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We study the growth of Rayleigh-Taylor instabilities at the interfaces of any number N
of stratified fluids forming an arbitrary density profile. Using the linear theory, we show

that there are 2(N —1) exponential growth rates which can be found by calculating the
eigenvalues of an (N —1))&(N—1) band matrix. We illustrate analytically the case N=3.
For general N we state and outline the proofs of two theorems: the first refers to the in-

variance of the spectrum of growth modes under inversion (p;~1/p~+~;, t;~t~+~;),
and the second relates the spectrum of any inversion-invariant density profile having free
boundaries to the spectrum of the same profile between fixed boundaries. We compare and
illustrate the results of our numerical code with the case of a continuous density profile
p=poe@, and, setting N=12, we apply our technique to solving a particular problem in

designing a multishell target for inertial confinement fusion.

I. INTRODUCTION AND NOTATION

Rayleigh-Taylor instabilities occur when an ad-
verse density gradient exists as, for example, in the
case of a heavy fluid supported by a lighter fluid in
a gravitational field. Small amplitude perturbations
at the interface grow exponentially with time e~'
where the growth rate y depends on the density gra-
dient, the wavelength A, of the initial perturbations,
and on the acceleration g. For the case of two
semi-infinite fluids of constant density p~ and p2,

1/2
gk (P2 Pl)

Vela ssica1 +
p2+pi

where k =2m/AThe .rati, .o (p2 —p, )/(p2+p, ) is re-

ferred to as the Atwood number.
The growth of Rayleigh-Taylor instabilities often

leads to undesirable effects like mixing and/or shell

breakup when the heavy fluid is in the form of a
shell of finite thickness. One method for suppress-

ing the growth is the use of density gradients, where

the transition from the light to the heavy fluid is
made in discrete steps (stratified fluid) or continu-

ously. When the interface is given some structure
in this way there appear several growth modes
whose rates are complicated functions of the wave
number k and of the density profile, even in the
linear approximation (density perturbations 5P «p)
which we use throughout this paper, the purpose of
which is to calculate those growth modes as a func-
tion of k and p. Only the relation y cc v'g, as in Eq.
(l), continues to be valid in the linear approxima-

tion. We will assume that the acceleration g is con-
stant, that the fluids are incompressible, and we
neglect viscosity, heat transfer, and surface tension.

The problem of Rayleigh-Taylor instabilities ar-
ises in numerous situations and the techniques that
we develop are quite general in the sense that only
the density profile need be specified. Our particular
area of interest for applications, however, is laser
fusion, and considerable work has been done on the
hydrodynamic stability requirements of imploding
capsules. Numerical simulation techniques have
been used to solve the fully nonlinear equations,
with emphasis on the laser pulse shape. Analytical
models of imploding hollow shells have been ap-
plied to calculate y, with results similar to
Taylor's. Ablative mass removal has a stabilizing
effect ' whose size depends on the details of ther-
mal conduction near the ablation surface. By intro-
ducing an energy spread in the driving source, one
can effectively achieve the stabilizing effect of a
density gradient. Both of these apply, of course, to
the outer shell of the capsule. For inner shells the
only practical method may be the introduction of a
finite density gradient by converting a heavy shell
of constant density into a series of subshells gradu-
ally approaching the density of the lighter accelerat-
ing shell. The formalism described in this report
was developed primarily to calculate how much
reduction is achieved by this method, and in Sec. VI
of this paper we apply our techniques to a particu-
lar problem in the design of a laser fusion pellet;
how to minimize the fastest growth mode of a mul-
tilayered shell subject to certain constraints. We do
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D(pDW)+ WDp kpW=—O,gk
(2)

where the function W(y) describes the velocity of
the perturbed fluid in the y direction

u~(x,y, r) = W(y)e' +r' .

D is the operator d/(dy).
At an infinitesimally thin boundary between two

fluids, integrating Eq. (2), we obtain the jump con-
dition

b(pDW)+ Wh(p) =0, (3)

where h(f) =f+ f, f+(f )—is equal to the
value of f above (below) the boundary. Note that
W is continuous everywhere; in Eq. (3) it stands for
the value of W at the boundary. DW need not be
continuous.

The second-order differential equation (2) is
linear in both p and W, meaning y cannot depend
on the overall scale or sign of these quantities. y
must be found by solving Eq. (2) subject to proper
boundary conditions, e.g., that in a semi-infinite
fluid W must vanish at distances far from the boun-

dary, or that W must vanish at a fixed boundary.
This is an eigenvalue problem for y, and W is the
eigenfunction.

Since there are not many density profiles p(y) for
which Eq. (2) can be solved analytically, we first
solve the problem for a particular profile: stratified
fluid (see Fig. 1). There are two reasons for doing
this: First, one might be interested in knowing all
the growth modes for a layered fluid; second, one
may approximate any continuous profile by a large

not address the effect of Kelvin-Helmholz instabili-
ties because ideal designs call for zero shear veloci-
ties, and the coupling of the Rayleigh-Taylor and
Kelvin-Helmholz instabilities can best be studied by
numerical simulations which are now underway. A
letter summarizing our approach and the sym-
metries discovered during the course of this work
was published recently.

We will solve a two-dimensional problem in slab
geometry: The density p=p(y) is uniform in x and
z directions, being a function of only y, with the ac-
celeration g in the +y direction. Small density per-
turbations 5p(x,y, r) are Fourier expanded and we
study normal modes described by

5p(x,y, r) =5p(y)e' +r' .

To first order in 5p, the hydrodynamic equations
can be combined to yield (see Chandrasekhar )

W1W~ W3 W,

tN 1 tN

FIG. 1. General stratified density profile treated in
this paper. 8; is the value of 8'~(y) at interface i be-
tween p; and p;+I, i =1,2, . . . , N —1, associated with
the growth mode y. There are N —1 possible values for

number of thin layers whose solution will approxi-
mate that of the continuous profile —in other
words, use it as a perturbation technique. We will
illustrate both of these aspects.

