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Energies of the exponential cosine screened Coulomb potential
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The energy eigenvalues of the exponential cosine screened Coulomb potential for various

eigenstates are accurately determined within the framework of the hypervirial Pade scheme.

The exponential cosine screened Coulomb (ECSC)
potential

V(r) =——e "'
csoh.r,

is of importance in solid-state physics. It is used in
describing the potential between an ionized impurity
and an electron in a metal" or a semiconductor, '
and the electron-positron interaction in a positronium
atom in a solid. 4 The bound-state energies of the
ECSC potential were first calculated for the is state by
a numerical method, ' and for the s states by a varia-
tional method. ' Recently, the energy eigenvalues of
the ECSC potential ' have been recalculated for the
1s state with the use of the ground-state logarithmic
perturbation theory and the Fade approximant
method. The problem of determining the critical
screening parameter A., for the s states is also stud-
ied."

It has recently been shown that the problem of
screened Coulomb potentials can be solved to a very
high accuracy" by using the hypervirial relations" '

V(r) = ——e "'coshr = —— Vk(hr)",-)r
r 0

where the potential coefficients V~ are given by

1Vi=-l, V2=0, V3= 3,
1 1

4 6' 5 3O'''

(2)

Here, we use atomic units so that the distances are
measured in ao= ~h2/m'e', and energies in
m "e~/K'h', where m' is the effective mass and ~ is
the dielectric constant. The hypervirial relations for
screened Coulomb potentials have been derived in a
previous paper'" as

and the Pade approximant method. $n this paper, we
would like to report that the bound-state energies of
the ECSC potential for all eigenstates can be accu-
rately determined within the framework of the same
hypervirial Pade scheme.

The ECSC potential can be expanded in power
series of the screening parameter X as

(E+V~)( )
1 2J+1

( )+ Jl(1+1) + 1 .(. 1) ( j- )+X 2J+k+1
V h ( )2 j+1 j+1 4 k 2 j+1 (4)

j O~P

where I is the orbital angular momentum quantum number. Assuming that the energy E„and the expectation

TABLE. I. Energy eigenvalues as a function of screening parameter A, for the 1s state in atomic
units.

Etio, 10] E t10, 11] Perturbation Variational

0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.08
0.06

—0.000168
—0.028 244
—0.077 680
-0.142 439
—0.219416
—0.306335
-0.400885
—0.420464
—0.440201

-0.000 043
-0.028 232
—0.077679
-0.142 439
-0.219416
—0.306335
—0.400885
-0.420464
—0.440201

+0.050 624
—0.004987
—0.068 047
-0.139153
-0.218 619
—0.306 235
—0.400 883
-0.420 464
—0.440201

-0.000614
—0.028031
—0.077 606
-0.142 418
-0.2194.11
—0.306334
—0.400 &85
-0.420 464
—0.440201

26 2245 Q~1982 The American Physical Society



2246 BRIEF REPORTS 26

TABLE II. Energy eigenvalues as a function of screening parameter A, for the 2s and 2p states in
atomic units.

E [10, 10] E [10, 11] Perturbation Variational

0.15 2s
0.10 2s

2p
0.08 2s

2p
0.06 2s

2p
0.04 2s

2p
0.02 2s

2p

—0.005 250
—0.034941
—0.032 469
—0.050 387
—0.048 997
—0.067 421
—0.066778
—0.085 769
—0.085 591
—0.105 104
—0.105 075

—0.005 260
—0.034941
—0.032 469
—0.050387
—0.048 997
—0.067 421
—0.066 778
-0.085 769
—0.085 591
—0.105 104
—0.105 075

—0.034425
—0.032042
—0.050222

—0.067 385

—0.085 767

—0.105 104
—0.105 075

—0.034935

—0.050384

—0.067 421

—0.085 769

—0.105 104

values (rj) can be expanded as

E„= XE(k))" (r»= QC,(k)) k

k~0 k 0

we obtain the following recurrence relations for the ECSC potential".
'I

C(")= 2 2j+l C(k) + jl(l +i + 1 (' —l) C " + 2j+3
V C(" ) + + 2j+k+ l

V Cj . +1 j-1 . +1 4J J J-2 . +1 2 J+1 '' . +1 k J+k-1
J J J J

+ 2~ 2(E (k)( (0) +E (k —I)( (1) +. . . +E (2)( (k-2)) ~ ~ P (6)

and

(7)

where n is the principal quantum number. The re-
currence relations (6) and (7) can be used to calcu-

I

late the energy coefficients E„' from a knowledge of
Cj ~ and E„with m ~ k —2 in a hierarchial
manner.

The energy perturbation series E„ in (5) appears
divergent for large A.. However, it is found that one
can still calculate the bound-state energies of the

TABLE III. Energy eigenvalues as a function of screening parameter A, for the 3s, 3p and 3d
states in atomic units.

