a recent paper' the population dynamics of a
three-level system driven by two applied fields has
been examined using dressed-state techniques. Fig-
ure 1 shows the level scheme in which field ei
drives the transition

I
a)~

I
b), detuned Ai,' field

ez drives the transition
I
b) ~

I f), detuned 42,'

and y represents incoherent loss from level
I
b)

out of the system. A feature of this system is the
phenomenon of population trapping' where, if
states la) and

I f) are two-photon resonant, the
populations in these states tend to nonzero values

as t~ oo, despite the loss y. The dressed-state ap-
proach shows' that two-photon resonance dictates
that one of the dressed states for the atom-plus-
fields system contains no contribution from level

I
b) and hence does not decay. Asymptotically,

the wave function is a multiple of this dressed
state.

We now consider a generalization of this three-
level system where the single level

I f) is replaced

by a discrete set of N levels (f=1,2, . . .,N), one of
which, say IM), is two-photon resonant with level

la). The system is assumed to be in the lambda
configuration (as Fig. 1), but the results are valid

cbe

S
+Eche '"' lf)

f=1

and substituting into the Schrodinger equation,
gives the equations of motion (in the rotating-wave
approximation)

—ib, t
ICE = —Epee

ih, t
lcg = —Epc~e —l Pcg

(2a)

N ihgt—QEIc~e' ',
f=l

(2b)

also for the ladder configuration. ' We show that

trapped population exists in levels la) and IM)
with magnitudes independent of N and of the ma-
trix elements between

I
b) and the other N —1 lev-

els of the discrete set I I
f) I.

%'e assume that field e~ drives the transition
Ia)~ Ib) at frequency cubi, as in the three-level

case, and that field ez drives the transitions from

Ib) toanyof thestates I f) J at frequencyco2.
Writing the wave function as

ic~= E~cbe "', f=—1,2, ,N, (2c)

—Ib)

FIG. 1. The energy-level scheme.

where Ep and Ef are the dipole matrix elements
between Ia) and Ib) andbetween Ib) and

I f),
respectively. The detunings are defined by co, +co&
+6, =col, and ~f+m2 +Af ——coI, . Throughout we
shall consider the initial condition c, (0)= 1. We
first investigate the nature of the solution for the
amplitude c, . By eliminating cb and I cI I from
(2), we obtain an integro-differential equation for
Cg.'
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co + (g+ t ko )co +
I
I(.o I

co

N (h —h )( — )

f=1 (3)
I

Taking the Laplace transform of Eq. (3), using the
initial conditions [note that c,(0)=0 from (2a}]
and the convolution theorem, leads to an expres-
sion for c,(s), the Laplace transform of c, :

c,(s)=
s+ Y+t~o+ g

, s t k—f '—b,o

s +(y+ih, )s+ IEpl +s'g2

is —i bf —b,,
(4)

N+1
c,(s)=—+ gs,. i(s —s;)

' (5)

where' and {8;J are constants and {s;I are the
remaining zeros of R (apart from s =0}. The full
solution for c,(t) is thus the sum of a constant A

and N+ 1 exponential terms. In fact, these latter
terms must be exponentially decreasing, as can be
seen by setting the denominator of (4) to zero and
substituting s =ir where r is real and nonzero.
The imaginary part of the resulting expression
states the contradiction yr =0. Hence all values s;
have a nonzero real part which must be such. that
c, (t) remains finite. The Laplace inversion of each
of the terms (s —s;) ' in (5) therefore gives a de-

caying exponential, and c, ( oo ) =A. From (4) and
(5)

I &M
I

'
A = limsc, (s}=

I xo
I

2+
I Est I

2

and the trapped population in
I
a ) is given by

P, (oo)=
(

I
I('o

I
'+

I
&M

I

'}'

With t~ oo in Eq. (2b) and setting O=cb( oo }

=cf(oo) for f+M, gives

Epc, ( oo )+KbtcM( oo ) =0,
and using (7) we find

(7)

Expression (4} can be written as Q (s)/R (s),
where Q(s) and R (s} are polynomials of order
N + 1 and N +2, respectively, by multiplying the
numerator and the denominator by the product of
N factors s i(h—, tI),, ),—s i(b, 2 b,,—), . . .,—
s i (EN——i()„). Note that one of these factors is s
since hM ——b,„further, the denominator of (4) does
not contain a term in s ' to cancel this factor and
therefore R (s) itself has a factor s. When Q/R is
put into partial fractions, we obtain a result of the
orm

Pit(oo)= I &o I'I &st I'
( II('o I'+ I&M I'}' (9)

Results (7} and (9}are clearly independent of the
non-two-photon resonant levels and agree with
those found previously in the three-level system. '

In fact, a simple derivation can be obtained by us-

ing the equation

KMCa KOCM =KM ~ (10)

0 Kp 0

Kp 6, K1

0
H=

Kp

0

K3

0

0 K* 0

The eigenvalues A, are given by

obtained from (2a) and (2c) with f =M, integrating
once. The pair of equations, (10) with t~ oo and

(8), then give the trapped populations (7) and (9).
The Laplace-transform method, however, reveals
the crucial role of the two-photon resonance, which
leads to a constant term in c„and the loss y
which leads to the exponential decay of all other
terms in c,.

The above results lead one to suspect that for
two-photon resonance between

I
a ) and

I
M) one

dressed state of the system contains contributions
from only

I
a ) and

I
M ), independently of the

other levels { I f) ),fQM, and that this dressed
state corresponds to a zero eigenvalue. We now
show that this is the case. In the undressed state
ba»s Ia& ln(& ln2) lb) lnl l~ ln2~

I f ) I
n i

—1 ) I n2+ 1),f= 1 to N, where
I

n ) ) and

I n2 ) are the photon number states associated with
fields e) and ez, the Hamiltonian can be written in
matrix form as
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K1 6, —61—A,

Each element of this column vector is then equated
to zero. Immediately we see that Xb ——0 and there-
fore

Xl X2 XM —1 XM+1 Xbt

and since b,M ——E„A,=O solves (12). The eigen-
vector

(13)

The only nonzero elements of X are X, and X~
which, from the second element of (14), satisfy

Kog, +KX~ ——0. This eigenvector represents a
dressed state, corresponding to a zero eigenvalue,
with contributions from

i
a ) and

~

M) only,
weighted in the ratio of the trapped amplitudes as
required. As t~ ao the wave function tends to a
multiple of this dressed state.

It may be interesting to investigate these results
in the light of conserved quantities derived for
three-level and multilevel' systems.

of H corresponding to A, =O solves HX =0 which,
from (11) and (13) leads to
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