
PHYSICAL REVIEW A VOLUME 26, NUMBER 1 JULY 1982

Fock-Tani representation for positron-hydrogen scattering
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A new second-quantization representation for low-energy positron-hydrogen scattering

is derived by starting with the standard Fock representation and carrying out two canoni-

cal transformations, one to introduce the field operator for bound positronium and the

other to introduce one for the bound atomic electron. The transformed "Pock-Tani rep-

resentation" Hamiltonian is obtained in closed form. Its various terms have simple physi-

cal interpretations and manifest the various scattering and reaction channels. The
interaction-matrix elements obtained are automatically renormalized through inclusion of
bound-state —continuum orthogonality corrections. The definition of the S-matrix ele-

ments is simpler in the new representation since bound states are exactly redescribed

therein as elementary particles. Certain constraints necessary and sufficient for the one-

one property of the mapping from Fock- to Fock-Tani-state space are shown to be au-

tomatically satisfied when the asymptotic initial and final states for scattering processes

are defined by the standard wave-packet method. This representation is expected to be

useful for inclusion of the intermediate-state positronium channel in the standard many-

body Green's-function approach to evaluation of S-matrix elements.

I. INTRODUCTION

Quantum-field-theoretic Green's functions have

been shown to be a very useful tool for calculations

of low-energy elastic and inelastic electron-atom,

atom-atom, and atom-molecule scattering cross sec-

tions. ' The S-matrices for such processes are ex-

pressible in terms of single-particle Green's func-

tions. Similar methods are also applicable to reac-

tive scattering cross sections, but in such cases

(n ', m '~n, m) Bethe-Salpeter transition amplitudes

are required for the reactive S-matrix elements of a
process involving n- and m-particle initial bound

states and n'- and m'-particle final bound states.
These are much harder to determine accurately
than are single-particle Green's functions.

This difficulty can be circumvented by a change
of representation (unitary transformation) such that
in the new representation, the field operators for
the composite bound states satisfy elernentary-

particle commutation relations and are therefore

already manifested in appropriate (1,1~1,1) parti-
cle transition amplitudes. In recent years several

such representations have been developed. The one
which will be discussed herein is the Fock-Tani
representation, obtained from the standard Fock

representation of the constituents (electrons and
nuclei) by a suitable unitary transformation, the
generalized Tani transformation. ' The price paid
for these advantages is the difficulty of carrying
out the transformation in detail so as to obtain an
explicit expression for the Fock-Tani Hamiltonian.
In fact, in the cases previously discussed involving
many-body systems of composite particles, the in-
teraction Hamiltonian in the new representation is
an infinite series of which only the leading terms
are known explicitly. However, for some few-body
systems, the transformation can be carried out ex-
actly and explicitly. This is the case, for example,
for positron-hydrogen scattering in the fixed-
nucleus approximation. Then the bound composite
species are the hydrogen atom (described as one
electron bound to a force center, the proton) and
the positronium atom. The representation thus ob-
tained is expected to be particularly convenient for
treating the effects of the positronium channel,
which contributes importantly in virtual intermedi-
ate states in calculation of low-energy positron-
hydrogen scattering cross sections, even before the
real positronium channel opens.

A field-theoretic description of such effects us-

ing composite positronium fields and their Green's
functions has been initiated by Ficocelli Varra-
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chio. ' However, calculations will be facilitated

by a change of representation such that the posi-
tronium contributions are already included in

lower-order Green's functions. This is the motiva-

tion for the derivation herein of the Fock-Tani
Hamiltonian for positron-hydrogen scattering.
Calculations using this representation will be
described in subsequent publications.

In Sec. II the standard Fock representation for
this system is introduced, and the Fock representa-
tion of the hydrogen and positronium bound states
is described in Secs. III and IV. The transforma-
tion to the new Fock-Tani representation is carried
out in Sec. V and Appendixes A —D, and the

physical interpretation of the new representation is
discussed. Certain constraints necessary and suffi-
cient for the one-one property of the mapping
from Fock to Fock-Tani state space are shown in

Secs. VI and VII and Appendix E to be automati-

cally satisfied when the asymptotic initial and final
states for scattering processes are defined by the
standard wave-packet method, and a simple defini-

tion of S-matrix elements in Fock-Tani representa-
tion is shown to be equivalent to the more compli-
cated definition in terms of bound states in Fock
space.

V~(xy) =—
[r~ —r,

/

The electron and positron fields satisfy the stand-
ard anticommutation relations'

[e(y),e(y'}]+—[p(x),p{x')]+—0,
[e(y),e (y')]+ ——5(y —y') =5(r, —r,' )5

,

""
(3)

[p(x),p (x')]+ ——5(x —x') =5(rz —rz )5
P P

[e(y),p(x)] =[e(y),p (x)]

The Hamiltonian (1) is general enough to describe
low-energy elastic, inelastic, and reactive positron-
hydrogen scattering. Radiative and e-o annihila-
tion and pair creation channels could be easily ad-

ded, but in the interests of simplicity they will be
omitted here.

amply demonstrated in the literature. ' ' The
Schrodinger operators occurring in {1)are given, in
atomic units fi=m =e =1, by

1 8
H, (y) = ——

2 Br,

1 8 18 (x)= —— +—,
2 ()~ rrp p

II. FOCK REPRESENTATION

The system of interest consists of one positron
and one electron in the Coulomb field of a proton
assumed fixed at the origin. Let p(x) and e(y) be

the standard Fock representations of the positron
and electron field operators. Here x =(rp, o.p) with

rp the positron position vector and o~(=f or &) its

spin z-component variable. fdx stands for

y., fd'r,
Similarly, y = ( r„o,) and

fdy=y. , fdr,
for the electron. The standard nonrelativistic Fock
Hamiltonian is

HF fdxp (x)H~(x)—p—(x)+ fdye (y)H, (y)e(y)

III. HYDROGEN BOUND STATES

At
The creation operator A for an electron in or-

bital y (y) bound to the nucleus at the origin is

=fdye (y)e (y), (4)

and the Fock representation of the corresponding
one-electron state is

~

ve) =A ~0),
where

~
0) is the Fock vacuum. The q&„, could be

either free or perturbed orbitals; it is not necessary
to specify the choice here. It is only assumed that
the set tqr ] is orthonormal, but not necessarily
complete. " The A and A„,=(A )~ satisfy the
anticommutation relations

~ f dx dyp (x)e (y)V~(xy) e(y)p(x)
[A,A„,]+——[e(y),A ]+—0,

[A,A„,]+=5

on the one-positron one-electron subspace. The ad-

vantages of such a Fock representation even for
few-body scattering problems have already been

[e(y),A„,]+=qr (y),

[p(x),A ]+——[p(x),A„,]~=0 .
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IV. POSITRONIUM BOUND STATES

[A p,App ] =[p(x),A p ] =[e(y),A p, ] =0,
A At

[A p„App, ] =5 p+C p,
[p(x) A p ] =fdy q p,(xy)e (y),

[e(y),A p, ] = —fdx (p p, (xy)p (x),

(9)

assuming the q p, orthonormal. The operator C ~
is

C p
———fdyidyiK'&(y„y2)e (yi)e(y2)

—fdxidx2E~p(x, ,x2)p (xi )p(x2),

where the electron and positron exchange kernels
are

ItIstI(yi$yi} —f 'fa ps(xy'2)V'pps(xyi }dx

E~~p(xi, x2)= f lp$$ps(x2y}ppps(x]y)dy ~

V. FOCK-TANI REPRESENTATION

We shall transform to a new representation in
which the bound atomic electron and positronium
states are described by annihilation and creation
operators e„, e„(electrons) and f, g (positroni-
um) which are kinematically independent of the
free electron and positron operators e(y), e (y),
p(x), and p (x) in the sense that the anticommuta-
tion and commutation relations (6) and (9} involv-

ing theA, A, A p„andA p, are replaced by

[e„,e„]+=[e(y),e„]+=0,
[4.,t(~] =b"(x),~(.] =[e(y),4.] =0,
[e.0 l =[e.*4 l- =o

t[e„e, ]+—-5, [P..VI] =5.I.
[e(y),e„]+=[p(x),g ] =0,
[p(x),e„]+=[p(x),e„]+=0,
[e(y»f.l- =o .

