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The signer method in quantum statistical mechanics, which allows the derivation of the

quantum-mechanical behavior of the properties of an "almost classical" system, has been

applied to the determination of series expansions with respect to A, for a general correlation

function and the moments related to its spectrum. Explicit expressions of the terms up to
the order Ij. are given for the zeroth, second, and fourth moment in the case of a many-

body system with a Hamiltonian H =P /2m+4(R j and for variables which are functions

only either of IP I or t R J coordinates. From these expressions the corrections to the classi-

cal behavior can be calculated via the classical molecular-dynamics simulation technique.

I. INTRODUCTION

The many-body properties of a system of mole-
cules, either in the low-density gas phase or in the
high-density fluids and solids, have been intensively
investigated within the framework of classical
mechanics; for example, the massive work that has
been performed in the last decade on computer
simulation of molecular dynamics is a calculation
based upon classical mechanics. In particular,
simulation of molecular dynamics is today a well-

established technique which is extensively used in
order to compare theory and experiments in the
study of the properties of gases and liquids; more-
over, these calculations can, in principle, be refined
to a very good degree of precision once one can af-
ford a sufficiently large and quick computer facili-
ty.

However, the microscopic dynamics of a many-

body system, in principle, at least, is not governed

by Newton's law', therefore the following question
can arise: whether or not classical dynamics is
properly describing the behavior of a system of
molecules, and which are the limitations of such an

approach. One way to answer those questions
would be to use a computer to investigate the
behavior of an N-body system whose dynamics is
governed by the Schrodinger equation. This is
clearly not practical for the time being.

An alternative, to begin with, is to study systems
and properties which are "almost" well described
with the application of classical mechanics and then
investigate the amounts of corrections which one
has to introduce in order to take properly into ac-
count the "small" amount of quantum behavior
which is present. There is a large amount of sys-

tems and properties for which classical mechanics is
a very good approximation. Examples are the static
properties of atomic and molecular liquids with the
few exceptions of neon and helium and some molec-
ular liquids. When quantum corrections are small
they can adequately be taken into account by an ex-
pansion of the property behavior up to h . This has
been done, so far as the static properties are con-
cerned, for helium, ' neon, and a few molecular sys-
tems. Clearly it would be of considerable interest
to have a theory which would provide a means for
the evaluation of the quantum corrections of prop-
erties which are related to correlation functions and
their spectra and therefore to the dynamical
behavior of a molecular system. In particular, one
should note that when one deals with properties
which have characteristic time scales of the order of
or smaller than h /kT, where h and k are the Planck
and Boltzmann constants and T is the absolute tem-
perature, quantum corrections may become more
and more important, the shorter the time scale on
which the behavior is analyzed, also for systems
which are classical as far as static properties are
concerned. This has been found recently in the case
of properties as collision-induced absorption and
collison-induced light scattering. Imre, Ozizmir,
Rosenbaum, and Zweifel have analyzed the
Wigner method in quantum statistical mechanics,
in order to transform quantum statistical averages
into their classical phase-space analogs which are
then expanded in powers of h. They have also ap-
plied this method to the scattering theory and
derive some corrections to the neutron scattering
cross section.

Hynes, Deutch, Wang, and Hoppenheim extend-
ed the analysis of the Wigner method and derived
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II. PROPERTIES OF CORRELATION
FUNCTIONS AND SPECTRA

Let us assume that J(ro) is the real spectrum re-
lated to a relevant correlation y(t) between two ob-
servables A and B of the system under study. J(co )

is a real function of the angular frequency co and is
given by the Fourier transform of the correlation
function y(t), i.e.,

+oo
J(to) = f dt e '"'y(t) . (2.1)

the first quantum correction to a general correlation
function in order to describe the quantum behavior
of the transport coefficients of "almost" classical
systems, while Hynes and Deutch' applied the
method to the Brownian motion. However, as those
authors also point out, the actual calculation of the
correction to the correlation function "still presents
a formidable problem unless one resorts to approxi-
mations. "

