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The Brownian-motion Fokker-Planck equation describing the velocity-distribution func-

tion of a collection of Brownian particles suspended in a rarefied carrier gas in equilibrium

is generalized to the case of a nonuniform suspending gas. The gas-particle collision in-

tegral appearing in the Boltzmann equation is expanded in powers of the ratio of masses

between gas molecules and particles, and the gas-distribution function is taken as the first
approximation to the Chapman-Enskog expression. Also, the characteristic width of the
particle-distribution function is assumed to be of the order of its value in equilibrium. The
modified collision term obtained involves a new force proportional to the local temperature

gradient, and closely related to the Chapman-Enskog thermal-diffusion effect. The contri-

butions from the nonhomogeneity of the gas-velocity field is small, but introduces new
"shear forces" proportional to the fluid-particle relative velocity and the local gas traceless
symmetrized velocity-gradient tensor. The new equation can be used to describe the non-

equilibrium dynamics of gas mixtures with disparity of masses when the heavy species is

dilute and the light is not too far from equilibrium.

I. INTRODUCTION

The Fokker-Planck kinetic equation describing
the distribution function fz (u~, x, t) of a collection
of Brownian particles suspended in a rarefied gas at
equilibrium is

+V (flu~}=r 'V„upfp+ V„ f~

where fz( uz }is the density of Brownian particles in
the phase space of its variables, u& the velocity, t
the time, and x the position vector; ~ is the particle
relaxation time, k the Boltzmann constant, m~ the
particle mass, T the temperature of the gas, and

V„ the gradient operator in u~ space. Equation (1)
Ip

has been known for many years as an important re-
sult of the theory of stochastic processes' where it
is derived using several ad hoc assumptions. More
interestingly, Eq. (1) has also been obtained for
point particles by Green, and by Wang Chang and
Uhlenbeck starting from the Boltzmann equation,
and for particles of arbitrary size by Mercer and
Keyes starting from the repeated ring equation.
Those authors expanded the collision integral in
negative powers of the ratio mz/m between the

masses mz and m of the heavy component (the par-
ticle) and the light one (the gas), assuming also a
very small mass fraction of particles in the mixture
so that particle-particle collisions could be ignored.
They further assumed that u& does not depart too
much from the equipartition value, and assigned an
equilibrium-Maxwellian distribution to the light
gas.

The Fokker-Planck equation (1) has been used in
a number of fields, ' though not often emphasiz-
ing practical applications. More recently, however,
the engineers' interest in the gas dynamics of mix-
tures with disparate masses has been revitalized by
the industrial development of aerodynamic schemes
for the separation of uranium isotopes. ' There,
if properly modified, the Fokker-Planck equation
can provide a powerful analytical tool to study the
nonequilibrium phenomena affecting the heavy
species. The generalizations needed are numerous.
Here, however, we will only relax the condition that
the light gas be in equilibrium, allowing for the
presence of slight velocity and temperature gra-
dients. Because Eq. (1) is only valid in an isother-
mal motionless gas, the proposed generalization is
essential to permit the study of heavy molecule
dynamics within flowing gases where nonuniformi-
ties occur necessarily. We will first perform a mass
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expansion of the Boltzmann collision integral using
the first-order Chapman-Enskog expression for the
light-gas velocity-distribution function instead of
the equilibrium-Maxwellian distribution employed
by previous authors. " The new distribution con-
tains terms proportional to the sources of nonuni-
formities (the light-gas temperature and velocity
gradients}, which modify the standard Fokker-
Planck equation. It will be seen that the corrections
due to velocity gradients in the light gas are small.
However, they introduce a slight anisotropy in the
diffusivity tensor as well as net shear forces propor-
tional to the difference between particle and light-

gas mean velocity and to the velocity-gradient ten-
sor. Even more interesting is the effect of tempera-
ture gradients. These give rise to a new term in the
Fokker-Planck equation, equivalent to the
Chapman-Enskog thermal diffusi-on' effect in near