Referring to Fig. 1, we consider N layers, each of
arbitrary but constant density p;, i =1,2, . . . , K pI
and p~ are semi-infinitely thick, with the remaining
layers having finite thickness t;, i =2,3, . . . , X —1.
The number of interfaces is N —1, and we label
them by 1,2, . . . , N —1, with 1 equal to the inter-
face between pI and pq, etc., the last interface N —1

being between ptt &
and ptv. The value of W at

each interface is denoted by W;, i = 1, . . . , N —1.
In each region defined by p; and t;, Eq. (2)

reduces to (D —k ) W =0, or W-e+-~. In regions
2, . . . , N —1, W is a linear combination of these
two solutions, while in region 1, W-e ~ and in re-

gion E, W-e since we require that W vanish in
the —oo and + ao directions, respectively.

Of course, the )V =2 case yields the classical re-
sult Eq. (1). In Sec. II we treat the case N =3 in
some detail with the use of a more explicit notation.
In Sec. III we consider the case of arbitrary N and
show that, in general, there are 2(N —1) eigenvalues

y found by solving a set of 1V —1 linear homogene-
ous equations. We find that two different density
profiles, related by "inversion", share the same
spectrum of eigenvalues, leading us to the inversion
theorem which states that the spectrum is invariant
under p; ~1/ptv+, , tf ~tQ+I g.

In Sec. IV we discuss other boundary conditions
which can be easily accommodated in our numeri-
cal code. We find a curious relationship between
the spectra of a density profile between two fixed
and two free boundaries: These two spectra are
essentially identical if (and, apparently, only if) the
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density profile is invariant under inversion —the
fixed free theorem.

In Sec V we analytically give the eigenfunctions
and eigenvalues for the case of a continuous profile
p=poe~~ having a variety of boundary conditions,
and compare the results with our multilayer ap-
proximations (X= 15 and 20).

Finally, in Sec. VI, we apply our techniques to a
particular problem in the design of a fusion target:
How to spread a fixed amount of heavy material
into a given number of subshells to reduce the
growth of Rayleigh-Taylor instabihties. We illus-
trate with N =12. The proofs of the theorems,
statements and some mathematical detail are out-
lined in the Appendices.

II. THE N =3 CASE

t &y, p=p3, W= W(t)e

Continuity of Waty =0 and t implies

2 =[W(t)—W(0)e ']/(e ' e—"'),
8 =[W(0)e"'—W(t)]/(e ' e—') .

The jump condition Eq. (3) gives

gk W(0) —W(t)

when applied at the first interface, and

(4)

Consider a single layer of fluid of density p2 and
thickness t sandwiched between two semi-infinite
fluids of densities p~ and p3..

region 1,

y &0, p=p&, W= W(0)e ~,'

region 2,

gk

(P3-P~)

W(t) W(0)—
P3+pq tanh( —,kt)+

W t sinh kt

0&y & t, p=p2, W =Ae~"+Be

region 3,

when applied at the second interface. Eliminating
W(t)/W(0) from these last two equations we oh-
tain a quadratic equation for X=—y /gk;

[(p3+ Tp, )(p, +Sp, +STp, )+p, (p, + Tp, )]P —(1+S+ST)p,(p3 —p, )X+S(p,—p&)(p, —p, )=0,

1

where T:—tanh( —,kt) and S:—sinh(kt). The solu-

tions are

b+(b 4ac—)'~—
2Q

where

a =(1+ST)(p3+p& )+S(p&+p,p3/pz),

b = —(1+S+ST)(p3 p) ), —

c =S(p3+p&) S(pz+p&p3/p&) .—

X (p3 p~ )/(p3+p~ )

independently of p2. This means that long-
wavelength perturbations grow at the classical rate
[Eq. (1)] as if the intermediate fluid has zero thick-
ness. (ii) Short wavelengths (A, « t). The two
modes are

P3 P~+(P~ w i/p»— —
x+—

P3+P&+P&+P3pl/P&

We have used the identity ST +2T=S and fac-
tored out p2 in deriving these expressions. The spe-
cial case p2 ——0 is treated below.

For arbitrary p&, p2, and p3, one can consider two
limiting cases for the wavelength A, of the perturba-
tions: (i) Long wavelengths (A, &p t). The two
growth modes are 7=0 and

P2 —
P& P3 —P2

or
P2+ Pl P3+P2

(10)

i.e., perturbations at each interface are decoupled
and grow classically [Eq. (1)] with the proper At-
wood numbers.
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We now consider several special cases where the
ratio between two densities becomes very small,
very large, or equal to unity. The notation p; =0 or

p; = oo is to be understood in this sense. The special
cases are as follows.

(i) p& ——p3. Then

7+ ——+(p~ —p2)/[p&+ p2+ 2p,p2coth(kt)] '

If we furthermore assume p~ ——p3 ——0, we recover
Taylor's result X+——+ 1.

(ii) p~
——0. Then

The value of p2 which is invariant under the
above operation, namely p2 ——QP~P3, when the two
Atwood numbers are equal, is rather special. This
is the geometric mean between p~ and p3, and one
can show that this value of p2 maximizes X and
minimizes X+. The proof of this statement is out-
lined in Appendix A. This is true for all positive

p~, p3, and, of course, kt. Since one is usually in-

terested in minimizing the faster growth mode, our
analysis shows that, given p~ and p3, the best profile
has p2 ——Qp&P3 for any wavelength perturbations.
Of course, the very long-wavelength (A. »r) pertur-
bations will continue to grow at the classical rate

' 1/2

y k(p3 —p))
v g p3+pi

x P3 —P2

p3coth(kt) +p2

(iii) p2 ——0. Then

7+=+1 .