In order to partially overcome this problem here
we will apply the Wigner method to the derivation
of quantum corrections of spectral moments ex-

panded in powers of h. The advantage of using
spectral moments instead of spectra and correlation
function lies in the fact that they are equilibrium
properties and therefore their quantum corrections,
even though not simple, can also be numerically
evaluated for many-body systems with the actual
computer techniques of molecular-dynamics simu-
lation. In Sec. II we review some general properties
of correlation functions and spectra which are
relevant for our discussion. Section III is devoted
to reviewing the general description of the Wigner
method and of the derivation of the Wigner
equivalents of the Heisenberg operators and of the
statistical operator p, as series expansion with
respect to h, up to the order h . In Sec. IV we re-
strict our attention only to physical variables which
depend only either on coordinates trj or on mo-
menta {p] and derive the approximations, up to h,
of the correlation function. Section V is devoted to
the derivation of expressions of the first three even

moments of a spectrum up to h in terms of classi-
cal averages, while explicit expressions of those
corrections in terms of the interaction potential for
two distinct cases are given in Sec. VI.

y( —t) =y'(t) . (2.2)

For any two given observables A and B of a station-
ary system, a suitable way to construct a correlation
function y(t) which obeys Eq. (2.2) is by defining

y(t) = —,[ (A(0)B(t))+ (B(0)A(t) )], (2.3)

where

(A(0)B(t) ) =tr[pA(0)B(t)] . (2.4)

@=llkT, k is the Boltzmann constant, T is the
temperature, and H is the Hamiltonian operator.

Here we will consider an N-body system of ident-
ical particles whose Hamiltonian has the form

p2
H(R, P)= +4(R ),

m
(2.7)

where P and R are the 3N-dimensional momentum
and position operators. From the definition (2.3) it
is immediately shown that the correlation function
y(t) has the property

y( t) =y'(t) =y(t —+i') (2.8)

from which, taking into account the definition (2.1},
the detailed balance condition for the spectrum
J(to) follows

J(—to) =e ~J(a)) . (2.9)

In the general case the complex correlation function
y(t) can always be written by separating its real and
imaginary parts as

y(t) =ys(t)+ iy~ (t), (2.10)

where ys(t) and yz(t) are, from property (2.2), the
symmetric and antisymmetric parts of y(t) with
respect to time reversal, i.e.,

e is. the Von Neumann density matrix, A(0} and

B(t} are Hermitian operators, evaluated at time 0
and t in the Heisenberg representation, with equal
time-reversal symmetry.

For a system at thermodynamic equilibrium the
density operator p is defined as

p=e —/z, (2.5)

where Z is the partition function

(2.6}

y(t) is, in general, a complex function of time when
it is considered in the domain of quantum mechan-
ics, and since J(co) is real y(t) must obey the time-
reversal equation

ys(t) = y(t)+y( t) y(t-)+y'(t)
2 2

yg(t) = y(t) y( —t) —y(t) —y (t)
2l 2l

(2.11}
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J(co)+J( —co)Jsco =
2

Jg(co) = J (co)—J( —co)

2

(2.13)

From the detailed balance condition (2.9) and the
relations (2.12) and (2.13), the spectrum J(co) can be
given in terms only of either its symmetric or an-
tisymmetric part, namely,

The Fourier transform of ys(t) and i'(t) defined
as Js(co) and Jq(co) are the symmetric and antisym-
metric portions, which respect to co, of the spectrum
J(co), i.e.,

(2.12)

M„= I dcoco"J(co}, (2.18)

where, as usual, the operators sin( ~ )
cos( ) are defined by their series expansions.
The "detailed balance" relations between the two
portions of both spectrum and correlation function
show that, in principle, it is sufficient to have the
knowledge of one part, either the symmetric or the
antisymmetric one, in order to know the entire
function. This implies the complete equivalence of
information which is contained in the even and odd
part of the correlation function and spectrum so
that, in principle, one can limit oneself to the de-
tailed analysis of only one of the two.

