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We study the relaxation of nonequilibrium concentration fluctuations in binary-liquid

mixtures near but above the critical consolute temperature. We show that if the strength
of the fluctuations is far enough above the thermal level, hydrodynamic effects cause
these fluctuations to migrate towards the smallest wave numbers. They are dissipated

only in an exceedingly long time at the largest available scale. The structure factor of the
fluctuations obeys a scaling law similar to the one observed in experiments of spinodal
decomposition. Experimental tests of our result are suggested and their possible relevance
to the theory of spinodal decomposition briefly discussed.

I. INTRODUCTION

k (t)= t &, — (1.2)

and that the structure factor obeys a scaling law, '

k'(t}S(k/k (t),t)=F(k/k ), (1.3)

the function F being independent of time and of

The dynamics of nonequilibrium fluctuations
has been the subject of numerous studies in recent
years. In particular, the phenomenon of spinodal
decomposition has attracted attention from both
theorists and experimenters. ' After a binary sys-
tem, like an alloy or a mixture of two liquids, is
rapidly cooled into the unstable portion of its
phase diagram (see Fig. 1},scattering of light from
the system yields a ring pattern that shrinks in
time as the decomposition towards the two-phase
equilibrium state proceeds. The diameter k~ (in
momentum space) of the ring at a given time is
proportional to the inverse size of the phase
separated regions at that time, and so it gives a
measure of the degree of coarsening of the mixture
as it phase separates.

To be more quantitative, define r/i(r, t) as the lo-
cal departure of the concentration of one of the
components of the mixture from its mean value,
and let

S(k, t) =(
i g(k, t)

i

')
be the structure factor. Denoting by k (t) the
wave number at which S(k, t} peaks at time t, ex-

periments, both real' and numerical show
that k (t) has a power-law time dependence,

the quench temperature. The exponent P is about

6 for alloys. ' ' For binary liquids at the critical
concentration it changes from P=——, in the early

stages of the decomposition ' ' to P=—1 (Refs. 3
and 9) when the phase separation is well under

way.
In this paper we argue that the validity of scal-

ing laws such as (1.2) and (1.3) is not restricted, for
liquid mixtures, to evolution at temperatures below
the consolute temperature T, For inst.ance, if one

TC

FIG. 1. Schematic plot of the temperature-
concentration plane for a symmetric binary mixture.
The solid curve bounds the region of two-phase coex-
istence. Inside the dashed region the concentration sus-
ceptiblity is negative. The wavy line illustrates a critical
quench.
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reverses the quench that brought the mixture into
the unstable region, we expect (1.3) to still hold for
some time with the same scaling function I',
while (1.2) would be obeyed with

/T-

= —,.
hee organization of this paper is as follows: In

Sec. II we briefly review the basic ingredients
entering in the theories of spinodal decomposition
and present our derivation of (1.2) and (1.3). In
Sec. III we summarize our conclusions and suggest
a probably more practical way of experimentally
testing our results.

II. DYNAMICAL EQUATIONS

The near-equilibrium dynamics of binary mix-
tures is fairly well understood. ' " A hydro-
dynamic description of liquid mixtures involves six
conserved densities. If we assume the mixture to
be incompressible, the two (longitudinal) sound
modes decouple from the remaining degrees of
freedom. We will, for simplicity, work with the
symmetric binary mixture model, " in which tem-
perature fluctuations are decoupled from the con-
centration field g(r, t) which is thus only coupled
to the transverse velocity v(r, t). The equations of
motion for these three dynamical variables that we
retain are" '

[a, +V(r, t) V]1((r,t)

=A,V (rog aV P+ug—)+f~, (2.1)

d, v(r, t)=vV v aV /VS+ f„, —
V.v(r, t) =0 . (2.2b)

F= —,fd'r[v +a(VQ) +rof + , ug ] . — (2.3)

In the mean-field approximation that we are using,

the susceptibility rp is negative below the critical
temperature T, . Therefore, just after a tempera-

ture quench into the spinodal region has been per-

formed, and if we assume that the term derived

from the quartic nonlinearity in (2.3) is negligible,

which cannot be a bad approximation in the earli-

est stages, the right-hand side of (2.1) gives an ex-

ponential growth of the concentration fluctuations

Here we have taken units in which k&T =pp=1 pp
being the mean density of the liquid. By suitably
defining the thermal noises in the right hand sides
of (2.1) and (2.2a), it is easy to check that the velo-

city and the concentration fluctuations relax to the
canonical probability distribution associated to the
free energy

which is faster around a wave number

k~ =Qro/2a. This is basically the idea behind
the earliest theories of spinodal decomposition.

