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A time-dependent Kohn-Sham theory is presented for obtaining the time-dependent density
which has a periodic dependence on time. A set of coupled single-particle equations

2
V X'+ UcffXI E'XI and BX;/Bt + 7 (X; 7 S;)=0 are obtained. The X;( r, t) and S, ( r, t)

are the phase and amplitude, respectively, of the time-dependent Kohn-Sham orbitals veff( r, t)
is the time-dependent Kohn-Sham effective potential, and e, {r, t) = —BS,( r, t)/Bt The de.nsity

p( r, t) is equal to the sum of the squares of the X;( r, t).

INTRODUCTION

The time-dependent energy-density-functional
theory' recently given in the literature is formally
attractive, but like the time-independent energy-
density-functional theory it is not presently suitable
for practical calculations. This occurs because the en-
ergy as a functional of the density is unknown. For
the time-independent problem, Kohn-Sham3 formu-
lated a density-functional theory [local spin density
(LSD)], which yields the density of the chemical sys-
tem. The resulting Kohn-Sham effective potential is
not exactly known, but reasonable approximations to
this potential are known. 4 5 Following the procedure
of Kohn-Sham, we develop a time-dependent
density-functional theory (TDLSD) which is also
suitable for actual calculations. The present paper is
intended to supplement our previous work on a
time-dependent density-functional theory and will
also be restricted to those densities which have a
periodic time dependence.

TIME-DEPENDENT KOHN-SHAM THEORY

The local density-functional theory as developed by
Kohn-Sham determines in principle a set of single-
particle orbitals $;( r ) whose sum of the squares
equals the exact density p( r ) of the system of in-
terest. The Kohn-Sham orbitals are obtained by
minimizing the kinetic energy of a system of N

noninteracting electrons (atomic units are used
throughout this paper)

T, [IA]]=——,
' X&4;I&'l0;&,

subject to the constraints

Xl@;I'=p, (2)

and

(3)

The bracket notation represents an integration over
configuration space. The corresponding Euler-
Lagrange equation is

(4)

where v, rr( r ) is the Kohn-Sham effective potential,
the Lagrange multiplier associated with Eq. (3) and
the constants e; are the Lagrange multipliers intro-
duced to insure that Eq. (2) is satisfied by the P;.

The time-dependent problem is similar to the pro-
cedure described above for the time-independent pro-
cess. We seek the time-dependent orbitals 4i~( r, t)
which yield the density p( r, t) when there is a
periodic dependence upon time t. The orbitals
$;( r, r) can be written in polar form

$;( r, t) = X;( r, t) exp [iS;( r, t)],
where the amplitude X;( r, r) and phase S;( r, t) are
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real functions of space and time. The kinetic energy
of noninteracting system of N electrons can now be
written

with respect to the S; subject to the constraint

(12)

T, [(xt,st}],= ——, X((x;(V'~x;), The resulting Euler-Lagrange equation is given by

—(x, l VS,' VS, ix, ),), (6)
BX' + V (x,'VS, ) =0.
Bt

(13)

where the subscript t denotes that a time-averaged in-
tegration over one period of time has been per-
formed.

First we minimize T, [(X;,S;}],with respect to the
X;( r, t) subject to the constraint that the sum of the
squares of the X;( r, t) give the exact density p( r, t),
&.e.,

Xx =p,

and further that they satisfy conservation of the
number of particle constraints

&xgxj)g SIJ

and

BX;2I

Qt

In Eq. (9), j ( r ~ t) is the single-particle current vec-
tor. The resulting Euler-Lagrange equation is

1—
2

7 Xi+ &effXi = +i Xj (10)

Again, v,tt( r, t) is the Lagrange multiplier associated
with the constraint defined in Eq. (7) and the e;( r, t)
are the Lagrange multipliers associated with the con-
servation of particle constraints, Eqs. (8) and (9).
The a;(r, t) are a sum of two terms

., ( r, t) =.,"'+.,"'( r, t) .

The quantity e; is a result of the orthonormaliza-
tion constraint while e; ( r, t) are the Lagrange mul-
tipliers associated with the charge-current conserva-
tion defined by Eq. (9). Next, we minimize T, [(x,,s;}]

The coupled equations [Eqs. (10) and (13)] provide a
means of determining the exact time-dependent den-
sity of the system of interest. We note that at the
solution point the current vector is given by

j ( r ~ t) = x ( r ~ t) '7S;( r, t).
In the limit that the time dependence is turned off,

TDLSD theory correctly reduces to LSD theory. In
this limit Vs;( r, t) vanishes, thus Eqs. (9), (12),
and (13) are identically satisfied and Eq. (6) reduces
to Eq. (1).

As with time-independent Kohn-Sham theory,
U ff( r, t) is an unknown quantity. However, this
should not prevent us from using TDLSD theory in
performing actual calculations. Adopting the approxi-
mation of the effective potential in LSD theory (the
exchange-correlation correction plus the classical elec-
trostatic potential) 4 5 and adding to it the appropriate
time-dependent part (say the potential due to a time-
varying electric field), u'tt '" should provide a reason-
able approximation to use in Eq. (10). This construc-
tion of v',ff""not only introduces an error found in
the LSD approximation, but also introduces an error
by neglecting a contribution to v, ff from the many-
particle phase of the total time-dependent wave func-
tion. However, we believe that this latter contribu-
tion is small even when compared to the error asso-
ciated with the LSD exchange-correlation approxima-
tion.
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