(12)

These are

~aPs)=A p, ~0),
where

A~ps ——fdx dye~ps(xy)p (x)e (y)

and the q p, are the bound positronium wave
functions; again, x =(rp, op) and y =(F„o,). The

p and A p = (A p ) satisfy the commutation
relations

The procedure for enlargement of the Fock space
so as to allow consistent imposition of these com-
mutation and anticommutation relations along
with (3), (6), and (9) is discussed in Appendix A.
Note that the set of positronium quantum numbers
can be decomposed as a =(k,v) where k is the
translational wave vector and v the set of internal
atomic quantum numbers, the same as the set v of
atomic quantum numbers labeling the atomic elec-
tron orbitals y . This corresponds to the usual
center-of-mass decomposition of the positronium
wave functions

p p,(xy)=(2sr) ~ e ' ''u„(r, rp—,ap, a, )

(13)

with r = —,(r, + rp). The 5 a in (9) stands for
5(k —k')5 ~ where a=(k, v) and (P=(k', v'). By
Fourier transformation with respect to k, one can
introduce field operators g„(r), 1(„(r) for positroni-
um in internal state v with center of mass localized
at r:

f„(r)=(2sr) fdk e' " ' 'P~»

f- =(2n)f d. r e ' " ' P„(r ) .

Here Pi, „=P with a=(k, v}. The positronium
field operators satisfy the local Bose commutation
relation

(14)

[1(„(r),g„(r ')] =5(r —r ')5 (15)

in spite of the finite size and composite structure
of the positronium atom. Note that this would not
be the case for the Fourier transforms of the com-
posite positronium operators A p„due to the C p
operator term in the commutation relation (9).
This is a major motivation for carrying out a
change of representation to the "Fock-Tani state
space" in which the simpler relations (12) are valid.

The desired change of representation is effected
by the multispecies generalization of the Tani
transformation' which has already been discussed
in detail. The unitary operator U which effects
the change of representation is

U=Up, U, ,

Then

wf
Up =exp Fp,Fp —=g (A p P —l//+A p ),

a
(16)

U, =exp F, , F, = g(A —e„—e„A ) .2' '
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U 'Ive)=U A IO)= Ive)=e„IO),
(17)

U 'IaPs)=U 'A p, IO)= IaPs):—g IO),

i.e., a bound atomic electron and bound positroni-
um atom are redescribed as kinematically indepen-
dent elementary particles in this new representa-
tion. ' Note that Up, and U, do not commute.
The ordering Up, U, is essential; for the opposite
order U, Up„ the second Eq. (17) is violated; see
Ref. 7. U acts on an enlarged state space W which
is a "graded direct product" of the original
electron-positron Fock space P and a new Fock
space 3P of the operators e„, e g, and g, as dis-

cussed in Appendix A. A subspace Wo of W, de-
fined by the constraints

x+
I

)=NpsI )=0,
I

)EJ p

is isomorphic with W. Here N, and Np, are the

number operators for bound atomic electrons and
positronium atoms in the new representation

A t A A)A+a g v eve +ps g li'a4a ' (19)

H = U HpU= U~ ( Ups HF Ups)U~ (20)

with HF the one-positron one-electron' Fock
Hamiltonian (1). The evaluation of the positroni-

A i A A
um Tani transformation Up, H~Up, is carried out
in Appendix 8; the result is

As will be discussed in Sec. VI, after the change of
representation affected by U, the trivial constraints
(18) will be replaced by new constraints expressing
the fact that in the new Fock-Tani representation,
bound atomic electrons and positronium atoms are
described by the operators e„, e~ f, and f~ rather

A A$
than A~, A ~p Aaps p and A a ps.

The Hamiltonian H in Fock-Tani representation
is

Upg Hp Upg g i}i~(a
I H~ I 13)gtt+y fdx dy[p'(x)e (y}(xy

I H~ I
a}'i}i~+H c.]

aP a

+fdxp (x}Hp(x)p(x)+ fdye (y)H, (y)e(y)

+fdx dy dx'dy'p (x)e "(y)(xy
I H~ I

x'y')'e(y')p(x') . (21)

Here (a
I H~ I P) is the matrix element of H~ between bound positronium wave functions

(a
I H~ I

P) =f ip* p (xy)H~(xy)tpttp (xy)dx dy

with H~ the Hamiltonian of the positron and electron in the field of the proton

H~(xy) =H&(x)+H, (y)+ V~(xy)

(22)

(23)

[see (2)]. (a
I H~ I

xy)' and (xy
I H~ I

a)' are renormalized matrix elements for positronium formation and
decay,

(xy
I H~ I

a)' =H~(xy)tp p (xy) f i) p.(xy x'y')—H~(x'y')ip p (x y )dx dv'

(a
I H~ I

xy )' =[(xy I H~ I
a)' ]',

and (xy I H~ I

x'y')' is a renormalized, nonlocal positron-electron interaction-matrix element

(xy
I H~ I

x'y')' = V~(xy)5(x — )5x(y y') [H~(xy)+—H~(x—'y')]hp, (xy,x'y')

+f6 p, (xy,x"y")H~(x"y")hp,(x"y",x'y')dx "dy" .

(24)

(25a)

The function hp, in these expressions is the posi-
tronium bound-state kernel explicitly given by

I

in the absence of the field of the proton, satisfying
the Schrodinger equation

kp ( yx, , x2)V=2+ ip+ps(xiyi )++ps(x2V2) . (25b)

These expressions simplify if the q p, (xy) are tak-
en to be the bound positronium energy eigenstates

1 8 1 8

Br 2

1
(x )

=@~ p,(xy) . (26)
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Then it is easy to show, using the definition (B23)
of hp, and the identities (B24), that

tronium transitions' due to the Coulomb field of
the proton

«
I Hp l »=e 5 I+«

I Vp- I &)

(xy lH~ la)' =(xy
l Vp„, la)',

(xy l H~ l

x'y')' = V~(xy)5(x —x')5(y —y')

g ecdp p (xy)'p p (x'y')

(27)
(a

l Vp... lP)= f (p'p, (xy) ———
rp r~

X ippp (xy)dx dy (28)

+(xy l
V „,lx'y')',

where (a
l Vp„, l P) is the matrix element for posi-

(xy
l Vp„„ l

a)' and its complex conjugate
(a

l Vp„, l
xy)' are renormalized matrix elements

for positronium decay and formation due to the
field of the proton,

1 1 1 1
(xy

l Vp«~ I
a)' = ——

q& p, (xy) — &p (xy, x'y') ———y~p, (x'y')dx'dy',
rp re rp r~

(29)

and (xy
l

V „, l

x'y')' is a renormalized matrix element for continuum-continuum positron-electron transi-
tions due to the field of the proton

1 1 1 1
(xy

l Vp„, l

x'y')' = ————+ —,——, b,p,(xy, x'y')
rp re rp re

+f6 (pyx, xy")
rp

1
hp, (x"y",x'y')dx "dy" .

r~
(30)

Note that the matrix elements (xy
l Vp«, l

a)' [Eq.
(29)] and (xy

l H~ l

x'y')' [Eqs. (27) and (28)] both
contain orthogonalization terms involving the posi-
tronium bound-state kernel b,p, [Eq. (B23)] in addi-
tion to their leading terms, the bare matrix ele-
ments. These orthogonalization terms are a direct
consequence of the algebra of the transformation
Up and express the fact that the continuum
positron-electron wave functions are orthogonal to
the bound positronium wave functions q~p, . Since
these orthogonalization terms are subtracted from
the bare matrix elements, the renormalized matrix
elements (xy

l Vp„, l
a)' and (xy

l H~ l

x'y')' are
considerably smaller than the corresponding bare
matrix elements, the strong internal positronium
binding effects being already included in the diago-
naltermg e p,P g.