Let us now define the moments of the spectrum
J(co) as

J(co)= = Js(co),
2

(I+e ~) (2.14) which are related to the correlation function y(t) by

J(co)= ~ Jg(co}.
2

( 1 e
—Pse) (2.15)

.t=0
(2.19)

From the previous relations [(2.14) and (2.15)] it
follows that Js(co) and Jq(co) are related as

sinh( —,Plica)Js(co) =cosh( —,Pfico)J&(co) (2.16)

which implies, by series expanding (2.16) and
Fourier transforming, that

sin —,PA'—ys(t) =—cos —,PA—
yq (t),1 3 1 8

(2.17)

+ 00

Mz„—— dco co "Js(co), (2.20)

+ 00

Mzil+1 dco~ JA(co) (2.21)

which implies the relation of ys(t) to the even mo-
ments and of y„(t) to the odd ones.

From the definition (2.18) and the relation (2.12) it
is easily seen that

III. WIGNER METHOD AND APPROXIMATION OF THE "WIGNER EQUIVAI. ENTS"

A. Definition and properties

The Wigner method consists in establishing a correspondence between operators and functions in the classi-
cal phase space. The average (2.1) can be evaluated as a power series of k which should converge rapidly for
almost classical systems thus giving useful information upon their quantum corrections. This has been
described in detail in Ref. 6 and we will report here only the basic relations which we will need for the purpose
of this paper.

The Wigner equivalent of an operator A(R, P) is obtained by Fourier transforming the off-diagonal ele-
ments of the operator either in the position or the momentum representation, namely,

A„(r,p)= I dz exp(ipz/fi)(r —z/2 ~A(R, P)
~

r+z/2) (3.1a)

= f dk exp( irk/A)(p —k/—2 ~IA(R, P)
~
p+k/2) . (3.1b)

In the last expressions r and p represent 3X-dimensional vector c numbers which correspond to the quantum

From this definition it turns out that the trace of the product of any two operators A(R,P) and B(R,P) is
given as an integral in the classical phase space, i.e.,

Tr(AB) =(2rrfi) I dr dp A„(r,p)B~(r,p) . (3.2)



26 "ALMOST CLASSICAL" MANY-BODY SYSTEMS: THE. . . 2171

operators R and P.
The Wigner equivalent 0 of an operator 0 has two useful properties, i.e.,

(a) if O=O(P), then O„=O(p),

(b) if O=O(R), then O„=O(r) .
(3 3)

Moreover, the Wigner equivalent of the product of any two operators C(R,P) and D(R,P) can be expressed

by means of the following rule:
r

(CD)„=C~exp —.A DN,
fi

2l
(3 4)

where A is the classical Poisson-bracket operator defined as

A=Vp V„—V„V~, (3.5)

and the exponential operator in (3.4) is defined, as usual, by means of its series expansion.
We have now all the ingredients to give an expression in the classical phase space of Eq. (2.1) since the time

t which enters explicitly in B(t) can be considered as a parameter in averaging over the initial configuration

I r,pj.
Making use of equations (3.2) and (3.4) we can write the correlation function (A(0)B(t)) as a classical

phase-space integral, i.e.,

(A(0)B(t)) =(2m%) dr dpp„(r p) A„(r,p)e px—.A B~(r,p, t)
21

(3.6)

For a system with the Hamiltonian (2.7) the Wigner equivalent of density operator p can be written as

(3.7)

where we have defined X as

X(rp) =1+%Xi(rp)+Pi Xz(r,p)+O(fi ),
1 PXi(r,p) = (p V) 4 3p2V 4+p3—(V4)2

24m m

and"

3

X2(r,p)= ——V 4+p —(V'4)'+ —(VV@):(VVC&)+—(V4) V(V 4)+ (p V)'(V 4)
64m

3 3'

(3.8)

(3.9)

2

(p.V) 4+—(V 4)(p.V) 4+—[V(p.V)4] +—(V@).V(p.V) 4
15 2m 2 m m P?l

2+ [(p V) 4] +—(V4} (p V) 4+(V4)
18 m2 m

(3.10)

The dots in Eqs. (3.9) and (3.10}mean scalar prod-
ucts in the 6N-dimensional phase space of r and p.