(iv) p&
——ce. Then

X = —1

(12)

(13)

but these are not dangerous since k is small. The
short-wavelength (A, « t) perturbations will grow at
the rate [see Eq. (10)]

~+ (P3 P&)/(~P&+~PI) P2 +Plp3 ~

A, &&t

For example, if p~ ——1 and p3
——10, a single layer of

p2
——v 10 reduces the effective Atwood number

9
from» -0.82 to

P3-P2x+-
p2coth(kt) +p3

(14)

(v) p2
——Oo. This is an alternative statement of

Taylor's case, viz. , p&
——p3

——0. Therefore, 7+ ——+1
again.

Other special cases involving p3 can be obtained
from the above by noticing that under

p3~p~, X+—+ —X-. For example, p3
——0 has the

growth modes 7 = —1 and

p2-pi
p icoth(kt) +p2

Of course, setting p2 ——p~ or p2 ——p3 takes us back to
the E=2 case.

We observe an interesting symmetry involving pz
when we go back to study the expressions for a, b,
and c in Eq. (9). Since p2 appears only in the com-
bination p2+p&p3/p2, we conclude that both growth
modes are invariant under pz~ptp3/p2. For exam-

ple, the two growth modes for the density profile

(pt p2 p3) = ( 1, 10,20)

are identical to those of (1,2,20) for all wavelengths
of perturbation. Notice that the operation

P2~ptp3/p2 interchanges the Atwood numbers at
the two interfaces. An extension of this symmetry
to arbitrary N will be discussed in Sec. III.

9/(v 10+1)'=0.52

at short wavelengths. Furthermore, this is the best
one can do at any wavelength to reduce the faster
growing mode.

The behavior of X+ as a function of p2 is illus-

trated in Fig. 2. In Fig. 3 we show the functions
8'(y) associated with a few selected growth modes.

Except for an overall factor, the functions W(y) are

FIG. 2. General behavior of g+=y~/gk as a func-
tion of p2, assuming p j &p3, for the case N =3.
Minimum (maximum) value of g+ (g ) occurs at
p2=+p~p3. As p2~oo, ++~+I. Curves for the case
p& &p3 can be obtained by using P+(p&,p&,p3)
= —X+(p3,p2 pi)



2144 KARNIG O. MIKAELIAN 26

completely defined once we determine W(t)/W(0)
for a given mode with the use of Eq. (5) or Eq. (6).

From our earlier discussion we conclude that
y-v k in both the short-and long-wavelength lim-

its. Its behavior as a function of kt is shown in Fig.
4 for the profile p = (1,V 20,20).

III. THE GENERAL CASE

The extension of the problem to arbitrary X is
straightforward but, unfortunately, the solution is

not. In this section we will write the N —1 equa-
tions that need to be solved for the same number of
unknowns. We will show that y satisfies a charac-
teristic polynomial equation of degree N —1 and
therefore, in general, there are 2(N —1) values for
$0

Our notation was described in the Introduction
and in Fig. 1. In each region i with lower (upper)
boundary aty' (y'+), t; =y'+ —y',

W(y) = tsinh[k (y —y' )]W(y'+ )+sinh[k (y'+ —y)] W(y' )J .
sinh(kt; )

We will use the definition W~
——W(y+ ), i = 1, . . . , N —1. In region 1

8'=8')e ",
and in region N

W=WN texp[ —k(y —«.1)1

(16)

where we have defined our coordinate system by assuming that the first interface is at y =0 and defined t„, is
the total thickness of the transition region which equals g,. 2't;.

Continuity of W implies W(y'+ ) = W(y'+'). Defining the quantity

=1—W;/W; 1, i =2, . . . , N —1
W(y' ) —W(y'+)

W(y' )

we can write the jump conditions which extend Eqs. (5) and (6) to arbitrary X:

&2 gk
P2 T2+ S +P1=(P2—P1) ~2

S, P' ' (1—5 )S
gk=(P3—P2)

T
~N —2

PN 1N 1+ S -+PN 2-N 2
(1 5-)S-—

N —1 N —2 N —2

gk
(PN —1 PN —2)

p

PN+PN iN 1 (1—5 -—
—)S—-

gk
=(PN PN 1)~—- (19)

where T; =tanh( —,kt;) and S;=sinh(kt;).
Given the density profile p; and t;, and a value

for A, =2m/k, Eq. (19) is a set of N —1 equations
for the N —1 unknowns

&=r'/g k»2 4,4'

Eliminating the 5;, we obtain the polynomial equa-
tion for X,

a~ )g +a~ 2g + ' +a )g+ao =0,
(20)

where the coefficients are functions of p; and kt;
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FIG. 4. Two growth rates y+ for the case N =3 with

pl=1, p2=V20, p3=20, as functions of kt =2nt/I, .
Curve labeled Classical is l/19k/21. For large values of
kt the two modes become degenerate since the Atwood

numbers are identical at both interfaces:

y ~y+~0. 8Vk. This is an "inversion invariant"

profile. For other values of p2, y+ and y will lie above

and below, respectively, the curves shown here.

0.5

-0.5
I

0.5 1.0 1.5

only.
One can show that the roots of Eq. (20) are all

real by drawing upon the work of Chandrasekhar,
who shows that if y is complex then its real part is
proportional to the viscosity which we neglect.
Therefore, y is either purely real or purely ima-
ginary, and therefore, y is a real positive or nega-
tive number.