To obtain the final expression for the Fock-Tani
representation Hamiltonian H [Eq. (20)], one must
apply the transformation U, to (21) so as to intro-
duce the annihilation and creation operators &t and

e„ for the electron bound to the proton. There is a
simple closed-form expression' ' for the effect of
the transformation U, on the electron field opera-

I

tor e(y):

U, e(y)0, = e(y) —fd yb, ,( ,yy)e(y')

+ gq (y)e„, (31)

where 6, is the hydrogen bound-state kernel

~, (y,y')= gq (y)y' (y'), (32)

a one-particle analog of the positronium bound-
state kernel (B23). For completeness, the deriva-
tion of (31) is outlined in Appendix C. It follows
from the anticommutation and commutation rela-
tions (6), (9)& and (12) that p(x) and 1( both com-
mute with F, [Eq. (16)];hence they are invariant
under the transformation

U, p(x)U, =p(x), U, 1( U, =g (33)

It is then a straightforward matter to carry out the
transformation (20) of (21) to obtain the Fock-Tani
Hamiltonian



222 M. D. GIRARDEAU

H = U~ Ups Hp Ups U~, =Hp + V ~

Ho g——e e„e„+fdye {y)T,(y)e{y)+ ge.'g g.+fdxp (x)T&(x)p(x),

V= fdy dy'e (y){y I V, I
y')'e{y'}+fdx P'{x) P{—x)+ X' 0 {a

I Vp„ I »6
aP

+ g fdxdy[P (x)e {y)(xy I V,„,la)''f~+H c ]. .

+g fdx[p (x)e„(xvl V, , la)'t{ +H.c.]

+fdx dy dx'dy'p (x)e (y)(xy
I H~ I

x'y'}"e(y')p{x')

+.g fdx dy dx'[p (x)e (y)(xy I H~ I
x'v)''e„p(x')+H. c.]

+g fdxdx'p (x}e„(xvlH~ lx'v'}'e~p(x'}. (34)

In deriving this expression it has been assumed
that the {p p, satisfy (26) so that Eqs. (27) —(30)
hold, and also that the y~ are the unperturbed
bound hydrogen orbitals satisfying the Schrodinger
equation

from interaction with the proton

em=&a+{a
I Vp-i I

a) . (3S)

T, and T~ are the electron and positron kinetic-
energy operators

1 8 1
H, (y)p (y)= —— ——

{p (y)=e {p (y).
2 Qr 7'

l a' l a'
T,(y) = ——,, Tp(x) = —— (39)

(35}

f4, (y,y')y ( y) dy'=y (y) (37)

analogous to (B24). The renormalized positronium
energy levels e' include the diagonal contribution

There are no e (y)e and e~(y) terms in the case
that {35)is satisfied, because the renormalized ma-
trix element

(y I H,
I

v)' = H, (y)p (y)

—f&,(y,y')H, (y')q (y')dy'

(36)

then vanishes, in analogy with the simplification
(27) of (xy I H~ I

a)' [Eq. (24)] ensuing when (26)
is satisfied. To prove that (36) vanishes in the case
(35), one employs the identity

The renormalized matrix element (y I V, I

y'}' for
interaction of free (i.e., continuum) electrons with
the proton is

—ge q' (y)q'(y').

The renormalization term subtracted g„e
is the part of the spectral representation of the
one-electron Hamiltonian associated with its bound
states, which are included in Ho in the term

g„e~e„e„. The renormalized matrix element is
therefore considerably smaller than the bare one,
its first term; note the similar subtraction in the
free positron-electron matrix element (27). The
matrix element (27) undergoes a further renormali-
zation in (34):

{xy IHp Ix'y')" =(xy IH~ Ix'y')' —f~.(yyi){xyi IHp Ix'yi)'dyi

f (xy
I
H—~ I

x'yi)'~. (»»')dyi+ f~.(y yi }(xyi I H~ I
x'y*)'~. {y~ y')dyidy2 (41)
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(42)

where the double prime indicates that this matrix element is renormalized by orthogonalization to both

bound positronium and hydrogen (the latter orthogonalization involving 6,}. The other matrix elements are

(xy ( Vp„, )
a)' ' =(xy

( Vp, (
a)' —f6,(y,y')(xy'

( Vp„, )
a)' dy',

(xv
) Vp„, (

a)' =fy' (y)(xy ( Vp, )
a)' dy,

(xy I H~ Ix'v}"=f f(xy I H~ I

x'y')' —f~,(yy")(xy" IH~ I
x'y')'dy "]~ (y"')dy'

(xv
f Hp, f

x'v')' =f~' (y)(xy f Hp, f
x'y')'m, ,(y')dy dy'

Again, the single prime denotes renormalization by
orthogonalization to positronium only, whereas the
double prime denotes renormalization by orthogo-
nalization to both positronium and hydrogen.

It can be shown' that the matrix-element
orthogonalizations to hydrogen are equivalent to
the description of the continuum electron by
orthogonalized plane waves (plane waves with their

projection onto the bound states subtracted) rather
than undistorted plane waves. Such a description
has been advocated previously in atomic physics,
e.g., in the theory of photoionization. ' Ortho-

gonality constraints have been shown to play a
fundamental role also in the theory of electron-
atom scattering. In that case such constraints usu-

ally arise from distorted-wave formulations' based
on optical potential descriptions of the interac-
tion. ' The present theory differs from such ap-
proaches and it seems closer in spirit to a formal-
ism of "renormalized interactions" recently pro-
posed in nuclear physics, in order to exclude oc-
cupied states from optical amplitudes and poten-
tials. The representation (34) can be regarded as a
generalization of the orthogonalized plane-wave
(OP%) formalism to include orthogonalizations of

the free positron and electron wave functions to
bound positronium. In the representation (34),
such orthogonalization terms are included in the
matrix elements rather than the field operators.
One could use projected field operators instead.
For example, the projected electron field operator

(y) is2122

e,(y) =e(y) —fdy'h, (y,y')e(y'} . (43)

However, inclusion of the orthogonalization terms
in the matrix elements rather than the field opera-
tors has the advantage that the free-field operators
have simpler algebraic properties than projected
ones.

The positronium atom virtually present in inter-
mediate states contributing to the positron-
hydrogen scattering matrix elements is formed only
in the neighborhood of the proton, since the elec-
tron is localized in that neighborhood in the initial
state. There are, therefore, calculational advan-

tages to expressing the positronium terms in (34) in

terms of the position-space positronium field
operator f„(r ) Such an e.xpression is easily de-

rived using (14); the result is

Ho —ge e~„+fdye (y)T, (y)e(y)+ fdxp (x)T&(x)p(x)+ g fdr/„(r) — 2+e p p„(r),
4 Br'

V= fdy dy'e (y)(y [ V, [
y')' e(y')+ fdx p (x)—p(x)+ g' fd r@„(r )( r v

) Vpipt [
rv')@„(r)

fp W

fdrdrpdr, [P ( orp)ep(r, o, )(rpop, r, o,
~ Vp„, ~

rv}"hatt„(r)+H. c.]
VETCH

CT~

fdr drp[P (rpap)e„(rpop, v
~ Vp„, ~

rv')' t(~(r) ~H.c.]
W CTp

+fdx dy dx'dy'p (x)e (y)(xy
~ H~ ~

x'y')' ' e(y')p(x')

(44)

+ g fdxdydx'[P (x)e (y)(xy
~ H~ ~x'v)''ep(x')+H c]

+ g fdxdx'p (x)e„(xv ~H~ ~

x'v')'e~p(x') .
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One would, of course, be free to transfer the
positron-proton interaction term p (1/rp )p and

part or all of the electron-proton interaction term
p ~

e ( )' e from V to Ho so that the eigenstates of Ho
are Coulomb waves rather than plane waves. The
same remark applies also to Eq. (34). In the term

1(„( . )1(t„ in Ho, the operator —( —,)t) It)r is the

translational kinetic energy operator of the posi-

tronium atom, which has mass 2 in atomic units

(electron mass = positron mass =1). The e„'p, are
renormalized positronium energy levels including

the diagonal contribution from the positronium-

proton interaction

e vp s= e vp s+ ( rv
I Vprot I

r v) . (45)

The bare positronium levels e p, are the internal
contribution in the decomposition of the energy e

of the positronium wave function (13) into transla-
tional kinetic energy and internal contributions,
where a=(k, v) with k the translational wave vec-

tor

2
~a ~k 4 +~vPs . (46)

The positronium-proton interaction-matrix element
1s

(rv
I Vp„, I

rv')= g f13r,pu'„(r,p, op, o, )
1

up( rep, Op, ae ) s

Ir+ —,r,
I

(47)

where u„ is the internal wave function in the center-of-mass decomposition (13) and r,p is the relative coor-

dinate r, —rp. Recall that r is the center-of-mass coordinate of the positronium atom [Eqs. (13) and (14)].
Note that the matrix element (47) is local (diagonal in r ) in this representation, in spite of the fact that the

finite size and structure of positronium are taken into account. The doubly renormalized matrix element