Moreover, in Eq (3.7) the. classical partition
function Z, (p) is, as usual,

Z, (P)=(2rriri) ' J drdpe (3.11)

while the symbol ( }, represents an average
performed with respect to the classical distribution
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function.
The evaluation of the Wigner equivalent of the

operator B(t) can be done from its equation of
motion. The formal integration of this equation
gives

8~(t) =exp —csin —A 8~(0); (3.12)
2t . A'

again the exp[ . ] and sin[ ] operators are de-

fined by means of their series expansion, and the
function of time 8 (t) is parametric with respect to
r and p which represent the position of the represen-

tative point of the system in the classical phase
space at t =0 (i.e., the initial conditions on which

the statistical average must be performed).

B. h series expansion of time-dependent Wigner equivalents

Since we want to determine the behavior of the correlation function y(t) for an almost classical system we

will expand Eq. (3.12) in power series h and determine the contributions at various orders. From Eq. (3.12}we

can see that B~(t) can be represented by a power series as

(t) y irt~2~iBi2" i(t)
n=0

(3.13)

where B~ "'(t}are the "contributions" to various orders of A' which, however, in the case of a general operator

B(R,P}, are still functions of irt. Nevertheless, as we will see, the representation (3.13) is useful any time we

know the order of BN(0) with respect to A'.

The series expansion of the right-hand side of (3.12) gives

n

iriA ( 1 y

n! . .
p ~ j j i+I j —p

2(j+ . +j) j+ . +j„(~/
(2ji+1)(.. . (2j„+1)I

(3.14)

If we now use Eqs. (3.13) and (3.14) we can derive explicit expressions for the various contributions 8„' "'(t)
The zeroth-order contribution is

oo tn
8„' '(t) = g, (H~A)"B~(0)=exp(tH~A)8~(0),W W

(3.15)

which shows that the dynamical evolution of the zeroth-order contribution is a classical evolution regulated by

the Wigner equivalent of the Hamiltonian. In the case in which H and 8 (0} coincide with the classical

variables H(r p) and 8 (r p), 8„' '(t) also coincides with the classical variable 8 (r p, t).
The second-order contribution is

8''(t)= —y y IH A ' . . [H A " 8 (0)]I
n —1

' j+..-+j —1

,
K„' '8~(0),5 W (3.16)

where g&+. . . +J i is a summation extended to all values of j; . j„with the restriction j;+ . .j„=l,
while K„' ' are operators defined by

n —1

E~ '= „g((H~A)" I 'IH~A [(H~AY . . ]]); n ) 1 (3.17}
j=0

which operates as defined in Eq. (3.16).
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In a similar way the fourth-order contribution turns out to be

n 00 t N1

8'"(t)= Q, K„[4]8„(0)+g, E[']8 (0),n m (3.18)

where E„' ' and E~ ' are operators defined by

n —1

K„' '= y [(H A)J[H A [{H A)" '. . . ]]],
~ j P

(3.19)

(4) 1 Nf —2

24, ( 3] )
2 [(H A) ][H~A3[(H~A) '[H~A3[(H~A) ' ' . ]]]]]. (3.20)

We will not consider here the next order fi therefore we will write B„(t)as

8 (t) =8„'"(t)+A'8"'(t)+&'B."'(t)+

and taking into account Eqs. (3.12), (3.13), and (3.15)

8„(t)=[Tp(t)+Pi T2(t)+A T4(t)+ ]8 (0)—:T(t)8 (0),
where the time-evolution operators T„(t) are defined as

Tp(t) =exp(tH„A),
tn

T,(t) = —g, Z„[2],
&
n!

T,(t)= g, re[4]+ g ' X.[".
n=i "' m=2 ~'

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

IV. CORRELATION FUNCTION

In order to proceed here to derive, by means of the previous theory, the various approximations with respect
to fi of the correlation function y(t), we must specify the order of A~(0) and 8~(0) with respect to fi. Here and
in the following we will confine ourselves to consider the most simple case, i.e., the one in which both opera-
tors A and 8 are dependent upon only either coordinates tR I or momenta IL I. In this case from property
(3.3) we know that A~(0) and 8~(0) are identical to the corresponding classical variables and therefore are of
zeroth order with respect to ]]t'. For the sake of simplicity we will indicate in the following, with A and 8 only,
the classical functions which depend either on coordinates or momentum classical variables.