equilibrium conditions. The importance of the new

term becomes increasingly dominant over that of
Brownian diffusion as the ratio m& 1'm is increased,
and it has to be taken into account whenever tem-
perature gradients are present. Finally, we conclude
that, aside from the smaller velocity-gradient ef-
fects, the generalized Fokker-Planck equation
governing the motion of Brownian particles or
heavy molecules in a light nonuniform gas is

de +V (u~fr}Bt

' V„. (uz DaT—V lnT V)fz—

where D and ar are the Chapman-Enskog diffusion
coefficient and thermal-diffusion factor, respective-

ly, and V=V(x, t) is the light-gas velocity field.

II. MASS EXPANSION OF THE BOLTZMANN COLLISION
OPERATOR FOR HEAVY PARTICLES

The change in the heavy-particle-distribution function due to collisions with the light gas is

=J~= f d u gdQo(g, 8)[fp(ur)f(u') —f~(u~)f(u)],
5t

where the subscript p refers to the particles or heavy
molecules, and the primes denote postcollision
values of the velocities. Magnitudes with no p sub-
index refer to the light carrier gas. We have used
the definitions

u=V —M&g,

and analogously for the postcollision values

u& ——V+M g ', (8)

g:—u —uP

for the relative (precollision) velocity,

V=M& u&+Mu

for the center-of-mass velocity, and

(3)

(4)

u'=V —M&g ',
where the center-of-mass velocity remains un-

m&
Mp= M=

7?l +Alp

Pl

m+mz

while mr and m are the masses of heavy and light
particles, and u& and u their respective velocities
prior to collision. tr(g, 8) is the differential scatter-
ing cross section for collisions, and it is taken as in-
dependent of the azimuthal angle (Fig. 1) corre-
sponding to molecules interacting with radially
symmetric force fields.

Equations (3) and (4) can be inverted to give

u~ =V+M g, FIG. 1. Reference system.
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g'=
I
g'I =g=

I g I
.

Further defining

(10)

changed due to momeritum conservation, and g ',
the postcollision relative velocity, is obtained from

g by a pure rotation due to the energy-conservation
requirement, i.e.,

f„(up+Mug ) =- fp(up )+MD g
Bf~(u~)

Bup

BU BU

(16)

~g=g —g ~

'Q=u —g +g=Up —g

the postcollision velocities become

(12)

Up =Up+Mug, (13)

u '= g+Mhg = u —Mzhg . (14)

J~ = f d'g go(0,g)dQ[f~(u~+Mhg)f(u ')

—f~{u~)f(u)] . (15)

The introduction of g will prove convenient subse-

quently. g corresponds to u ' in the limit when the
heavy-molecule velocity is unchanged during the
collision (i.e., m ~ 0, or mz/m —+ ao). In what fol-
lows we exploit the smallness of M for disparate
mass mixtures to simplify the form of Jz. For that
purpose we shift from u to g as integration variable
in (2):

We wish to emphasize that our approach differs
slightly from existing theories of heavy-particle
motion by the choice of expansion parameter. Our
expansion is carried out using the small parameter
M rather than m /mz. In the limit m /mz —+ 0, both
expansions yield the same asymptotic result. The
expansion in M, however, takes partial account of
the finite mass of the heavy particle (which would
otherwise be obtained by more laborious summa-
tions of the full perturbation series). For practical
applications this may extend the range of the theory
at the expense of being unsystematic in the small

parameter m/mz. For purposes of comparison
with the usual Fokker-Planck etluation friction
coefficient and the thermophoretic drag force, it is
only necessary to replace M by m /m&.

Substituting (16) in (15), and taking fz and its
derivatives out of the integral (they are independent
on g and Q), we obtain

J& f~(u&) f —d—ggodQ[f(u') —f(u)]
8 p+M f d'gghgodQf(u')

As discussed in Sec. I, mass expansions have been
used previously to reduce collision integrals to dif-
ferential operators. A particularly clear derivation
of the electron Fokker-Planck equation has been
given by Bernstein" —an account which serves to
motivate our approach here.