(r, r,p, trp, tr,
I Vp, I

rv)' ' for decomposition of positronium into a positron and electron [the p e 1(t„ term in

(44)] is defined as follows. First, recalling that x=(rp, trp) andy =(r„o,), one finds for the Fourier

transform of the bare matrix element (xy
I Vp„, I

kv):

(xy
I V„„,I

rv) (2=m) ~ fdke '"''(xy
I Vp«t I

kv)=5(r ——,r, ——,rp) ———u„(r p, op, o, ),
Pp re

(48)

which is again diagonal in the center-of inass coordinate. Introducing r, =( —, )(r, + rp) and r,p = r, —rp

as new integration variables instead of rp and r, and performing the trivial r, integration, one obtains the

expression (44) for the p e g„ term, in which the matrix element ( )' ' is defined by successive renormaliza-

tions (orthogonalizations to positroniuin and to bound hydrogen electrons) as follows:

rep&op&&e I Vp«t I
rv)

1
uv(rep ~p tre)

I
r+ —,r,p I

(r, rep«&p«tre I Vp«t I
rv)' =(r, rep, trp«oeI Vp ot I

'rv) —fdr,'php, (r,p, r,'»op, o', )(r, r,'p, o'»tre
I Vp«t I

rv),

(rptrp, retre I Vp«t I

rv)'' = 5(r —t re —i rp)(r, rep, trp&tr IVep«t I

rv)'

—Sb,,(r„2r —rp)(r, 2r —2rp, op, o, I Vp„, I
rv)' .

~l
X ~ v( r epsOp s~e ) s (SO)

where use has been made of the fact that the full
kernel (B23) is diagonal not only in the center-of-
mass coordinate —,(rp+ r, ), but also in the posi-

tron and electron spin variables if spin-spin and

Here the positronium bound-state kernel reduced to
the relative wave functions u„[Eq. (13)] is found

(Appendix D) to be

~ps( rep«rep«trp&oe ) g uv( rep «trp«~e )
v

spin-orbit interactions are negligible as assumed in

(26). Both the unrenormalized and singly renor-
malized matrix elements are diagonal in the
center-of-mass coordinate, but the subtraction term
in the doubly renormalized matrix element ( )' '

involving the hydrogen bound-state kernel 6, is
not, since the hydrogen bound orbitals y„, are lo-
calized relative to the origin (position of the pro-
ton). The hydrogen bound-state kernel (32) is diag-
onal in spin, again assuming spin-spin and spin-
orbit interactions negligible:
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b, (y,y') =b,,(r, ir„r,' o,')=5,h, (r„r,' ),

r4(r„r,')= gq„(r, cr, )q'„(r,'n, ) .

The diagonality factor 5, arises because each
OeOe

is an electron-spin z-component eigenstate,
hence nonzero only for one value of cr„either

(51)

o, =t or o, =&. Then' (r, cr, )q&~(r, 'cr,') is
nonzero only if o, =0,'; the sum defining
h,,(r„r, ') is not only diagonal in spin, but in fact
spin independent.

The p e„f„ term in (44) is obtained by a similar
derivation, leading to the following expression for
the matrix element:

(r rr&, v
~ Vp, & ~

rv')' =8(2n) gq&' (2r —rp, o', )(r»r 2rp~o'p~o'e
I Vprot I

rv')' (52)

where the singly renormalized matrix element

(r, r,p, crp, o,
~ Vp„, ~

rv')' is defined by (49), and
the r, integration over a 5 function factor
5(r ——,r, ——,rp) has been performed, leading to
the factor of 2 and the replacement r, =2r —r~
and hence r,z ——2r —2rz, as in the subtraction
term in the last Eq. (49).

The fact that all of the terms in Ho (and most
of those in V) have simple and obvious physical in-

terpretations can be regarded as further evidence
for the utility and physical relevance of the canoni-
cal transformation (16); (44) is an exact expression
for the transformed Hamiltonian (19) on the one-

positron one-electron subspace.

VI. CONSTRAINTS

which is easily evaluated (Appendix C) to give

N,
' =+A A =f dy dy'e (y)h, (y,y')e(y') . (55)

Ups (Np+Np )Up =Np+Nps

and hence
A i A A A A A ] A A
Up Np&Up =Np +Np Up Np Up, .

Then transforming by U, as in (20) and noting
that U, commutes with both Np and Np, [Eq.
(33)], one has

(56)

(57)

N p, must be evaluated in two steps, as in (20). By
(89),

N,
'

~
)=Np,

~

)=0,

where
~

)=U '
~

) and

(53)

Ng =U NgU, Nps=U NpsU (54)

with N, and Np, given by (19) and U by (16).
Noting that the e„commute with Fp„one has by
(16)

In the same representation in which the Fock-
Tani Hamiltonian (34) or (44) acts, the constraints
(18) become

N p, ——Np, +Np —1Vp, (58)

which reduces the evaluation of N p, to that of Nz.
To evaluate the latter operator, note from (BS) and
(1) that Nz can be obtained from HF be replacing
Hp(x) by the unit operator and H, (y) and V~(xy)
by zero. This corresponds to replacing Tz(x) by
the unit operator, and T, (y) and all potential-
energy terms by zero in the various contributions
to (34) or (44). In this way one finds Nz, and
hence, in the notation of (44), the following expres-
sion for Np, .

N'p = fdx dy dx'dy'p (x)e (y)(xy
~

N'p,
~

x'y')e(y')p(x')

+g fdx dy dx'[p "(x)e (y)(xy
~
Np,

~

x'v)e„p(x')+H. c.]

+ g fdxdx'p (x)e„(xv
~

N'p, ~x'v')e„p(x') . (59)

Here
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(«V
I Np. I

x'y'}= ~p.{xy,x'V') —f~.{y,yi +p.(xyi, x'y'}dyi —f~p (xy x'Vl + (yl y )dyl

+f5,(y,y, )kp (xyi x'V2)k (V2,V')dyidy2,

(xy
~
N p, ~

x'v)= f [hp, (xy,x'y') f—5,(y,y")hp, (xy",x'y')dy "]q& (y')dy',

(xv~Np. ~«'v')= fq' (y)~p. (xy,x'y')q. ,{y')dy dy'.

(60)

The expression (55} for N,
'

is exact on the whole
Fock-Tani state space, and that for Np, is exact on
the one positron, one electron subspace relevant to
the positron-hydrogen scattering problem. The
way in which the constraints (53) are satisfied is
discussed in the following section.

VII. ASYMPTOTIC STATES AND S MATRIX

The unperturbed states representing a free posi-
tron with wave vector k and spin z component cd,
plus a free hydrogen atom in its vth bound state,
are given in this representation by

X i kop, v) (62)

and the S-matrix elements for elastic and inelastic
positron-hydrogen scattering are

~
kop, v)=(2n)r~f drpe

'
'p {rpop)e„~0&

(61)

and are eji,enstates of Ho [Eq. (44)] with eigen-

values —,k +a~. The corresponding in and out

states
~

kcrp, v) +are give-n by the following expres-
sion from the formal theory of collisions:

~
kcrp, v}+=+ lim -ig( , k +e —H+irl)—

g —+0+

(64)

S(kp cTp p k p 0'p
p k 0'p

& v)

k{op,pko,
~

k'op, )+v5
P P

(65)

This section will be concluded with a simple il-
lustrative application of the new representation,
namely, the lowest-order approximation to the pro-
cess

[N,',H]=[Np„H]=0,
since N, and Np, commute with the original Fock
Hamiltonian HF [see Eqs. (1), (19), and (12)].
Hence if the asymptotic unperturbed states

~
kcrp, v) satisfy the constraints (53), it will follow

from (62) that the
~

kop, v)+-will also. It is shown
in Appendix E that the asymptotic unperturbed
states will indeed satisfy the constraints in the usu-
al limit of wave packets localized infinitely far
from the scatterer (here, the H atom). This is the
usual limiting argument used to justify use of bare
plane waves in defining the

~
kop, v). The new

point here is that this standard argument is suffi-
cient to justify dropping the constraints (53) when
calculating S-matrix elements in this new represen-
tation. It is not difficult to show that the same
argument also applies to the asymptotic final states