Since explicit formulas for solving polynomial
equations are available only for up to fourth degree,
it is clear that numerical techniques must be used

FIG. 3. Eigenfunctions W~(y) associated with the
eigenvalues g+=y+/gk for the case N=3. In the re-

gion y &0 the density p~ ——1 and in the region

y & 1 p3
——20. We have set t =1 for scale, where t is the

thickness of the intermediate fluid where density

p2= —V 20, % 20, and 2V 20 in (a), (b), and (c), respec-

tively. The wavelength of the perturbations A, =2. We
have normalized by [Wr(0)]2+ [Wri 1)j2=1. Note that
the eigenvalues are the same in (a) and (c) but the eigen-
functions are not.

' I/2
k(p+l —P )

pi+i+pi

If, on the other hand, A, is larger than the thickness
of each region, then 5; are all small and we can set
1 —ti; —1 in Eqs. (19). By adding all the equations,
the terms 5; /S; cancel on the left and p2, . . . , pN
cancel on the right, and we obtain

PN Pl'
gk N —1

PN+Pl+2 g Pi ~i
l =2

(21)

as one growth mode. Since we have assumed that
A. &&t;, T;~0 for all i and the above expression
goes smoothly to the limit (pN —pl)/(pN+pl).

Equation (21) is obtained whenever all 5; « 1. If
several modes satisfy this condition, then the eigen-
values associated with them become degenerate and
converge to (21).

for N) 6. The quartic equation for N =5 can be
found in Appendix B.

An alternative approach makes the problem more
amenable to numerical techniques, but before we
describe it let us point out several features of Eq.
(19). If the wavelength A, of the perturbations is
much smaller than the thicknesses of the two adja-
cent layers, A, « t;, t;+i, then that interface essen-

tially decouples from the rest and perturbations at
that interface grow classically
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Highly efficient numerical techniques are avail-
able for finding the roots of a polynomial equation
like Eq. (20). The difficulty with this approach is
that each of the coefficients ao, ai, . . . , aN 1

in-

volve all of p; and kt;, although, of course, a pattern
can be found for each

a' a'(Pl ' ' PN t2 ' ' tN 1—X)

(see Appendix B).
Alternatively, we can write Eq. (19) in the follow-

ing way:

1 T 1 1
—p2 gk

p T+ +p W+ W, = W, ,
1P2—P 1 ~2 P2 Pi —~2

1 p2 1 1 1Wi+ P3 23+ +p2 T2+
P3 P2 ~2 P3 P2 S3 S2

1
—p3 gk

(PN-i —PN»

—pN —2 1 1

g N —3+
( )

PN —1 TN —1+ gN —2 PN —1 PN —2 N —1

1
+PN —2 TN —2+

SN —2

8'N

+
(PN —1 PN —2 }

—pN-1 gkWN-i=
~ WN 2,

N —1

1

(PN PN 1)—PN —1 1 1
WN —2+ pN +PN —1 TN —1+

N —1 PN PN —1 1 N —1

~N —1 ~N —1 ~

gk
(22)

The eigenvalue nature of the problem is thus ob-
vious; the above equations can be written in matrix
form

MW = ('1/X) W, (23)

where 8' is the N —1 dimensional eigencolumn
with elements Wi, W2, . . . , WN 1, 1/X is the
eigenvalue, and M is a (N —1)X(N —1) band ma-
trix whose elements can be read off from Eq. (22).
Only the diagonal and the two adjacent elements of
M are nonzero.

%e have written a code that calculates the eigen-
values and eigenvectors of M once the density pro-
file (p; and t;) and the wavelength A, are specified.
%'e normalized each eigenvector by

N —1

g (W;) =1.
i=1

An overall sign remains undetermined. For each
eigenvalue k the corresponding full eigenstate
Wr(y) is calculated through the use of Eq. (15) and
the computed elements of the eigencolumn W as in-

put. Of course, the shape of the eigenstate Wr(y)
does not change with time, meaning the velocity
profile grows exponentially with time at the same
rate at every point y, i.e.,

U~(y, x,y, r) = Wr(y)e~e'

increases or decreases or oscillates (if y &0) with
time without changing its profile.

Applications will be discussed later. Here we ex-
plore the question of whether the symmetry found
in Sec. II for the X=3 case can be extended to arbi-
trary N. We were surprised to find in our numeri-
cal calculations that indeed the spectrum, i.e., the
set of y's for a given density profile, remains the
same under the following change in that profile:

Pip1PN /PN+1 i ~—
t; —+tN+1;, i =1,2, . . . , 3f .

(24)

Note that pi and pN as well as ti and tN (both infin-
ite) do not change under the above transformation
which may be called "the inversion of the profile",
whereby the thickness of the lower (near pi) and
upper (near pN} layers are interchanged, and the
densities are interchanged and inverted. For exam-
ple, the profile p=(1,2, 6,3,8} has the same set of
four growth modes y as p=(1,—,, —,,4, 8), and this
is true for al/ k. The physical origin of this proper-
ty is not clear to us. In Appendix B we outline a
mathematical proof of the "inversion theorem"
which reads: The spectrum associated with a densi-
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ty profile is invariant under the inversion of that
profile. 9

It will prove useful to consider the Atwood num-
ber

r; =(P;+1—P;)/(P;+1+P;)

at each interface. Since all our equations are linear
in density, it is clear that an alternative way of
specifying a density profile is to specify the Atwood
number at each interface —e.g., one can set pi ——1 as
scale, and specify p2,p3, . . . by specifying the At-
wood numbers at the first, second, . . . interfaces,
respectively. We can then think of the spectrum

(y I, which is a set of N —1 elements, as a function
of another (ordered) set of N —1 elements

I r i, r2, . . . , rN 1 I . There is a one-to-one
correspondence between these two sets if A, « t; for
all i =2, . . . , N —1, which we denote by the limit
A, ~O. The interfaces decouple and the perturba-
tions grow classically:

e.g., p=(1,2,4, 8, 16). For such a profile and in the
limit X~O the N —1 growth modes become all de-
generate and converge to [see Eq. (25)]

y ~ gkr,
A, ~O

(26)

where r is the common value of the Atwood num-
ber

( )1/N —1
( )1/N —1

( )1/N —1+( )1/N —1
(27)

If, in addition, the thickness t2 —t3 — —tN ],
we may take the limit X—+ao, t; ~0. The continu-
ous profile that is approached in this manner is easy
to find, since Atwood number ~dp/2p —const in-

dependent of y, and therefore p=pOe~". This is the
one continous density profile for which Eq. (2) can
be solved analytically in a rather straightforward
yet nontrivial manner, as we do in Sec. V.