The derivation of Brownian-motion Fokker-
Planck equations depends essentially on the small-
ness of the relative change of the particle velocity-
distribution function f~ within a typical collision
time. Accordingly, the change in u& per collision
has to be small compared to the width of fz(uz),
which can in principle take arbitrary values. How-
ever, except for situations very far from equilibri-
um, ' this characteristic width is of the order of the
equipartition velocity (kT/m~)'~ . Also, from (13),
the change in up per collision is Mhg, of the order
of M (kT/m )'~ for a light gas close to equilibrium.
Thus, the relative change in up per collision is a
small number of the order of M', and we can ex-
pand fz(uz+Mb, g) in a Taylor series We shall.
keep two terms in the expansion in order to make it
valid to first order in M:

8
+ ,M-:f d ggbghgodQf(u')

Bu Bu

+ ~ ~ ~ (17)

With this little effort, the dependence of Jp on fz
has become rather simple. However, the coeffi-
cients (integrals) multiplying f~ and its derivatives
in (17) are still functions of u~ and the mass ratio
through u '. Further reduction can be achieved by
using the variable f in place of u ' via a new mass
expansion:

f(u ') =f( f+Mh, g )

=f(f)+Mug . a

aq

b, gb, g: (18)
Bf)87)

Now, it might seem that the M2 term in (18) is su-
perfluous in a first-order theory because both f and

hg are of the order of (kT/m )'~ . However, since
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rl=uz —g', the d/de operators acting on f(rl)
within the intergrals can be converted into 8/Buz
operators acting on the integrals themselves to show
that the M term in (18) is of first order. One can
further check that the resulting expression for Jz
does not conserve mass unless the M term is re-
tained. Then, regrouping terms, (17) becomes

Jp afp+ ——

hfdf+

— .(Iif~)
Buz 2 Buz

in terms of only a, b, and II defined as

a = f d'g og dQ[f(u~ —g ') —f(u~ —g )],
(20)

since odd terms in sing or cosP integrate to zero.
Analogously,

2m

f, d0(s —s'}(s—s'}
=2mg [—, sill 8(eiei+epe2)

+.(1—cos8) eseq] .

Again g e3e3 ——g g while e~e~+ e2e2+ e3e3 ——I,
and (1—cos8) =2(1—cos8) —sin 8, so that,

2'
f, d4(s —s'}(s—s'}

=2ir[ —, sin 8(g I—3g g )

+2g g(1 —cos8)] . (28)

b—:f d g dQ crgMb, gf(uz —g '),
11= f dig dQogM hghg f(u~ —g ') .

(21)

(22)

To show that a is zero and to simplify the angular
integration of (21) and (22) we change from the
variable g to g

' via a rotation, keeping the solid an-

gle variable unchanged. The Jacobian of the
transformation is unity, and it preserves the value

of g. For instance,

f d g ogdQf(uz —g ')

Defining

Q&(g):—2rr f cr(8,g)( 1 —cos8)sin8d8,
1

Qz(g) =2ir o (8,g ) —, sin 8 sin8 d8,
0

we obtain

b=M f d'ggsQif(f },
II=M' f d'gg[(g~I —3g g)gp

+2SSQi ]f(i) ) .

(29)

(30)

(31)

(32)

= f d'g'og'f(u~ g')dQ, —

and upon dropping the primes it becomes

f d g gf(uz —g)o dQ, making

This result is of a rather general value, being con-
strained only by the condition mz/m &&1. But to
proceed further one has to specify the light-gas dis-
tribution function.

a=0. (23)

Analogously,

b = f d g( g —g ')Mgcr d Qf( u~ —g ), (24)

II=f d'g(g g')(g —g ')M—'go dQ f(u~ —g) .