The correlation function y(t) which we are interested in is given by Eq. (2.1) and can now be written up to
fourth order with respect to A by means of the %igner-equivalent method. The important point is that this is
done in terms of classical averages, which we will now indicate simply by ( . ). From Eqs. (3.7), (3.8), and
(3.22) we then obtain'

T(t) X(r p) A(r=p)exp —tt [T(t)B(rp)] )
1

2(g)
' '

2i

+ Xrp 8 rpexp —A TtA rp
l

(4.1)

The imaginary unit appears only in the exponential, therefore from the definitions of ys(t) and yz(t), Eq.
(2.11), we also obtain

ys(t) = 1 A'A AA

2(X)
X(rp) A(rp)cos [T(t)B(rp)] + X(rp) B(rp)cos [T(t)A(rp)]
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y„(t)=— A'A fiA

2&X&
' '

. 2. ' ' '
. 2

X(rP) A(rP)sin [T(l)B(rP)] A. X(rp) B(rp)sin [T((lA(rp)]
)

(4.3)

Since both X and T(t) are even with respect to fi it follows from the previous relations that ys(t) is even and

yz (t) is odd with respect to ]]t'. (Here we like to note that this last result is a direct consequence of our particu-
lar choice for the dependence of A and 8 operators upon R and P.)

V. MOMENTS

We can now proceed and derive by means of the previous theory the various approximation to the moments.
We will confine ourselves to consider only the approximations of the even moments since by means of (2.16)
and (2.21) corrections to the odd moments can always be derived in terms of the corrections to the even ones.
We will also consider the corrections up to the order fi only for the zeroth, second, and fourth moments since
the formal complication increases dramatically with the order of both the moment and the approximation.

From the definitions (2.19), (2.20), and the expression of the correlation function (4.2) we have that the
zeroth moment can be written as

1 AA fiA
Ms=ps(0)= X(rp) A(rp)cos B(rpl + X(rpl B(rp)cos A(rp)

)2&X&
(5.1)

lf now we perform the series expansion of cos[(A'/2)A] and use the expression (3.8) for X, Mo can be written

up to the order i]i4 as follows:

Mo —— ( [A (r p)8(r p)]+Pi I [X](rp)A (rp)8(r p) —,[A (rp)L—]28(rp)] J
&X&

+A'"IX2(r)P)[A (r)P)8(rP)] ——,X](rP)[A (r P)L(x B(r,P)]+,,B [A (r P)L( 8(r)P)] j &, (5.2)

where we have taken into account that, from the definition (3.5), AABB =(—1)"BABA since A (r,p) and B(r,p)
are the classical variables. In the particular case in which both A and 8 depend on a common variable, either
on r or on p, from the definition (3.5) of A, it turns out immediately that Eq. (5.2) reduces to

M[]—— (AB+R X]AB+A X2AB & .
&X&

From the defintions, (2.19), (2.20), and (4.2) we ean derive also the expression of the second moment, i.e.,

(5.3)

d
(y, (t)&

dt

1 AA

2(X&
X(r,p) A (r,p)cos z T(t)B(r,p)

dt

fiA
+ X(r,p) 8 (r,p)cos

2 dt22 T(t)A(r,p) (5.4)

If we now remember that, from the stationary property of any correlation function, we have

2ll

A (0) 8(t) =(—1)" A (t)
g p

„8(t) (5.5)
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taking into account the definition of y(i) [Eq. (2.3)] and of the moments, by means of (5.5) we can immediate-

ly rewrite Eq. (5.4) in the form

1 A'A
Ms= X(r,)s) [T(r)A(r(r)], c,ccs [T(t)T((rls)], c ),(x)

where we have taken into account that

(5.6)

A(r,p)cos —A 8(r,p)=8(r,p)cos —A A(r,p)

and we have indicated with the dot the derivative with respect to time. The first derivative of the time-
displacement operator T(t), calculated for t =0, can be easily derivated from Eqs. (3.22) —(3.25), and for the
contribution up to A it turns out to be

[T(t)], p HA ——RKI —'+A Ki '

where from Eqs. (3.14) and (3.16) we have

(5.7)

(5.8)

g(4) Hp 5

16 5!