A, —+0
(25) IV. BOUNDARY CONDITIONS

In general, the spectrum changes if the Atwood
numbers are changed or interchanged. The one ex-

ception known to us, besides the above trivial limit,
is that of inversion, Eq. (24). It is a particular per-
mutation of Atwood numbers r;~rN; whereby
the lower and upper Atwood numbers are inter-
changed pairwise (if N is even, the middle Atwood
number rN/2 remains the same). Other permuta-
tions are possible, but only this particular permuta-
tion of Atwood numbers and thicknesses leaves the
spectrum invariant. '

The inversion theorem becomes an uninteresting
statement of identity when applied to a density pro-
file which itself is invariant under inversion (since p
does not change, the growth modes obviously do
not). Such density profiles, however, have other cu-
rious properties. Let us first point out that they
form a rather large class of density profiles, because
requiring invariance under inversion determines less
than half the profile, the rest being completely arbi-

trary. Examples are given later. Here we discuss
two successively smaller subclasses of density pro-
files: The first has a11 equal Atwood numbers

(ri r2 rN 1)
——but ————the thicknesses matched

only pairwise (t; =TN+1;), and the second has all

equal Atwood numbers and equal thicknesses.
Equal Atwood numbers imply

(i —1)/(N —1)
PN

PI- =PiPN ~PN+1 —i Pl
p&

i =1,2, . . . , X

In this section we discuss how to accommodate
boundary conditions other than two semi-infinite
fluids of density p~ and pN at each end. At a fixed
boundary W=O. For example, if the lower boun-

dary (at y =0 by convention) is fixed, we delete the
first of the N —1 equations in (22) and set 8'1 ——0
in the next one. We then have 1V —2 equations and
the same number of growth modes. If the upper
boundary (at y =t«, ) is fixed, we delete the last
equation and set WN ~

——0. Thus, if both boun-
daries are fixed, the number of growth modes is re-
duced to N —3.

A free boundary is even easier to accommodate;
simply set p& or pN or both equal to zero. We have
the same number X —1 of equations to solve and
we get the same number of growth modes y, al-

though, of course, they will be different from the
case of finite pi and/or pN.

Two values of y are straightforward to find for
the case when both boundaries are free: In Appen-
dix B we show that any density profile having free
boundaries at both ends includes y =+gk and

y =—gk in its spectrum of eigenvalues. A non-
trivial calculation must be carried out to find the
remaining N —3 values of y needed to complete
the spectrum. Of course, for N =3 these are the
only roots as found by Taylor.

For the same density profile the eigenvalues y
and eigenfunctions Wr(y) are, in general, different
for different boundary conditions. This is typical of
boundary value problems and is particularly true in
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We have found a curious relationship between the
N —3 growth modes for the case of two fixed boun-
daries and the remaining N —3 nontrivial growth
modes for the case of two free boundaries. These
two sets become identical if the density profile is in-

variant under inversion. More explicitly, we have
the Fixed-Free Theorem: Let

{y'lfixed and {y'Ifree

be the spectrum of a density profile between two
fixed and two free boundaries, respectively. If the
profile is invariant under inversion, i.e., under

p; ~1/p~+ );, t;~t~+ );, then

{y'It„,= {y'Ir,„,du {gk, gk I . — (28)

In our notation, the profile consists of
p2,p3, . . . ,p~ 2,p~ ~ layers of thickness

t 3 tN 2 tpj ] between two fixed or two free
boundaries. As stated earlier, the sets {y It„, and

Iy Jr,„,d contain N —1 and N —3 elements, respec-
tively.

Let us point out that the theorem holds for the
large class of density profiles invariant under
inversion —it is not necessary to have all equal At-
wood numbers or all equal thicknesses, but only
that they be matched pairwise. An explicit example
will show how general this class is.

Let %=18. We can choose t2, t3, . . . , t9 arbi-

trarily, but then need to set tio ——t9, t» ——ts, etc.,
until t~7 ——t2. We can choose p2,p3, . . . , p9 arbi-

trarily, but then need to set p]0——c/p9, p» ——c/p]],
etc., until p, 7

——e/p2, where c is again arbitrary and
hence can be used to choose another density. In all,
9 out of 16 densities and 8 out of 16 thicknesses can
be chosen arbitrarily.

If N =17, we can still choose 8 out of the 1S
thicknesses arbitrarily (e.g., t2, t3 t9 t]p = t]],
t]]—t7 t]6 —t2) and choose 8 out of the 15
densities arbitrarily [e.g., p2,p3, . . . , p9,p]0 ——c/p]],
p» c /p7, . . , p]6——c/p. 2, but——c = (p9) now].2

Again, we cannot offer a physical understanding
of this theorem and outline a proof in Appendix B.
It follows also from a corollary to the inversion
theorem applied to free boundaries (p=0) which go
over to fixed boundaries (p= oo) under inversion.
Let us mention that' both the inversion and fixed-
free theorems are statements about the eigenvalues

our case, where the boundary conditions 'often de-

pend explicitly on the growth modes (or vice versa);
e.g., at a free boundary the condition reads

DS'+ 8' =0 .gk

y and not about the eigenstates Wz(y). We now

turn to some applications.