Unfortunately, a complete description that in-

cludes the subsequent coarsening of the mixture
must also include a treatment of the nonlinear
terms. Among them, the quartic nonlinearity, re-

quired for stability, is by far the most difficult to
handle. There are approximate calculations ' that
take it into account and agree well with experi-
ments during the early stages of the decomposi-
tion, but they are inadequate to describe the latest
stages when large regions of different phases are
separated by sharp interfacial boundaries. No sa-
tisfactory theory exist for these regimes, although
the dimensional arguments of Siggia give an ex-
ponent P -=1 in agreement with experiment.

The situation should be a lot simpler for fluctua-
tions relaxing above the critical temperature, where
sharp interfaces are not stable. The free energy be-

ing then bounded, one may drop, in a first approx-
imation, the quartic term in (2.3). Of course, there
is no growth of f fluctuations now. Rather, their
strength can only diminish

—fder f (r, t)
dt

2k fd r[ro—(V Q) +a(V f) ]&0. (2.4)

As we follow only the evolution at scales larger
than the correlation length, the a term in the
right-hand side of (2.4) is negligible. We have then
the typically diffusive result

2Do fd r( V—g) &0, (2.5)

where Dp ——rpA, .
Still, it is interesting to consider the fate of a

distribution of concentration fluctuations centered
around some wave number k (0) and with a non-
vanishing amplitude C„, at a temperature close but

above T, . We will assume that C„, is well above
its equilibrium value (0«C„,& 1), and conse-

quently drop the thermal noises that should be re-

tained in (2.1) and (2.2) near equilibrium. Near the
consolute temperature T, the diffusivity Do goes to
zero (critical slowing down), while the viscosity has

only a very weak critical singularity' '" and can be
taken as a constant in a first approximation. At a
temperature a few millidegrees above T, the
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fined in (1.3) for three typical runs, both at the
same temperature and with the same value of C„,
but with a different S(k, t =0). We see that after
an initial transient time, F takes a form indepen-
dent of time and of the initial conditions. Those
of run 2, in particular, had a three-peaked initial
spectrum S(k, t =0), with the central peak coincid-
ing with that of run 1. We observe that the
memory of the satellite peaks is rapidly lost. Both
the shape and the numerical values of the scaling
function F that we obtain are very similar to those
of Ref. 7. We discuss the possible relevance of this
fact in the next section.

The scaling results (1.3) and (2.13) and the
universality of the scaling function F can be pro-
ven from our closure equations to be exact in the
limit Do ——0. (See Appendix B.) Alternatively, one
can perform in (2.12) a partial integration over
wave vectors larger than k (t), and obtain and ap-
proximate equation of motion for S(k, r) with
k &k (t) of the form (see Appendix A)

10 (8;+2D,k')S(k, r) =2Dk'S(k, t), (2.14)

A
10

A

P3

10—j
8

A
A
M

n8
A

10
0

t= 128- -. Run 1

t= 128= — ~ Run 2
t-3a = ~R~3 4a

~tot
3&v

(2.15)

dk (t) 3 4o
=Dkm (r) = «0«m (r)

dt 3v
(2.16)

According to (2.14), large scale concentration fluc-
tuations at k & k~ grow, if D )Do, with the
characteristic frequency Dk . This is the same fre-
quency at which the concentration gradients are
converted into velocity fluctuations by the u
term. ' We can now get (2.13) from (2.14) and
(2.15) by adapting an argument due to Binder and
Stauffer. The growth of a fluctuation of diameter
k ' should obey, on dimensional grounds,

FIG. 3. Evolution towards the scaling function I' for
different numerical runs. The runs had all the same
values of C„„n,v, and D of Fig. 1 (run 1). The time
and momentum units are also in Fig. 1. Run 2 was ex-
actly as run 1 but with a triply-peaked initial spectrum.
The spike at the smallest k in a corresponds to one of
these satellite peaks. The other, that was symmetrical
with respect to the central one, does not show in this
plot. Run 3 had a differently shaped initial distribution.

which yields (2.13) if Do is small enough for (2.9)
to hold.