~
kpcrp, k,o, ) for reactive positron-hydrogen

scattering, the corresponding out states

~
kpcrp, k,o,), and the resultant reactive S-matrix

elements

S(kcrp, v;k'op, v')= (kop, v
~

k'crp, v')+&
Op Op

e+( k )+H(v; )~e+(k')+H(vf ) . (66)

The constraints (53) need not be enforced in com-
puting the S-matrix elements. The reason is that
the constraints are constants of the motion,

Cross sections for (66) and related processes have
been extensively studied in the literature and we
refer elsewhere for more conventional quantum-
mechanical treatments. The S matrix of (66)
can be decomposed according to

S(k cd vf ko'p v& ):5(k k )5 27Tl5(E E )T( k cd vf kop vI )
P

(67)

with the second term on the rhs of (67) representing the T matrix for (66). To lowest order in the interac-
tion (T=T&) this becomes

Ti(k'op, v~, kop, v;)=(k'crp, vf ~
V

~
kop, v;) (68)
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with V the potential responsible for the transition, explicitly given by (44}, and
~
ko~, v) the noninteracting

states of the theory, represented by (61}. By using (44) in (68} and "pairing" creation and annihilation opera-
tors of the same kind, it is immediate to verify that T& reduces to

T, (k'o~, vf', kcr~, v;)=(2n') Jdrzdr~e ~(xvf ~H~ ~x'v;)'e (69)

From (42) and (27) it readily follows that

Ti(k'o~, vf, ko~, v;)=(2n) 'I dr~dr~dydy'e 'ip'„, (y)Vf8

V~(xy)5(x —x')5(y —y') —QE+lp p (xy)ip p,(x y )

+ (xy
~ Vp„, ~

x'y')' g„.,(y')e (&0)

with all the quantities being defined in Sec. V.
The first term within large parentheses represents
the conventional first Born contribution to the
cross section. The remaining two terms represent
corrections characteristic of the present formalism,
corresponding to the binding of the e+-e pair in
positronium and to the screening of the charge of
the proton, due to the hp, kernel, respectively.
Even in lowest approximation, therefore, the
present theory brings into the picture terms absent
from a conventional quantum-mechanical treat-
ment.

tion to positron-hydrogen scattering, for informa-
tive discussions, and for copies of his work ' on a
field-theoretic formulation of this problem. I have
also benefitted from discussions with J. V. Leahy
regarding the graded direct product construction in
Appendix A. This research was supported by the
U. S. Office of Naval Research and by the M. J.
Murdock Charitable Trust.

APPENDIX A:
GRADED DIRECT PRODUCT CONSTRUCTION

OF THE IDEAL STATE SPACE

VIII. DISCUSSION

A new representation for low-energy positron-
hydrogen scattering has been derived by starting
with the standard Fock representation and carrying
out a sequence of two canonical transformations:
one to introduce a field operator for bound posi-
tronium, the other to introduce one for the bound
atomic electron. The physical interpretations of
the various terms in the transformed Hamiltonian
have been discussed; these terms correspond direct-
ly with the various possible scattering and reaction
channels, and include the effects of bound-state-
continuum orthogonality in the matrix elements.
This representation is expected to be useful for in-

clusion of the intermediate-state positronium chan-
nel in the standard many-body Green's-function
approach. ' Calculations using this representa-
tion will be described in subsequent publications.
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Let P be the original electron-positron Fock
space on which Eqs. (3), (6), and (9) are valid, with
vacuum denoted by

~
O, W &. Let At be a complete-

ly independent Fock space on which the l(, g, e„,
e„act, and on which

[e„,e~]+——0, [e„,e~]+——5~,
A A A Af

[4a fp] =0 [4a 4—p] =5ap-

[e„,4 ] =[e„,ll' 1—=0
(A1)

Denote the vacuum of 4' by
~
0,9P &. We want to

combine W and A so as to produce an enlarged
state space W on which the normal commutation
relations' (3), (6), (9), and (12) may all be con-
sistently imposed.

As a preliminary, recall the definition of the
direct product. Let

~
f(W) &, F(W) be any state

and operator on W, and let
~
f(3P ) &, 8(%}be any

on 3F. The direct product state

~

y(~)it()&—=
~
ip(~)& S

~
ip()&

is defined implicitly by the requirement that it is
bilinear in

~
f(W)& and

~
g(3F)&, by the inner

product rule
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(1{(W)1P(%)
~

y'(~)li'(&) &

—= (y(~)
~

y'(~) &(y(&)
~

y'(&) &, (A2)

and by the definition of direct product operators
F(W) 8B(A'), which act, by definition, according
to the rule F(W) =F(W—) 8 1(39) (A6)

product space W=W Sg& is then defined by re-
taining the usual direct product rules (A2) —(A4),
but modifying the rules for extension of some of
the operators from A to W. Specifically, we de-

fine

[F(W) SB(%)]
~
f(P )P(3t) &

—:[F(W) ~i{I(P )&] 8[8(3P)
~
li(8F)&] . (A3)

The direct product space W S A is spanned by all
linear combinations g, c,z ~

g;"(P )gi(3P ) &, and the

definition (A3} is extended linearly to such linear
combinations. An important corollary of (A3) is
that the vacuum state

~
0& of P 8 3F is the direct

product
~

O, P & 8
~
0,9P &. It follows from (A3)

that

[Fi(P ) SB,(at)][F2(P ) 882(AP)]

=[Fi(P )F2(P )] 8 [Bi(S')B2(%)]. (A4)

+ Jdy e (y)e(y)] (A5)

involving the number operators for positrons and
electrons. Then on W the positron and electron
fields@(x), p (x), e(y), and e (y) all anticommute
with 4(P ). More generally, odd polynomials in
these fields anticommute with 4 whereas even

polynomials commute with 4. The graded direct

One is tempted to define the ideal state space W
to be the direct product P SA, with operators
F(F ) and 8($') extended to W in the usual way
F(W) =F(W) 8 1(9t), B(W)=1(W) SB($'), where

l(W) and 1(lf) are the unit operators on W and

A, respectively. However, such a procedure fails
in the present case because the product rule (A4)
implies commutativity on W, i.e. [F(W),
B(W)] =0. This disagrees with the anticommuta-
tion rules between e„, e„and the original positron
and electron fields p(x), p (x), e(y), and e {y) [Eq.
(12)]. Replacing these anticommutators by com-
mutators results in abnormal commutation rela-
tions, 'e i.e., some fermion fields commute with oth-

ers, This situation can be corrected by generalizing
to a "graded direct product" W=P Sg A. This is
done by introducing an appropriate phase operator
k(P } on P, defined by

k(W) =exp in[ fdx p (x)p(x)

as usual for all operators on W, but the rules for
extension of operators on A to W are changed to

e„(W)=—k(P ) Se„(%),
e„(W)—:k(W) Se„(%),

(A7)

$~(W)=1{X) 8$~($'),

P (K):—1(P ) 8$ (9F) .

Note that this implies that polynomials in the e„,
e P, and f are extended to W by direct multi-

plying terms odd in e„, e„by 4(P ), whereas terms
even in e„, e„are direct multiplied by 1(W) as usu-

al, since 4 =1. In connection with the second Eq.
(A7), note that 4 =4 '=4. It is then easy to
verify that the normal commutation rules (3), (6),
(9), and (12) are all satisfied. An alternative pro-
cedure would be to first extend all operators (in-

cluding 4) from P and A toW in the usual way
using only 1(W) and 1(%) in the direct products,
and then "correcting" the resultant e„and e„
operators on W by multiplication by 4(W). This is
the method of the Klein transformation. '

APPENDIX B: EVALUATION
OF POSITRONIUM TANI

TRANSFORMATION

A ] P A
Procedures for evaluation of Up HpUp have

been described previously ' in a different connec-
tion. However, the methods used there emphasized
the infinite series aspect of the transformed Hamil-
tonian, a complication occurring in applications to
macroscopic systems of arbitrarily many composite
particles. In the present case only one positronium
atom can form since there is only one positron.
Then a simpler and more transparent derivation,
which will be presented herein, leads to an exact
and explicit expression with no infinite series.