V. COMPARISON WITH A CONTINUOUS
DENSITY PROFILE

p(y)=poe~~, 0&y &t (29)

with various boundary conditions as shown in Fig.
5. Our notation follows Ref. 8, where case (a) is
treated (fixed boundaries at both ends). The follow-

ing applies to all the cases. Substituting Eq. (29) in

Eq. (2), we get
T

D W+PDW k 1 — W— =0 (30)

whose general solution is

O' =A &e +A2e

where

(31)

q]+q2= 13 ~

q] —q2 ——P +4k 1—gP
1/2

(32)

There are two unknowns in the problem, the ratio
A2/Ai and q~ —q2. These are determined by the
boundary conditions at the two ends. In all of the
cases, the growth mode(s) y will be given by

2ed k

x +e+d (33)

As mentioned in the Introduction, one applica-
tion of our approach is the calculation of the
growth modes for a continuous density profile
which cannot be solved analytically, by approximat-
ing that profile with a (large) number of density

steps which we can solve numerically by the tech-
nique described in the previous sections. As anoth-
er application, suppose that a desired continuous
profile cannot be fabricated but that a number of
layers following that profile can be coated, then one
would like to know how close one can come to
suppressing the growth of Rayleigh-Taylor instabil-
ities.

In this section, we compare the multilayer ap-
proximation to a continuous profile that can be
solved analytically: the exponential profile. In oth-
er cases, one would study the spectrum as a func-
tion of E.

Let us first present the analytical solutions to the
density profile
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tan(x) = —2xd

x +e —d
(38)

In looking for the solutions x of this transcenden-
tal equation, one must consider both real and ima-

ginary values of x. Some care is required in solving
Eq. (38) since the right-hand side can have a pole at
x =d —e.2= 2 2

Case (c) Fre. e boundary at y =0; fixed boundary
at y =t. Requiring W=Oaty =t,

(c)

W=e P~~ sin(x xy It—),
while condition (37) applied at y =0 gives

tan(x) =
2 z

2xd

x +e

(39)

(40)

The same comments following Eq. (38) apply here
also.

Case (d) Free. boundaries at y =0 and at y =t
The free boundary condition Eq. (37) applied at

y =0 reads

FIG. 5. A continuous exponential profile p=poe@ be-

tween (a) two fixed boundaries; (b) fixed at y =0, free at
y=t; (c) free at y=0, fixed at y=t; (d) two free boun-

daries; (e) two semi-infinite Auids of density po for y &0
and p, fory)t.

A]q]+A2q2+ (A]+A2) =0kg

and, applied at y =t,

qlt q2~ k g q~~ q2~
2

A]q]e +Apq2e + (A]e +A2e ) =0 ~

(41)

where e =kt and d =ptl2, and

x = +] (q] —qz )t l2

is to be determined in each case. All the following
8"s below can be multiplied by an arbitrary con-
stant.

Case (a). Fixed boundaries at y =0 and at y =t.
Requring W to vanish at y=0 and at y =t one
finds

(42)

kgq)+

qi& k ge' q, +

kg
q2+

y

q2t k ge q2+

These two equations determine the ratio A ] /A2 and

q] or q2 (q]+q2 ———p). Clearly, A] ——A2 ——0 unless
the determinant of the 2X2 matrix M vanishes,
where

W =e ~"~ sin(may It), m =1,2, . . .

and therefore

(34)

The condition det
~

M
~

=0 reads

(43)

(35)

Case (b). Fixed boundary at y =0; free boundary
at y = t. Requiring W =0 at y =0,

r

(e ' —e '
) q]+ q2+ =0 (44)

q2~ qi~ k g k g

and the solutions are
8'=e @r sin(xy/t) . (36)

The condition of a free boundary is given by Eq. (3)
with p+ ——0. We now have

DW+ g W=O

Applying this condition at y =t, we get

and

W=e —~, =+1+k

gk
(45)

W=e @~ cos(xylt) (x +e —d )s—in(xylt)
1

2xd

(46)
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with x =me and m =1,2, . . . . It will be noted
that the spectrum is identical to the case of two
fixed boundaries, plus the two modes in Eq. (45),
which correspond to 8"s peaked around

y =0(y /gk=+1) and y =t(y /gk= —1). This is
an example of the fixed-free theorem stated in Sec.
IV.

Case (e). p=po for y &0 and p=p, for y)t. In
the region y &0, W(y) = Woe@; in the region

y &t, W(y)= W, e"" ~'. The continuity condition
aty =0 reads

1 1 1 0
k qj q2 0

q]t q2t0 e' e' 1

q&t q2t0 q)e q2e —k

(51)

tan(x) = 2xe

x +8 —e
(52)

which is the characteristic equation for finding the
growth modes y. The solution to (51) is

8'p ——A )+A2

and aty =t,

(47) another transcendental equation whose solutions x
give the growth modes y when substituted in Eq.
(33) as before. The associated eigenfunctions are

q&t q2t
(48)

kS'p ——q&A &+q2A2

and aty =t,
q2t—kg t

——q]A )e +q2A2e

(49)

(50)

The four equations (47)—(50) for the four un-

knowns Wo A i A2, and 8;, will have a nontrivial
solution if and only if

The jump conditions at y =0 and t simplify if we
choose p to be continuous, though the problem can
be solved for arbitrary discontinuities in p at these
two boundaries, and the solution will be presented
elsewhere. For a "weak" discontinuity, i.e., p con-
tinuous but Dp not continuous, as shown in Fig.
5(e), Eq. (3) implies that DW is continuous. There-
fore, at y =0,

W=e ~~/ cos(xy/t)+ (e+d)—sin(xy/t)
1

(53)

If we consider a continuous density profile as the
N +00 lim—it of some stratified profile, then we ex-

pect infinitely many growth modes, since we have

seen in Secs. III and IV that the number of modes

y is equal to N for large N. This indeed is true for
the cases considered in this section; there are infin-

itely many solutions x and, therefore, y . A few of
the solutions may come from imaginary values of x;
the remaining infinity of solutions come from real

values of x. In practice, one is usually interested in

the largest values of y, perhaps the first two or
three fastest growing modes.