Although our results are strictly valid only in
the limit Do ——0, Eq. (2.14) and our numerical re-
sults suggest that they will not change much for a
nonzero diffusivity provided that the ratio

DpE= (2.17)

Ctot«) =- Cto«0)r (2.18)

is much smaller than one. In this limit, we obtain
from (2.5), (2.9), and (2.13) an extremely slow de-
cay of the concentration fluctuations
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d3k
Q(t) = ,J,[21nU(k—,t)+ inS(k, t)] .

(2n )
(2.19)

In Appendix C we prove from the closure equation

(2.12) that Q(t) is monotonically increasing,

—Q(t) &0.d
dt

(2.20)

The steady state of constant Q(t) is obtained when

&(p)= 1

8+ay
(2.21)

where the susceptibility 8 takes the value necessary
to make (2.21) consistent with (2.9). It is easy to
see that large enough values of k;„C„,will re-

quire 8 to be negative. The system is then locked
into a metastable state of negative susceptibility.
For a small but nonvanishing Do this state will

persist with a time dependent B that adiabatically
adjusts itself to the (slowly) changing C„,. Even-

tually, of course, at times longer than (Dok;„)
B(t) +ra It should —be ad. ded here that the meta-
stable state just described has mainly a conceptual
interest, and its experimental detection might be
very difficult.

If the values of the temperature and C„, are
such that K & 1, the fluctuations will still migrate
towards the large scales, but our scaling results will
not hold. Finally, if we are away from the critical
point or the fluctuations are very weak, so that
K « 1, we expect them to decay diffusively in the
usual manner.

It is also interesting to note that because the mi-
gration frequency Dk and the diffusive frequency
Dok2 both scale (if D »Do so that C„, is con-
stant) as the same power of the wave number, the
migration of the concentration fluctuations will

only stop when they reach the boundaries of the
system. They will then pile up at the minimum
wave number k;„and relax extremely slowly to-
wards their equilibrium level in a characteristic
time (Dok;„) ' which can be of the order of days.
One can accept this shockingly long life time of a
nonequilibrium fluctuation by realizing that the
system gets, in some sense that we explain below,
into a state of negative temperature. To under-

stand this, it is useful to consider the long time
behavior of the fluctuations in the limit Do 0 If-—.
the diffusion constant vanishes, a steady state is
eventually reached. To find it, we follow Ref. 18
and define the entropy functional

III. CONCLUSIONS

The main results (2.13) and (1.3) of the previous
section suggest that a process similar to spinodal
decomposition might be observed in liquid binary
mixtures above the critical consolute temperature
T, . Wong and Knobler' have reported the results
of a "double quench" experiment in an isobutyric
acid and water mixture, in which after they
brought their system into the two-phase region and
let it coarsen for some time, the quench was re-
versed and the scattering experiment was continued
as the mixture tried to reach the one-phase equili-
brium. Their data are in qualitative agreement
with our conclusions, with the maximum of the
structure factor moving towards small wave vec-
tors and a very slowly decaying C„, although they
are not complete enough to permit a quantitative
comparison with our theory.

There are two ways we can imagine in which
one could experimentally verify the results of this
paper. One, of course, is to improve the results of
the experiment of Ref. 19. In such an experiment
the three variable parameters are the temperatures
Tj and T2, above and below T„respectively, that
limit the quenches, and the length of time At that
the mixture is allowed to stay in the two-phase re-
gion. Our results should hold independently of the
values of these three parameters pro. ided that they
result in a IC much smaller than 1 in (2.17). Be-
cause the time variation of C„, in the spinodal re-
gion is not well established theoretically, we cannot
give a more explicit criterion.