The method which will be used is based on an
equation of motion and operator-basis-expansion
method simplified by the restriction to the one-
positron subspace. Let A denote any of the opera-
tors e (y)e(y'), p (x)p(x'), etc. whose transforms
Up A Up we wish to evaluate. In this connection,
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it is expedient to rewrite

e (y)H, (y)e(y) = lim [H, (y')[e (y)e(y')]I

and similarly for p (x)H&(x)p(x), in view of the
differentiation operation in H, (y) and Hp(x), Eq.
(2). Define

(Bl)

) PsA Ps (82)

where Fp, is given in Eq. (16). Then A(t) satisfies
the "equation of motion"

dA(t) = [A (t),Fp, ]dt
(83)

which is to be solved subject to the "initial" condi-
tion A(0) =A to yield the transform

A = UPs AUPs
2

(84)

(B5)

Define an "operator basis" I B; j whose linearly in-

dependent elements B; are all of the distinct nor-

mally ordered products of creation operators p (x),
e (y), 1( and annihilation operators p(x), e(y), g .
Each i is a double index: i =(P',„„P';„),where

W;„ is the set of labels of the incoming particles
(annihilation operators) and P',„, that for the out-
going particles (creation operators). This doubling
of indices is fainiliar in Liouvillian approaches
to time-dependent quantum mechanics. A(t) can
be expanded in terms of the basis iB; I:

A(t) =pc;(t)B;,

other methods of solution are easier than exponen-
tiation of the d matrix.

The set of B; which enter into the expansion of
a given A(t) can be severely truncated in a case
such as that in which we are interested here, where
all operators act only on a low-order subspace of
the Fock space. To make this explicit, consider
the positron and electron number operators

Np =fdx p (x)p(x),

N, =fdye (y)e(y),
(88)

along with the number operator Nz, for ideal posi-
troniuin atoms, Eq. (19). It is easy to show that

[(Np+N p, ), Up, ]=0,
[(N, +Np, ), Up, ]=0 .

(89)

(Nz+N p, )
~

n, m ) =n
~
n, m )

(N +Np )~n, m)=m ~n, m)

(810)

The physical content of this is that the transforma-
tion conserves the total numbers of both positrons
and electrons; in the Fock-Tani state space, Nz
counts free positrons and NP, counts bound ones
(one in each positronium atom), and similarly, N,
counts free electrons and NP, counts bound ones
(one bound in each positronium atom). Let W„
be the subspace of the Fock-Tani state space W
(Appendix A) containing n positrons and m elec-
trons

where the c;(t) are c-number functions of t to be
determined. Substitution into (B3) and equation of
coefficients of the same basis element on both sides
leads to coupled linear equations of motion for the
c;(t),

A&„m ——0 (811)

We will eventually be interested only in Wii, but it
is useful at this point to be more general. Now
suppose that the operator A annihilates W„

dc;(t)
dt

=XJ )J (86)
(in the sense that it annihilates every

~
l(t ) EK„)

for some particular choices of n and m. Then for
the same n and m one will also have

where (dj;.) is the "d matrix" defined by

[B&~Fps ]-= gdjtBt (87)

As previously noted, each index i or j stands for a
set of both incoming and outgoing particles; the dj,.

are matrix elements of the commutation super-
operator defined by (87), just as is the Liouvillian
tetradic. The initial values c;(0) are to be chosen
so that the initial condition A(0) =A is satisfied.
Equations (B6) have an obvious solution in terms
of the exponential of the d matrix, but in practice

A(t)W„=O (B12)

as a consequence of (82), (89), and (810). Then
the only B; which can enter in the expansion (85)
of A(t) are those which annihilate W„m. Further
delimitation is provided by noticing that we are in-
terested in Eq. (1) only in operators A which com-
mute with both Nz+Np, and N, +Np„and hence
the same must be true of all the B; occurring in
the expansion of A(t). Finally, restriction to vari-
ous one-positron, m-electron subspaces I& is in-
troduced by deleting from the expansion of A(t) all
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8; which annihilate the relevant Wi . This is
most efficiently done sequentially, first retaining

only the terms which are nonzero on W~p, then

adding the additional terms which are zero on W&p

but nonzero on A~~ {without changing the previ-

ously obtained terms}, etc.

To make this more concrete, consider the expan-

sion of p (x, t)p(x', t). Noting that p (x)p(x') an-

nihilates the Wp for arbitrary m, one sees that the

only terms which can occur in the expansion of
p (x, t)p(x', t) restricted to W~p are the p (x&)p(x2).
Thus (85) reduces on W~p to

[p (x,t)p(x ~t}]to=fdx]dx2c(x;x
~

x ~,'x2
~
t)p (x& )p(x2)

and (86) to

dc(x~x Ixl~x2 It)
dt

=fdx3dx4c(x'x'
I
x3'x4

I
t)d {x3'x4

I
xi'x2)

which is to be solved subject to the initial condition

c(x;x'
i
x &,x2 i

0)=5(x —x i )5(x' —x2) .

(813)

(B14)

(815}

Upon evaluating commutators (87) one finds that all of the d-matrix elements dj,. with column i =(xi,x2)
[basis elements 8;=p (x ~ )p(x2) in (87)] are zero. Hence the derivative (814) vanishes and

c(x;x'
~

x &,xz
~

t }=5(x —x ~
)5(x' —x2) (B16)

implying

[p (x, t)p(x', t)]io——p (x)p(x') . {817)

To extend this to W», one must add terms proportional to those basis elements vanishing on W~p but not
on Wii. Choosing these terms in accordance with the aforementioned criteria, one finds

(818)

[p (x,t)p(x', t)]&~——p (x)p(x')+ pc(x;x'
~
a;p

~
t)g

aP

+ g fdx&dy&[c(x;x' ~x&y&,a ~
t}p (x~)e (y~)P +c(x;x'

~
a x~y~

~
t)g~(y&)P(x~)]

a

+fdx idy idx2dy2c{x'x'I xiy &'x~2
I
t)p (x&)e {yi}e(y2}p{xz}.

Note, for example, that terms e (y~ )e(y2) cannot occur in (818) because p p annihilates Wz. The relevant

differential equations (86}are then

I

= d(x;x'
~
i)+ pc(x;x'

~
a;p

~
t)d(a;p

~

i )

+ g fdx~dx2c(x;x'
~
x&y~, a

~
t)d(x~y~, a

~
i)

+ g fdx, dx2c(x x~ a x,y, ~
f)'d(a;x']y,

~
i)

+fdx~dy~dx2dyqc(x;x'
~
x~y~, y x~2t)2d(xjy~, x2y2

~
i), (819)

where i ranges over the labels of the new basis elements, namely, i =(ap), i =(x~y ~,a), i ={ax~y ~), and
i =(x ~y~,xzy2) The inhomo. geneous term d(x;x'

~
i) arises from (816) and (86). The necessary d-matrix

elements in (819) can be found either by direct evaluation of commutators (87), or more quickly by change
of notation in the previous results for atomic hydrogen [proton changed to positron, and sign of the matrix
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elements changed to correspond to the sign convention in the definition of FP„Eq. (16)]. The results are

231

d(x;x'I a;P) =d(x;x'Ix1y1, «2V2) =0,
d(x;x'

I x1y1,a) =q& p (x'y1 }5(x—x1 },
d(x;x'

I a;x1y1 ) ={p'p,(xy1)5(x' —x1 ),
d(a;P

I y;5}=d(a;P
I «1y1,'«2V2) =0,

d(a;P I»1v1;}')= —maps(xly1 }5py

d(a;P
I y;»1y1) =—{p'p.(»1V1)5, ,

d(»1V1;a
I P;})=mt P (»1»)5 &

d(«~2', a
I «1y1,'P) =d («~2,a I

P'«1y1) =0,
d(«~2', a

I x1y„x3y3}=—{P'p,(x3y3)5(x2 —x1)5(y2 —y1),
d(a'»1V1

I
O')') =f'@ps(«1V1 }5att

d(a;«~21«1y1, P) =d(a;«~21t 'x,y1)=0,
d(a;«~21x1y1', x3y3) = —{p~ps(«1y1)5(x2 —x3)5(y2 —y2),

«»1v1;»e21a'P}=d(»33 3 »4v41»1v1'»2v2) =0,
d(«23 2 «3y31»1v1;a) ={P.p (»3v3}5(»2—«1)5(v2 31}.

d(«~2'»3y31a'»1y1 ) =q) p.(»2y2)5(»3 —»1)5(y3 —y1)

Thus the differential equations (B19}become

dc(x;x'
I a;P I

t)
dx 1dy1[{paps(«1V1 )c(x;x'

I
x1y1',p I

t) +1Pttps(«1y1)c(x;x'
I
a x1y11t}],dt

(B20)

dc(x;x'
I x,y„a I

t) = {P p,(x'y1 )5(x —x1)—g'Pttp, («1y1 )c(x;x'
I p;a I

t)
p

+fd«2dv21pz ps(«2y2}c(X;X'1«1y1',«2v21t),

dc(x;x'I a;x1y1 It) = Ip p (xy1)5(x' —x1)—gqttp (x1y1)c(x;x'I a;p I
t)

dt P

+fd«2dy2p'p, («2v2)c(x;x'
I x2y2'x1y11t)

(B21)

dc(x;x' I»1y1,»2y21t)
dt g 1. 1P P («2y2}c(»'«'I»1v1'a

I t}+m.p,(x,y, }c(x'x'I a;«2v21t) .