In general, the transcendental equations obtained
in cases (b), (c), and (e) must be solved numerically.
We illustrate case (e) in Appendix C. In Table I we

N =20

TABLE 1. Growth rates y/V g of the first two fastest growing modes and the one stable
mode for an exponential density profile between a fixed boundary and a free boundary: case
(b), Fig. 5(b). The thickness t of the fluid is set equal to one for scale, and the ratio
p(1)/p(0)=20/1, i.e., P=3. The continuous case is compared with N =15 and 20 stepwise
simulations of the profile. Shorter-wavelength perturbations require larger values of N. In the
first column k =2m/A, . In the very short-wavelength limit l « t the unstable modes approach
y/V g ~V P while the one (unique) stable mode approaches y/V g ~iV k.

y/~g for case (b) shown in Fig. S(b)
kt Continuous N =15

0.5
1

4
8

10
15
20
30

0.36,0.14,0.59i
0.64,0.29,0.96i
1.36,0.95,2.00i
1.60,1.36,2.83i
1.64, 1.46,3.16i
1.69,1.59,3.87i
1.71,1.65,4.47i
1.72, 1.69,5.48i

0.35,0.14,0.59i
0.63,0.28,0.96i
1.34,0.94,2.00i
1.59,1.37,2.83i
1.65,1.48,3.16i
1.75,1.66,3.87i
1.83,1.78,4.47i
2.00,1.98,5.48i

0.35,0.14,0.59i
0.63,0,28,0.96i
1.35,0.94,2.00i
1.59,1.36,2.83i
1.64,1.47,3.16i
1.71,1.62,3.87i
1.77,1.71,4.471
1.88,1.85,5.48i
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compare the first three largest growth modes for
the continuous profile with the N =15 and 20
modeling of that profile for case (b). In Table II we
do the same for case (e). We have also compared
the eigenfunctions 8'r(y) and find good agreement.

At this point it becomes clear that what we are
describing is a perturbation technique in which the
variable is N, the exact results for the case of a con-
tinuous p being given by the limit N~00. The
boundary conditions, nontrivial because they con-
tain explicitly the eigenvalues we are trying to
determine, are treated exactly. Only the intermedi-
ate density profile is approximated by a series of
steps and clearly the larger the number of steps the
better is the modeling of that profile. The conver-
gence properties of this technique is a whole prob-
lem in itself which we hope to treat in another pa-
per.

Our original motivation was to find the growth
modes for a discrete set of density steps like Fig. 1

which, of course, our technique solves exactly. The
question arose in the context of the design of multi-
shell targets for inertial confinement fusion (ICF}.
In Sec. VI we describe an application to such a
design problem.

VI. AN APPLICATION TO ICF
MULTISHELL- TARGET DESIGN

WITH N =12

Rayleigh-Taylor instabilities grow in imploding
ICF targets when a heavy fluid is accelerated by a
lighter fluid. All designs suffer from such an insta-
bility at some time or another during the history of
implosion. As mentioned in the Introduction, the
outer ablating surface may be stabilized, i.e., y (with

0.5
1

4
8

10
15
20
30

0.66,0.23
0.90,0.43
1.46,1.11
1.63,1.44
1.66,1.52
1.69,1.62
1.71,1.66
1.72,1.70

0.65,0.24
0.90,0.44
1.43,1.12
1.60,1.44
1.64,1.53
1.72,1.66
1.80,1.76
1.97,1.95

0.66,0.24
0.90,0.44
1.44, 1.12
1.60,1.44
1.64,1.52
1.70,1,63
1.75,1.71
1.85,1.83

TABLE II. Same as Table I for Case (e), Fig. 5(e).
There are no stable modes in this case.

y/V g for case (e) shown in Fig. 5(e)
Continuous N = 15 N =20

ablation) &y,»„;«i, by conduction effects or "fire
polishing. " Our interest is in the inner shell(s),
where this mechanism is not available, and where
some degree of stability might be achieved by intro-
ducing a finite density gradient. Hence, we consider
the following general, and no doubt very idealized
problem: A shell of heavy fluid (e.g., Au) of thick-
ness tH and density PH accelerated by a shell of
light fluid (e.g., CH) of thickness tt and PL, . As-
sume that the lower boundary of PL and the upper
boundary of pH are free At their common inter-
face, fiuid instabilities will grow almost at the clas-
sical rate

=k(PH PL, }/(PH+PL } (54)

which is large because the Atwood number is large.
We say "almost" because the exact values are ob-
tained by solving the X =4 problem in our notation:

pi =0 pz=pL. p3=pH p4=0 ~

Two of the growth modes are y =gk and y = —gk
peaked around y = —tl and y =t&, respectively, in
a coordinate system where the interface is located at

y =0. The third mode is approximately given by
Eq. (54) if A&tL and .A&ttt Its , exac.t value will be
computed below.

To reduce this growth mode (nothing can be done
about the other two as long as the boundaries are
free) we may insert "transitional" layers at the in-
terface to make the transition from pt, -1 to
pH -20 smoother, or we may vary the density con-
tinuously at the interface. Here, we treat the case of
eight transitional layers, hence we need to solve the
N = 12 problem.