The efficiency of the double quench experiments
is liinited by the small width b,f of the miscibility

gap at the small quench depths at which the exper-
iments must be performed. Because a smaller
value of b, l( means smaller value of C«„ it may
be difficult to attain small enough values of E for
the scaling results (2.13) and (1.3) to hold. Much
bigger values of C„, can be obtained if the results
of Ref. 16 hold. There we showed that at tem-
peratures close to T, violent stirring of a binary
liquid which was initially unmixed results in the
formation of a long-lived metastable state of par-
tial mixing in which the concentration fluctuations
are pinned at a wave number k, proportional to
the Reynolds number of the turbulence. k, is such
that the tendency towards complete mixing provid-
ed by the turbulence is just balanced by the desire
of the fluctuations to go to small wave numbers as
we have discussed above. If the stirring force
keeping the mixture in the turbulent state is turned
off before this metastable state decays, the migra-
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tion of the concentration fluctuations towards the
large scales could be observed. A detailed theory
of such an experiment, however, should take into
account the temporal decay of the turbulence and
is beyond the scope of this paper.

Finally, we like to comment on the relevance of
this work to the theory of spinodal decomposition
in fluids. In principle, nothing in our argumenta-
tion restricts the validity of (2.13) and (1.3) to re-

gimes above the critical temperature. Indeed, after
the initial period during which Binder s k~(t)
=t ' holds and C„, grows with time, the experi-
mental data of Ref. 7 suggest that C„, stays con-
stant and the scaling function F is the same we
calculated in Fig. 3. Although Chou and Gold-
burg did not try to fit their data to our result
(2.13), it seems to us that P= —, could be consistent

with their experimental results in a limited time in-
terval sandwiched between the regimes with (() =- —,

and P -=1, and the migration mechanism that we
have described in section be responsible for the
departure of the experimental data and the
Kawasaki-Otha results from the (()= —, behavior.
In addition, using the estimates of Ref. 9 for the

1

(()=—1 regime together with our (2.13) for (() = —,

gives a reasonable value for the time at which the
crossover between both regimes takes place. How-
ever, it is very difficult to accurately fit so many
power law exponents to data which span relatively
narrow ranges. This is why the study of experi-
mental conditions where sharp interfaces are not

stable should be more suitable for the testing of
our results.
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API'ENDIX A: CLOSURE EQUATIONS

To derive a closed system of equations for the
spectra (2.6) we assume initial conditions with
Gaussian statistics (quasinormal approximation)
and that the velocity and concentration fluctua-
tions are initially decoupled. This results in equa-
tions for U(k, t) and S(k, t) at time t that contain
integrals over the past values U(k, s) and S(k,s) of
the spectra at all the earlier times s. One then
Markovianizes these equations by updating the
spectra to time t (See Refs. . 14 and 20 for details
of the algebra. ) The result is

'2

[8,+2Apk (rp+ak )]S(k,t)= —
q f~ fdpdq ~kpqpq(2'�)' k

X { U(p)[S(q) —S(k)]—2a(k —q')S(k)S(q) I (A 1)

and

((),+2vk )U(k, t)= ', f, fdpdq —„4p'q'(p q)—
X[a (p —q 'S(p)S(q) —aS(q)U(k)], (A2)

(i =1,2) (A3)

where the momenta (k,p, q) are required to form a
triangle of which ((3 is the angle opposite to wave
vector k. The relaxation times 8~&q are'

~

) ] e Pf

Okpq =
Pkpq

t

with

(() g)(k2+q2)+vp2
(2) D(p2+q2)+vk2

Our equations are exact in the limit t~, and

(A4)
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X f dq[U(q, t)+2a(k q)S—(q, t)]

1 k2
+ f dq U(q)S(q) . (A5)

This result is a familiar one close to equilibrium,

although it is usually derived very differently.
Substituting in it the equilibrium spectra

U(q)=2,

coincide, if Do ——0, with those of Ref. 5 if the velo-

city fluctuations are in equilibrium [U(k) =con-
stant]. We will find that if C„, is not small U(k)
departs from its equilibrium value (see Fig. 4), and
therefore keep Eq. (A2) in our description.