The solutions are

c(x;x'
I a;P I

t) =fdy p p (xv){happ (x'y)sin t,
c(x;x'Ix1y1', aIt)=p p(x'y, )5(x —x1)sint —fdy kp(X1y1 Xv)p p(x'y)sint(1 —cost),

c(x ~»'
I a~»1V11t)= {p p (xy1)5(x' —x1)sint —fdy p'p(xy)bp(x'y«1y1)sint(1 —cost),

c(x;x'Ix1y1',»~21t}=—~p.(»1y1»3'2N(" —"2}( ~t) ~p.(»'y1»2y2)5(» x1 )(1 cost)—, —

+fdy b ps(«1y1,«y)hps(X'y, »2y2}(1 COSt)2, —

(B22)
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where hp, is the positronium bound-state kernel

~ps(xlyltx23 2) g(paPs(X13 I ){paPs(X2y2) ' (B23)

These vanish at t =0 as they must in order that [p (x)p(x')]I reduce to p "(x)p(x') at t =0, and it can be
verified by direct substitution that they satisfy the differential equations (821). This verification makes use
of the identities

f{p'.P (xlyl+P (X131X2y2)dxld31 'p P (X232),

fAp (x lyI, X2y2)lpa p, (X2y2 )dx2dy2 ——lpap, (x ly1 )

(B24)

(B2S)

The derivation of the expression for e (y, t)e(y', t) on &II differs from that for p (x, t)p(x', t) only by solne

sign changes and interchanges of positron and electron arguments, so I shall only record the result:

[e (y, t)e(y', t)]11——e (y)e(y')+ pc {y;y'
~
a;P

~
t)P IItI

aP

X f xl yl[c{y'y Ixlyl a
I )p (xl)e (yI)0 +c(y'y la;xlyI ~

t)p e(yl)p(xl)]
a

+fdxldyldx2dy2c(y'y lxlyI'X2y2 I
t)p (xl)e (yl)e(y2)p(x2) (B26)

which follow from orthonormality of the y~p, . These solutions are found most efficiently by adaptation of
the previously studied cases. ' The expression for the transform of p (x)p(x') exact on W]& is then found

by substitution of (B22) into (B18).
Let us next work out the expressions for the transforms of the other operators in (1) through terms exact

on W». Since these terms annihilate W&0 one has

[e (y, t)e(y', t}]10=0,

[p (x, t)e (y, t)e{y t)p(x t)]10=0 .

with

c (y;y'
~
a;p

~

t) =fdx 1p p (xy)ptt p (xy')sin2t,

c(y;y'
~

xlyl', a
~

t) = p p (xly')l(y —yl)sint —fdx hp(xlyl, xy}lp p (xy')sint(1 —cost),

c (y;y'
~
a;x ly1 ~

t) = (p' p (x ly)5(y' —y I )sint

—fdx Ip p (xy)kp (xy', xlyl )sint(1 —cost),

c(y;y'
i XIyI, X2y2 ~

t) = —&p (xlyl, x2y)5(y' —y2)(1 —cost)

(B27)

—kp (xly', x2y2)5(y —
y1 )(1—cost}

+fdx hp, (xlyl, xy)hps{xy', X~2)(1 cost)2. —

The Wii basis expansion of the transform of p e e p is analogous to (B18) except that there is no p p term:

[p (x, t)e (y, t)e(y, t)p(x, t)]» ——gc(xy;xy ~a;P
~
t)Pj tt

aP

+ g fdx Idyl[ c(xy;xy
~ xly1, a

i t)p (X I )et(yI )p

+c (xy;xy
~
a;xly1

~
t)g e(y I )p(x, )]

+fdxldy 1dx2dy2c(xy;xy
~
XIyl, xzV2 ~

t) p (xl)e (yl)e(y2)p(x2) .

(B28)
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The equations of motion analogous to (819) are

dc(xy;xy ~i ~
t) = gc(xy;xy )aP) t)d(a P(i)+ g dxidyic(xy;xy [xiy, ;a ( r)d(xiyi ,a '(i)

dt p

+ y fdx, dyic(xy;xy I
a x'iyi

I
~)d(a'xiyi li}

+fdxidyidxqdy2c(xy;xy
~
xiyi, x2yz ~

t)d(xiy„x2y2 ~i), (829)

(B30)

is, not surprisingly, very similar to (B22):

c (xy;xy
~
a;P

~

r) =imp, (xy)y)ip, (xy)sin2t,

c(xy;xy ~xiyi,'a ~

t)= ip p,(xy)5(x —xi)5(y —yi)sint

—4p, (x iy i,xy)y p,(xy)sint(1 —cost),

c(xy;xy
~
a xiy, ~

t)= q&', p(xy)5(x —xi)5(y —y, )sinr

—Ip p (xy)kp (xy,x iy, )sint(1 —cost),

c(xy;xy
I
x,y', ,x2y, I

r}= 5(x —x, N(y —y, )5(x —x, }5(y —yz }

where i ranges over the same operator basis elements as in (819), and the X»-subspace d-matrix elements
are also the same, Eq. (820). There is no inhomogeneous term in (829) since P e e p vanishes on the lower
subspaces. The solution subject to the initial condition

[P (x,O)e (y, O)e(y, O)p(x, 0)]»——p (x)e (y)e(y)p(x)

—hp, (x iy i,xy)5(x —x2)5(y —y2)(1 —cost )

—kp, (xy, x2y2 )5(x —x ~ )5(y —y i )( 1 —cost)

+Apg(x iy &,xy)hp, (xy, x2y2 )( 1 —cost ) (B31)

As in the case of (822}, the correctness of this solution can be verified by direct substitution into (829) [with
(820)], making use of (823) and (824).

Substituting the c functions into (B18), (B26), and (B28), putting t =m/2, and using (B1), (B2), and (1),
one obtains the expression (21).

APPENDIX C: EVALUATION
OF HYDROGEN TANI TRANSFORM

Defining

—~P,
A(t) =e 'Ae

in analogy with (B2), one has the equation of
motion

(C1)

dt
=[A(r),F, ] =[A(r),F,(r)]

where by (16),

F, =F,(t)
= g [A (t)e„(t)-e„(r)A (i)] .

(C2)

(C3)

The operators e„,A, and e(y) then satisfy the

equations of motion

de„(t} dA (r)= —A„,(t), =e„(t),

de(y, t)
dt

(y)e„(r) .

(C4)

The solution of the first two satisfying the initial
conditions A(0) =A is

e„(t)=e„cost —A sint,
(C5)

A~(t) =e„sint+A cost .