(25)

III. INTEGRATION
OVER THE SOLID ANGLE d 0

The d Q integration can be carried out in (24) and
(25} because f (f) is independent of Q and
o =o(8,g). The only P dependence is in g ', which
for g =(0,0,g) is (see Fig. 1)

IV. LIGHT-GAS
VELOCITY-DISTRIBUTION FUNCTION

In previous works, f(u) has been taken to be a
Maxwellian distribution. Here we shall consider the
more general case of a slightly nonequilibrated gas,
where f is given by the first-order Chapman-
Enskog expansion for a nonuniform gas. The com-
plete first-order expression contains functions
which are solutions to integral equations occurring
in the Chapman-Enskog theory. In the ensuing cal-
culation, we will approximate these functions by the
first term in their Sonine polynomial expansions.
Accordingly, the first approximation is (Ref. 14, p.
280)

g '=g(sin8cos(j}, sin8sin(t}, cos8} .

Then

(26)
f(u)=n

' 3/2
—c2e ' [1—e c(c —,). —

2$'f dP( g g') =2ng(1 —c—os8)e3

=2~g (1—cos8), (27)

—E:cc],
where n is the light-gas number density,

(33)
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c —= u/(2kT/m)'/

e is the nondimensional temperature gradient

(34) V. LIMIT OF SMAI.L MEAN RELATIVE
MACH NUMBER ( u~ ) /(2k T/m )'

3p 2kT

p m

1/2

7 lnT, (35)

Treating u& as a quantity of order M', Jz will
remain the same to first order in M if we take for b
and II,

E is the nondimensional, symmetrized, and traceless
velocity-gradient tensor

b=b1+up B+
II=M I d g g[(g2I —3g g)Qz

(37)

EgJ p

BV; BVJ

a +a.XJ Xg
(36)

+2ssQi 1f( —s)+
(3g)

where V=( Vi, V2, V3) is the light-gas velocity field,
and p and p its viscosity coefficient and pressure,
respectively. For simplicity we have used a refer-
ence frame in which V=0. The purpose of includ-
ing the terms in e (proportional to V'inT) and I7
(proportional to the deceleration tensor ()' V) is to
study the effects of nonuniformity on the governing
equation for the light gas, particularly of thermal
diffusion which has been absent from previous
works. Once f is treated as known in (31) and (32),
the coefficients b and II can be calculated. They
depend on uz in a complicated form, and for that
reason one might be tempted to expand again

f( uz —g ) in the integrands of (31) and (32). How-

ever, this would not be a mass expansion because
not only the standard deviation of uz but also its
mean value relative to the gas would have to be
small compared with (2kT/m)' . There are a
number of problems in which such requirement is
not met. Of particular interest among those is the
expansion of a binary mixture of gases with
disparate masses into a vacuum. There, the relative
velocity between the light and heavy components
does become comparable with (2kT/m )'/ and the
full expression (31) for b has to be used. The recog-
nition of this fact considerably widens the spectrum
of possible Fokker-Planck equations. Nonetheless,
such a general case will be left untreated here where
we shall concentrate on the milder situation, where
the mean value of uz relative to the gas (uz), is
small compared to the characteristic value of g,
(kT/m )'/ . Then, f(uz —g ) can be expanded
about —g, and the terms of order greater than first
can be neglected being quadratic in the small
parameter (uz)/(2kT/m)'/, the relative Mach
number. In what follows, for simplicity, we treat
this group as if it were of order M'/ . Then, b and
II can be expressed in terms of the standard
Chapman-Enskog coefficients of diffusion and ther-
mal diffusion, as done below.

where b1, B, and II are now uz independent:

bi=~ I d'gssQif( s»— (39)

8=M I d gggQi
ag

(40)

Substituting now Eq. (33) for f(g) in (39), by sym-
metry, the Maxwellian portion of f and the E term
give no contribution. Thus,

'2

(41)

Sb = dc c (c ——,)e '
Q, (c) .