To derive (2,14) we expand the transfer integral
in (Al) in the limit of Ao ——0 and p, q =k~ && k
and find, in lowest order,

a,S(k, t) =— k'S(k, t)
1

3'lr v

—2
I I I I I I I I I I I I I I I I I I I

10

10 4

t= 2
t= 4
t= 8
t= 16
t= 32
t= 64
t= 128

10 -2 0
I I I I I I I I I I2-2 p 0 p 2 p 4 p 6 p 8 p 10 p 12 p 14 p 16

k/ko

FIG. 4. Evolution of the kinetic spectrum k U(k) for
the conditions of Fig. 1. At t =0, U(k) =0. The peaks
in the spectrum line up with a + 1 slope, a manifesta-
tion of the tendency towards equipartition of kinetic and
gradient energy brought by the a coupling.

s(q) = 1

8 +czAq

results, in the limit k~, in

(A6)
APPENDIX B: DERIVATION OF THE

SCALING RESULTS

We look for self-similar solutions of the form

(A7)[8,+2Aa k (ro+ak )]S(k,t) =2Aiik

where we have defined the renormalized transport
coefficient

S(k,t)=t F(ktt'J,

U(k, t) =t 't'k'G(ktt'),
(B1)

1
~R 6nvgroa.

(AS)
to the closure Eqs. (Al) and (A2}. In the limit

Ao ——0 (2.9) imposes the restriction

Observe that the same transport coefficient appears
in the dissipative part of (A7) and in the amplitude

of the thermal forcing. This is just a consequence
of the familiar fluctuation-dissipation theorem. '

Restoring physical units (AS) is the well-known

Kawasaki-Stokes relation. '

We are interested in situations at nonzero wave

vector and with fluctuations that are well above

the thermal equilibrium level (A6). Nevertheless,

the interpretation of (A7} as providing a nonequili-

brium renormalized transport coefficient should

still make sense. Because v &)D we can neglect

U(q) in (A7), and because we are considering only

concentration modes at scales larger than the
correlation length, the dissipative term proportion-
al to k can also be dropped. We then obtain (2.14).

a=3P . (B2)

Substitution of (B2) and (Bl) in (Al) and (A2)
yields the relations

a+pk'„, F(k )=t'-'t'T (k )
, d

(B3)

a+Pk' 6(k')=t' ~T„'(k')
dk'

+2vk' t' G(k')

where k'=kt~ and T„', are obtained from (Al) and
(A2) by replacing S(k, t) by F(k') and U(k, t) by
k' 26(k') . As seen from (B3), scaling holds if

p= —, , a= —, (B4)

in agreement with (2.9) and (2.13).

APPENDIX C: DERIVATION OF (2.20)

We start by writing (Al) and (A2) in the more symmetrical, but equivalent, form

a,S(k,t)= ff, , 5"'(k+p+q) &kpqk'p'I U(p)[S(q) —S(k)]—2a(k —q )S(k)S(q) },(2m)' (2ir)'
(Cl)
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(B,+vk')U(k, t)= f J 5'"(k+p+q) — &k~q p (p —q )
(2m)s (2sr)

kpq

X [tz'(p' —q')$(p)$(q) —tz$(q) U(k)]+ —, & g.(k)
~

'&, (C2)

where we have taken the limit A,o ——0 and included the thermal forcing in the velocity equation to insure a
proper relaxation to equilibrium. Using the def'inition (2.19) of the entropy 0, we find, after considerable
algebra,

q 5'(k+ ) U(k)$( )$( )
(2tr) (2m) (2m) k yk U(k) 2 $(p) $(q)

2

dk
~ (2tr)3 2U(k)

(C3)

In a first stage, after the position of the maximum

of the structure factor reaches the minimum

avalaible wave vector k;„, the velocity fluctua-
tions will decay relatively rapidly to the thermal
distribution (A6) in a time of the order (vk;„)
or so, and therefore the second integral in (C8) will

vanish. %e then have the result

—Q&0d

dt

which we set to prove.

(C4)
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