Substitution of this expression for e„(t) into the
third Eq. (C4) and integration from 0 to t yields
(31) when t =ir/2 [Eq. (16)].
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APPENDIX D:
POSITRONIUM BOUND-STATE KERNEL

IN THE CENTER-OF-MASS SYSTEM

Upon inserting (13) into the definition (B23) of
the positronium bound-state kernel and noting that

summation over a stands for integration over the
translational wave vector k and summation over
the internal quantum numbers v, one has

~ +

p ( xy, x'y')=(2n)-iy fdk e ' ' u„'{r, ,o,o, }u"„{r,', cr', o,')

=5(r, —r,' ) g u„(r,p, op, o, )u'„(r,p, op, o',')

=5(ic m r. c.m—@. . 6 ' Puv( ep~op~oe)uv(pep~op&oe)c.m. c.m.
V

=—5(r, —r,' )g,g, gp(r, r'.o ~ )c.m. c.m. cr a g 0 s ep~ epp pp e

Here r, = —,(r, + rp), r,p = r, —rp and similarly

for the primed variables. The Kronecker 5 func-
tions expressing the diagonality in the positron and
electron spin variables arise because each u„ is an
eigenstate of the z components of both the positron
and electron spins. Hence each u„ is nonvanishing

only for one value (f or l) of op and one value of
o'~, and

(reppop, &e)~v( ep~opsoe)

vanishes unless
clap

——op and cr, =o.,'.

iXop, v)= fdkX(k)
i kop, v)

=fdrpX(rp)p (rpcrp)e„ i0),
(El)

(E2)

Clearly

where g(k) is the wave function of the positron
wave packet in k space and X(rp) is the corre-
sponding Schrodinger wave function

X(rp)=(2~) ~r2fX(k)e pdk .

e(y)
i Xcrp, v) =0 (E3)

APPENDIX E: ASYMPTOTIC
WAVE PACKETS AND CONSTRAINTS

and hence, by (55), the first constraint (53) is satis-
fied,

Consider a wave packet of the asymptotic states

i kop, v) [Eq. (61)], defined by

N,
'

iXop, v)=0

and in addition one has by (59)

(E4)

Np, iXop, v)= fdx'dy'drp(x'y'
i Np, i rpcrp, v)X(rp)p (x')e (y')

i
0)

+ y fdx'drp(x'v'iNp,
i rpcrp, v)X(rp)p (x')e„ i0) .

V

(E5)

N'p,
i
Xcrp, v) =0

will be satisfied provided that

f hp, (x'y', rpop, y)X(rp)cp (y)drpdy =0 .

(E6)

(E7)

It then follows from the last two Eqs. (60) that the
second constraint

Here hp, (x'y';rpop, y) is the positronium bound-
state kernel 4p, (x'y', xy) with x =(rpop). Inserting
the decomposition (D1) of hp, in relative and
center-of-mass coordinates, one sees that (E7) will

be satisfied provided that

~p I 1

~ps( ep epiopioe)X( c.m. 2 ep)epee( c.m. + i ep~oe)d ep=0 (ES)
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for each fixed value of F,'~ and r,' (and, of
course, of v, crz, and o,).

To complete the proof, we must show that (ES)
is satisfied in the usual asymptotic limit of a wave
packet X localized infinitely far from the origin
(i.e., from the H atoin). The hydrogen orbital qr

in (ES) is localized about the origin in the sense
that it decreases exponentially as the distance

~
r,' + —,F,~ ~

becomes &&nao, where ao is the

Bohr radius and n the principal quantum number
(included in the quantum number set v). Further-
more, each positronium relative wave function
u ~(r,z, tran, o, ) in (50) has a range of the same order
of magnitude, n'ac, as a function of

~ Fz ~
[note

from (E8) that the variables F,z and F,'~ are to be
interchanged in (50)]. The product hp, y in (ES)
is therefore only appreciable when

~
r,'

~
((n+ —,n)tro, where n is some mean prin-

cipal quantum number for the positronium states
contributing to the summation (50). Now choose
the free positron wave packet X in (ES) to be of the
usua1 form used in justification of the S-matrix
formulas of formal scattering theory, i.e.,

X(F)=f(F)e'" '

where f is an envelope function localized about

~X&rr&,X,rr, )=f d rzd r,X&(rz)X,(r, )

Xp (rzrrz)e (r, rr, ) ~0}, (E10)

since it is easy to show that the constraints (53) are
satisfied in the limit of infinite separation between
the positron and electron wave packets Xz and X, .
Hence the reactive S-matrix elements (65} may also
be evaluated without explicit consideration of the
constraints.

some point ro and with range w. Then the integral
(E8) will vanish exponentially as rp~ oo aiid
indeed already for fp)) N+(n+n)ao with m

fixed. Finally, let m~ ao so that X approaches an
unmodulated plane wave, and

~
Xo~,v} approaches

the unperturbed asymptotic state
~

krrz, v) This is
the limiting sense in which the constraints (53) are
satisfied, justifying the use of (62) and hence appli-
cation of standard methods of formal scattering
theory without explicit consideration of the con-
straints. The argument is easily extended to the
asymptotic final states kzo&, k,o, ) for the reac-
tive process Ps+H~e++e by defining them by
an appropriate asymptotic limit of wave-packet
states

B. Schneider and H. S. Taylor, Phys. Rev. A 1, 855
(1970).

~Gy. Csanak, H. S. Taylor, and R. Yaris, Adv. At. Mol.
Phys. 7, 287 (1971).

Gy. Csanak, H. S. Taylor, and D. N. Tripathy, J. Phys.
B 6, 2040 (1973).

4Gy. Csanak, H. S. Taylor, and E. Ficocelli Varrachio,
J. Chem. Phys. 61, 263 (1974).

5E. Ficocelli Varrachio, J. Chem. Phys. .66, 2026 (1977).
E. Ficocelli Varrachio, Lett. Nuovo Cimento 17, 595

(1981).
~M. D. Girardeau, J. Math. Phys. 16, 1901 (1975).
8M. D. Girardeau and J. D. Gilbert, Physica (Utrecht)

97A, 42 (1979).
9E. Ficocelli Varrachio, Lett. Nuovo Cimento 27, 103

(1980).
R. F. Streater and A. S. Wightman, PCT, Spin and
Statistics, and All That (Benjamin, New York, 1964),
p. 146ff. The physical equivalence of the two possible
choices of commutation or anticommutation relations
between positron and electron operators is proved
there. Anticommutation relations are chosen in Eq.
(3) since this is the natural relativistic choice (see the
reference); the nonrelativistic limit of an anticommu-
tator is an anticommutator.

iiThe continuum states are uot included in the set (q& I

since they will be described in terms of free-electron
states orthogonalized to the bound states.

' S. Tani, Phys. Rev. 117, 252 (1960).
' The situation here is essentially the same as in

Weinberg's "quasiparticle method. " See S. Weinberg,
Phys. Rev. 131, 440 (1963).

' No positron-positron or electron-electron interaction
terms are included in (1).

isThere is also a diagonal term (a
~ V~„,

~

a).
' M. D. Girardeau and M. L. Sage, Physica (Utrecht)

32, 1521 (1966).
' M. Mishra and Y. Ohrn, Int. J. Quantum Chem.

Symp. 14, 335 (1980).
B. H. Bransden and M. R. C. McDowell, Phys. Rep.
46, 249 (1978).

' M. H. Mittleman and K. M. Watson, Phys. Rev. 113,
198 (1959).

2 V. M. Krasmopol'sky and V. I. Kukulin, Yad. Fiz. 2+,
883 (1974) [Sov. J.—Nucl. Phys. 20, 470 (1974)].

'F. Bassani, J. Robinson, B. Goodman, and J. R.
Schrieffer, Phys. Rev. 127, 1969 (1962).

2R. Fleckinger, A. Gomes, and Y. Soulet, Physica
(Utrecht) 85A, 485 (1976).
L. T. Choo, M. C. Crocker, and J. Nuttall, J. Phys. B
11, 1313 (1978).

~4B. R. Junker, Phys. Rev. A 11, 1552 (1975).



236 M. D. GIRARDEAU 26

~5B. H. Bransden and Z. Jundi, Proc. Phys. Soc. London
92, 880 (1967).

These definitions are appropriate to the simplest case
of finite-dimensional vector spaces. A rigorous treat-
ment of infinite-dimensional ones requires limiting
processes which we do not wish to go into here.
However, the generalization from the ordinary direct
product to a graded direct product can be carried out
in the same way for an infinite-dimensional space.

J. D. Gilbert, J. Math. Phys. 18, 791 (1977).
A set of operators is linearly independent if no linear
combination of these operators (with c-number coeffi-
cients) is the zero operator.
R. Zwanzig, Physica (Utrecht) 30, 1109 (1964).

%he transformation 0, 0, tq be carried out later
will also introduce operators e„, e„ for electrons
bound in the atom. Here, however, we are only con-
cerned with those bound in positronium.