0
(43)

Analogously, only the first and third components of
f contribute to 8. Ignoring the latter for the mo-
ment, Eq. (40) yields'

' 1/2

But again the integral is proportional to I, reducing
to

' 1/2
8Mn 2kT

1/2

00

Ss= dcc e ' Qi(c) .

Finally, also ignoring E, only the Maxwellian por-

(45)

again, by symmetry, only the diagonal terms of the
tensor c c in (41) give a nonzero contribution to
the above integral which is proportional to I.
Therefore,

Mn SkT
1

3 1/2

with
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tion off contributes to ™II,thus

3/2
2kTnII= M

X fd cce ' [(c I—3c c)Qq+c cQ~] .

Again the integral is proportional to I, and because
the tensor mult~ilying Qz has zero trace and does
not contribute, H reduces to

3/2
8nM 2kT

(46)1/2 m

8 and H are related to the usual particle relaxation
time r (the inverse of the friction coefficient)

Brownian-motion collision operator to include the
effect of temperature gradients in the carrier gas.
Interestingly enough, the only new effect is a "ther-
mal acceleration" equal to v. 'Du&-V lnT. The
second-order term remains unchanged.

VI. DISCUSSION: THERMAL DIFFUSION
VERSUS THERMOPHORESIS

Equation (54) reveals that the direct consequence
of including the distortion in the light-gas distribu-
tion function due to temperature gradients is the ap-
pearance of a thermal-diffusion term in the
Fokker-Planck equation. This term is equivalent to
a net thermal force on the particle equal to

1/2
8Mn 2kT
3vg m

(47)

Plp
Fg ——— DagV lnT, (55)

by

(48)

2kT j 2kT
(49)

m mp

Analogously, b~ can be related to the thermal-
diffusion coefficient. Taking the limit of negligible
heavy-species mole fraction and very small mass ra-
tio m /m~ ~0, the Chapman-Enskog thermal-
diffusion coefficient becomes (Ref. 14, Sec. 14.7)

3 sb

2 S S, ,
8

(50)

where S, is the Schmidt number or ratio between
the kinematic viscosity of the carrier gas and the
diffusivity of the mixture D,

s, —= "
mnD

'

and D is related to ~ via

(51)

(52)

Indeed, from (50), (47), and (35),

b ~~———Da~ V lnT, (53)

This generalizes the usual Fokker-Planck

and substituting (53), (50), (49), (48), and (37) into
(19) we finally obtain

J& ——— . f&(u& Dar V InT)+-a - kr ~f,
Bup Plp Qu

(54)

which leads to a particle-drift velocity equal to
Dixz V lnT, identical with the Chapman-Enskog
thermal-diffusion velocity for a dilute and very

heavy species diffusing in a light gas. Such a result
is not surprising on the perspective of the work of
%aldmann' on thermophoresis, and the paper of
Mason and Chapman' on the close connection be-
tween thermophoresis and thermal diffusion. Ther-
mophoresis is the drift of Brownian particles down
temperature gradients. It is a phenomenon closely
related to thermal diffusion, except that it affects
the particles in a two-phase flow (a dusty gas) rath-
er than the components of a binary mixture of
gases. Also, the coefficient ar is of order unity for
ordinary gas mixtures, but reaches values of 107 or
higher for microscopic particles suspended in a
gas. ' A theoretical explanation of this
phenomenon (for particles smaller than the
suspending gas mean-free path) was given by Wald-
mann' by making a momentum balance on a
spherical particle fixed somewhere within a gas. At
every point on the surface of the particle the gas
molecules impinge and rebound at a certain rate, ex-
erting some stress, whose integral over the particle
surface yields a net force. If the gas-distribution
function and the laws of reflection at the wall are
specified, such a momentum balance can be carried
out straightforwardly and the result is a vanishing
force when the chosen gas-velocity-distribution
function f is Maxwellian. However, Waldmann
found that the force has the expected order of
values when the Chapman-Enskog expression [Eq.
(33)] is used for f. He thus unequivocally showed
the direct link between thermophoresis and the
departure from the equilibrium Maxwellian, which
temperature gradients impose upon the gas-velocity
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distribution. The next important step towards the
clarification of the nature of thermophoresis was
taken by Mason and Chapman, ' who showed that
Waldmann's thermophoresis and thermal diffusion
were the same thing provided that the law of reflec-
tion of the gas molecules on the particle surface
were of an elastic nature (like the interactions of the
kinetic theory of monoatomic gases). Then, the in-