The series expansion of (5.6) up to the order fi gives from Eqs. (3.20) and (5.7)

(5.9)

M2 —— ( (HAH)(HAB)+f2[X](HAA)(HAB) (K[] ]A)(H—AB) (HAA)(K—I ]8)— (HAA)A—2(HAB)]

+Pi [—X](HAA)(K[] ]8)—X](K[] ]A)(HAB) — X[(HAA)A—2(HAB)

+(K[2]g)(K[ ]8)+X (H~)(HAB)+ —(K[ ]g)A2(HAB)

+ , (HAA)A (K—' '8)+(K'i 'A)(HAB)+(HAH)(KI '8)+ „,(HAA)A~(HAB)] i,
(5.10)

where for the sake of simplicity we have not indicated explicitly the dependence of H, A,B on r and p.
Two cases are of particular interest and reduce further the expression (5.10) of Mz. One is the case in which

A and B are both functions only of r; the other is when they coincide with p or p . In these cases the applica-
tion of the operator K[] ] and K'i ' to either A or 8 gives identically zero; therefore Mz reduces to

Mp —— ( (HAA)(HAB)+h [X](HAA)(HAB) , (HAA)Ai(HA—B—)]
x

+R IX2(HAA)(HAB) SX][(HAH)A2(H—AB)]+ „,(HAA)A4(HAB) }} . (5.11)

By means of the same procedure with which we derived Eq. (5.10) we can also calculate the expression for the
fourth moment. For the sake of simplicity we will explicitly write here only the expression which is valid for
the same type of variables for which Eq. (5.11) is valid and which turns out to be

M = ( [(HA)'A][(HA)'8]+iri'IX [(HA)'A][(HA}'8] ——[(HA)'A]A'[(HA)'8] Ix

+Pi (X2[(HA) A][(HA) 8]——,X]I[(HA) A]A [(HA) 8]I+ „,[(HA) A]A4[(HA) 8])} .
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From Eqs. (5.3), (5.11), and (5.12) one can calculate
for a many-body system, by means of classical
mechanics, the quantum corrections up to the order
A'" for the first three even moments of the spectra
related to dynamical variables A and 8 which are ei-
ther functions only of r or can be identified with p
or p . In Sec. VI we will give the expression of the
corrections of order A' in terms of the interaction
potential and as averages only on the configuration
space for two cases of interest, i.e., the case in
which both A and B are functions only of jr I and
the case in which 3 and 8 are identical to the
momentum of a particle of the system.

as

~2n ~2n +~ ~2n

where

Mo ' ——(AB &,

Mo ' ——(ABX, &
—Mo '(gi &,

Mq ' ——
3 ((p VA)(p VB)&,

M,'"= ', &(p.vA)(p VB}x,&-M,'i(~,
&

+, ((VVA):(VVB}& .
1

4m

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

VI. FIRST-ORDER CORRECTIONS
FOR TWO PARTICULAR CASES

Let us first consider the case in which the vari-
ables A and B are functions only of the 3N positions
of the many-body system Ir [ and the Hamiltonian
is given as in Eq. (2.7). This is a case worth consid-
erable interest. In fact, the correlation function
which describes the scattering of radiation from the
visible to the x-ray region and the scattering of ther-
mal neutrons from fluids are of such a nature.

In this hypothesis we can easily rewrite Mo and
M2 up to the order R in terms of averages only in
the configuration space. In fact, in Eqs. (5.3) and
(5.14) we can perform immediately the averages
with respect to the momentum variables. From
Eqs. (5.3), (5.11), (3.5), (2.7), and the expansion of
(X &, Eq. (3.20), we can rewrite Mo and Mz up to fi3

I

V= V, and the multiple dot represents a multiple
scalar product.