E [10, 10] E [10, 11] Perturbation Variational

0.07 3s
0.06 3s

3p
3d

0.05 3s
3p
3d

0.04 3s
3p
3d

0.02 3s
3p
3d

—0.000740
—0.005 461
—0.004471
—0.002 308
—0.011 576
—0.010929
—0.009 555
—0.018 823
—0.018 453
—0.017 682
—0.036 025
—0.035 968
—0.035 851

—0.000 750
—0.005 462
—0.004472
—0.002 309
—0.011 576
—0.010929
—0.009 555
—0.018 823
—0.018453
—0.017682
—0.036025
—0.035 968
-0.035 851

—0.004 538

—0.010538
—0.009 292
—0.018 707

—0.036 022
—0.035 965
—0.035 849

—0.005 454

—0.018 822

—0.036 025
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TABLE IV. Energy eigenvalues as a function of screening parameter A. for the 4s, 4p, 4d, and 4f
states in atomic units.

E [10, 10] S[10,»] Perturbation Variational

0.04 4s
0.03 4s

4p
4d
4f

0.02 4s
4p
4d
4f

0.01 4s
4p
4d
4f

—0.000119
—0.005 270
—0.005 033
—0.004 539
—0.003 748
—0.012 572
—0.012 486
—0.012 310
—0.012 038
—0.021438
—0.021 424
—0.021 398
—0.021 358

—0.000125
—0.005 270
—0.005 033
—0.004 539
—0.003 748
—0.012 572
—0.012486
—0.012 310
—0.012 038
—0.021438
—0.021 424
—0.021 398
—0.021 358

+0.001 079

—0.012 539
—0.012454
—0.012 283
—0.012 019
—0.021436
—0.021 424
—0.021 397
—0.021 357

-0.000 118

—0.012 572

—0.021437

ECSC potential to a high accuracy by forming the
Pade approximants" to the energy series. The
[N,M + 1] Pade approximant to the energy series is
given by

E[N,M+1]

(o) (]) 1 + ~pl+ ~ p2+ ' '+ ~ pM-E +zE
1+A.q&+ ~2q2+' ', +QNqN

= Eto&+ gE&&&+ g2E&2&+. . . + 1&+~+&E&&+~+&& (g)

In this paper, we confine ourselves to the calculation
of the Pade approximants E [10, 10] and E [10,11].

In Tables I—IV, we present the calculated energy
eigenvalues of E [10, 10] and E [10, 11] as a function
of screening parameter A. for the 1s, 2s-2p, 3s-3d, and
4s-4f states, respectively. Our calculated values of
the energy eigenvalues are compared with those of
the perturbation and variational calculations by Lam

and Varshni. ' As can be seen from Tables I—IV, the
calculated values of E [10, 10] and E [10,11] for vari-
ous values of X totally coincide, except for a few
values of screening parameter X very close to the crit-
ical screening parameter X,. It is therefore evident
that the present scheme of calculation is more accu-
rate than the s-state variational scheme of Lam and
Varshni' for large values of X. To appreciate the
merit of the Pade approximant method, we list, in
Table V, the coefficients p, and q& in the [10,111 Pade
approximant for the 1s and 2s states. It is evident
that the coefficients p; and q; are functions of the
principal quantum number n and the orbital angular
momentum quantum number I. Though the coeffi-
cients p& and qI may become large, the resultant Pade
approximants yield almost exact energy eigenvalues.

Our calculated value of the critical screened param-
eter X, for the 1s state is A., = 0.701 as compared with
that of X, =0.72 by Bonch-Bruevich and Glasko' and

TABLE V. The coefficients p; and q, in the [10,11] Pade approximant for the 1s and 2s states.

n=l P1 =2 q; N =2

p&

p2
p3
p4
p5
p6
p7
ps
p9
»o

2.2051(1)
2.2472(2)
1.2927 (3)
4.3599(3)
7.6958(3)
2.9384(3)

—1.1688(4)
—1.2969(4)

2.9543(3)
2.9318(3)

5.3175(1)
1.3066(3)
1.7014(4)
1.0557(5)

—5.7237(4)
—4.6880(6)
—1.8709(7)

3.9930(7)
2.3820(8)

—3.3108(8)

q~

q2

q4

q5

q6

q9
qio

2.2052 (1)
2.2572(2)
1.3135(3)
4.5588 (3)
8.7473(3)
6.0873 (3)

-7.1713(3)
—1.2616(4)
—2.8605 (3)

7.7612(2)

5.3175(1)
1.3206(3)
1.7703(4)
1.2123(5)
1.2472(5)

-3.7721(6)
—2.0795(7)
—6.9031(5)

1.5003(8)
1.6938(7)
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of A.,= 0.7115 by Lam and Varshni. 5 We remark
here that it is rather difficult to determine very accu-
rately the values of A., for the ECSC potential either
by using the Pade approximants E [10, 11]or by
some other methods. " In order to determine the
values of ~, accurate to several decimals in the
present scheme, it seems that some higher Fade ap-
proximants and quadruple precision are needed.

In conclusion, we have shown that the bound-state
energies of the exponential cosine screened Coulomb
potential for all eigenstates can be accurately deter-
mined within the framework of the hypervirial Fade
scheme, even though the energy series for the ECSC

potential may not be a Stieltjes series. " The present
scheme of calculating the energy eigenvalues for the
ECSC potential is quite simple and straightforward,
and its advantage over the s-state variational scheme
of Lam and Varshni' and the ground-state logarithm-
ic perturbation theory of Eletsky et al. is obvious. Fi-
nally, we remark that the present method of calcula-
tion can also be extended to a more general ECSC
potential V (r) = —(1/r) e "'cos (b h, r ) with different
scale factors in the exponential and cosine functions.

This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada.
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