tegrals from Waldmann's momentum balance and
those appearing in the Chapman-Enskog (CE)
thermal-diffusion coefficient are identical, ' and
directly related to our coefficient bi [Eq. (39)]. Our
result (53) is thus another confirmation of what
Waldmann and Mason and Chapman had already
demonstrated by different means. However, our
analysis also shows that the second-order term in

(54) is unaffected by the presence of temperature
gradients. In spite of the existence of a privileged
direction n r = V ln T/

~

V ln T ~, the diffusivity ten-

sor is still isotropic. As seen in Sec. V, this results
from the antisymmetry of the thermal perturbation
to f(u), and still holds true for inelastic gas-
particle interactions provided the refiection laws are
orientation independent (this is always true for
spherical particles}. Accordingly, even if the
kinetic-theory formalism does not encompass the
inelastic interaction occurring most often at the
particle surface, Eq. (54) still holds for Brownian

particles, provided the coefficient az is calculated
properly (or measured).

Since

c2 c2
(cjcke ' )=(5,jck+5;kc; 2c;c—jck)e

Bc;

(58)

evaluation of bS requires the calculation of func-
tions of the form

Ppg= fd C—F(c)c&c&ckci . (59)

By its symmetry respect to all indices, using spheri-
cal coordinates in (59), one may relate P to the ten-

sor A,

Aijkl =~ij ~kl +~ik ~j1 +~il~kj

as follows:

4m
Pygmy

= Alki c F(c)dc .
l5

(60)

(61)

One may also note that, because E is symmetric and
has zero trace,

~ijkl+kl 2+ij

With those results we find

(62)

(Einstein's notation) implicit summation with
respect to repeated subindices

3

a;bg = g a;bg

VII. EFFECT OF NONUNIFORMITIES
IN THE LIGHT-GAS VELOCITY FIELD and

4~ ~ ) cx7"

15 S,
(63)

LB=Mn
2mkT

2kT

X fd cccQi(c) (c ce ' )E, (56)
Bc

4II = —M2n
2mkT

'3/2 '3
2kT

&( fd'c ce ' [(c I 3c c )Q~—
+2c cQi]c c:IC . (57)

~ will be evaluated using tensoral notation with

The K term (proportional to the light-gas
velocity-gradient tensor) in Eq. (26) contributes to
the tensors II and 8 by the amounts XII and M
given by

3/2

(64)

with
00

S~—:f c e ' dc(2Qi —3Qz} .
0

(65)

But both S and ar/S, are numbers of order unity,
while E is a very small number formed with the
macroscopic fluid deceleration time ( —V V) and
the ve~small light-gas relaxation time p/p. The
tensor K is therefore of the order of the light-gas
Knudsen number, and the corrections AII and 68
are small. The only generalization to Eq. (54) ac-
counting for the fact that the light-gas velocity field
is not zero is a local translation by an amount
V(x, t) of the velocity u~ appearing in the collision
operator with no consideration for the gradients of
V. The final form of the Fokker-Planck equation
in a nonuniform gas is therefore
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+V (upfp)+V„(af~)
r

kT+ V„ fp
rrtp

where a is the acceleration due to external body
forces on the Brownian particles.

VIII. FINAL NOTE ON RELATED WORKS

After submitting this paper for publication we
have found several related works which reach con-
clusions similar to ours, although starting from the
theory of stochastic processes rather than from the
Boltzmann equation. Those references are reviewed

by Brock, whose paper also contains a valuable
section on thermophoresis.
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