At thermodynamic equilibrium the averages over
the momentum variables can be separated and
readily performed over the Maxwell distribution.
Therefore, if we consider that

(6.6)

2
m

(PiPjPkPl & (~ij 5kl+~ik6jl+~il~jk } ~

(6.7)

where p; is one component of the 3N-dimensional p
vector, 5,J. is Kronecker symbol, and p= I/kp, and
take into account the explicit expression of Ji [Eq.
(3.9)], the moments (6.2) —(6.5) reduce to

M,"'= (AB &,
3 2 2

&AB(va ve) &
— (AB(v ve) &+ M,'"(v ve&,

24m 12m 24m

((VA) (VB)&,

(6.8)

(6.9)

(6.10)

2 2

, &(VA VB)(v@ VC)&+ ~ M,'"(V VC &.
24m 24m

[((VA VB)(V V@)&—((VA VB):(VV@)&]+ ((VVA):(VVB)&,
12m 4m

(6.11)

where now the averages must be performed over the
position distribution in the classical configuration
space.

Another interesting case is given by the correla-
tion function of two velocity components of the
particles of the system. In this case we identify the
variables A and B with the components p; and pj, [M(')"],) ——&p;p, &, (6.12)

I

respectively, of the 3X-dimensional vector p. Also
the moments of the spectra related to the correla-
tion function yij(t) = (p;(0)pz(t) & assume the form
(6.1) where from Eqs. (5.3), (5.11},(3.5), and (2.7) we
have
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(6.13)

(6.14)

el
[Mo ]ij= fiij ~

2

[M' ']; = &FF &,

(6.16)

(6.17)

[M,"']
J =&F,F, &,

3 2

[M,"'],,= &F,F, (F F)&+ &F,F, &&V' F&

2

(6.18)

&F,F,(V F)&,
12m

(6.19)

where we have indicated with F the 3N-dimensional

force vector defined as F= —V4.

VII. CONCLUSIONS

By means of application of the Wigner method,
which allows the calculation of quantum-
mechanical averages as a power-series expansion
with respect to h, we have derived general expres-
sions of the term up to It of the first three even

moments of the real spectrum. These quantities are
strictly related to the dynamical behavior of a sys-

tem which is represented by a correlation function
y(t) and can therefore illuminate on the onset and
role of quantum properties of the dynamics of a

(6.15)

At thermodynamic equilibrium we can perform the
average over the momentum variables and, taking
into account Eqs. (6.6) and (6.7), reduce the expres-
sions (6.12)—(6.15), by means also of Eq. (3.9), to

system of particles. The correction of order h and
h to the first classical spectral moments can now

be calculated via classical mechanics. This is of
particular interest for many-body systems which
behave almost classically and for which the series
expansion with respect to h of the properties under
examination does converge quickly. This gives, for
the first time, the possibility of calculating the
quantum behavior of the dynamics of a many-body
system with the application, for example, of classi-
cal molecular-dynamics computer simulation in
much the same way as it has been done for static
properties in the past.

In this paper we have restricted our attention to a
many-body system of identical particles which obey
Boltzmann statistics and to the analysis of variables
which depends either on the positions I r} or on the
momentum [p I coordinates of the particles. The
generalization for a mixture of different species of
particles can be easily done w'hile, in order to con-
sider very general variables and to take into account
quantum statistics, a modification of our approach
must be applied. Since exchange effects become im-

portant when the wavelength A, =(2MlmkT)'~ is
comparable with the average interparticle distance
d, our results are valid for systems with A,d «1. It
is worth noticing here that, different from the static
properties, the amount of quantum behavior of a
dynamical variable is strictly connected to the
characteristic time scale that the property is probing
within the system and becomes more and more im-

portant as the time becomes shorter and shorter.
This implies that quantum corrections may be im-

portant, depending on the variable which is under

study, also for systems of heavy mass particles at
high temperature which are certainly classical from
the static point of view.
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