One important constraint is that we do not in-
crease the mass of the heavy fluid being accelerated,
hence we speak of spreading the mass of the heavy
shell into a number of subshells. Another con-
straint is that we have some of the heavy material
still left in the last (N =11}shell; otherwise the
problem would be trivial.

Of course, in practice, perturbations come in all
wavelengths and we need some criterion as to what
A, we should be worried about. This criterion comes
from outside the linear regime that we have as-
sumed throughout this paper: Perturbations grow
exponentially with time until their amplitude be-
comes of the order of A, , after which nonlinear ef-
fects slow down the growth. Since we are interested
primarily in the integrity of the last shell, and, in
particular, that it does not break up, we require the
amplitude of the perturbations to grow to no more
than the dimensions of the last shell. This, in turn,
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11 10

PH g Piti tsubshell g Pi +t1 IPH (55)
l =3 l =3

From Fig. 6 we see that the exact values of the
growth modes for the original configuration (0%
mass spread) are given by the classical expression,
Eq. (54), to a very good approximation as claimed
earlier in this section. From the same figure we
conclude that the optimum design would spread
only about 40'Fo of the original material, reducing y
by a factor of 1.54.

The existence of a minimum in Fig. 6 could have

implies that we should look out for wavelengths of
the order of the thickness of the last shell. As more
and more of the heavy material is spread into sub-

shells, the thickness of the remaining shell is re-
duced and, consequently, the wavelength A, of the
most dangerous perturbations. In general, as the
classical expression for y illustrates, shorter wave-

length perturbations grow faster. This implies that
there is a limit as to how much of the original shell
should be spread, since spreading more of that ma-

terial might shift A, to such low values that pertur-
bations will grow even faster. The question then is,
how much of the original material can be spread be-
fore this situation is reached, and how much reduc-
tion in y can be achieved in this way?

Let us illustrate with the following density pro-
file: p=(0, 1,1.S,2,3,4,5,7,10,14,20,0). This is close
to the profile where all the Atwood numbers are the
same, which has the property that all Auid inter-
faces are equally unstable to very short-wavelength
perturbations [see Eqs. (25)—(27)]. There are too
many variables to try and determine analytically the
best possible profile (p2,p3 ~ ~ ~ pi]) (t2 t3 ~ ~ ~ ti]),
and the reasons for our choice will be discussed
elsewhere. We also chose all our subshells to have
equal thicknesses, so that the actual profile used is
close to being invariant under inversion.

There are 11 growth rates y, two of which are
+gk. In Fig. 6 we plot the largest of the remaining
nine modes as a function of the percentage of the
mass of heavy material spread into the eight sub-
shells. We have set A, equal to the thickness of the
remaining last shell of density pII ——20. To com-
pletely specify our units, we need only mention that
the thickness of the original heavy shell was used
for scale tH(original)=1. The thickness t2 was
chosen large (specifically t2 ——6). The percentage of
the mass spread determines tii, the thickness of the
remaining last heavy shell; e.g., if 40% is spread,
then t~&

——0.6. The thickness t,„b,I„&& of each sub-
shell is determined by "mass conservation, "i.e.,

3.5

3.0

2.0

1.5—
Y I I I I I I I I I Y
0% 10% 20% 30% 4Q% 5Q% 60% 70% 80% 90% 100%

Fraction of original mass spread into 8 shells

FIG. 6. Largest of the nine nontrivial growth rates
for the profile shown as a function of the fraction of
mass spread from the heavy (p=20) fluid into the eight
transitional layers. Thickness of the original heavy fluid
is set equal to 1 for scale, and the wavelengths

k~„=t» ——{1—fraction spread)=thickness of remaining
heavy fluid {the subscript pert represents perturbations).

been predicted on the basis of the arguments given
above: Spreading too little would not change y very
much from the classical result, but spreading too
much would make the design vulnerable to very
short wavelengths since the last shell gets thinner,
and these short-wavelength perturbations grow fas-
ter. In fact, if more than 60—70% is spread, then
the nine nontrivial growth modes are given approxi-
mately by y =gkr;, where the Atwood numbers

range between 0.1 and 0.2. If all the Atwood num-

bers were the same, it would be 0.165, and the
reduction in y would be a factor of 1.57.

Of course, increasing N, i.e., putting more sub-

shells, would suppress the instability even more.
Our calculations indicate that the ultimate reduc-
tion in y is about 2.5. We must recall that the
analysis presented in this paper is applicable only in
the linear regime, and that fully nonlinear numeri-
cal simulations are necessary for a realistic assess-
ment of the advantages of finite density gradients.
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APPENDIX A

We will show that for the case X=3, i.e,
p=(pi, p2,P3), the value p2 ——Qpip3 minimizes the
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faster growth mode X+ and maximizes the slower
growth mode X for all values of A,. Note that

BXy BXy Qa BXy Qb i)Xy
+ +

a»
=

aa apz Bb Bpz Bc Bpz
r

~&+ Ba

Bc Bp2

where

BQ =S(1 p—ipse/p» .
Bp2

This is enough to show that pq
——+pips is an ex-

tremum.
More explicitly,

2 =
2 i&2 [b(b —4ac)'~ +[2a (a +c) b]—]

i)pq a (b 4ac—)'~ Bp2
(Al)

which vanishes only if the quantity in curly brackets vanishes or if Ba/Bp2 ——0. One can be shown that the
quantity in curly brackets vanishes if and only if pi ——0 or p3

——0, as in the case treated in Secs. II. If neither pi
nor p3 vanishes, then the only extremum is at pz ——pz

——+pips. The nature of this extremum is determined
from the second derivative

a2X 1 Ba
2 2

—— 2, [b(b 4ac)'i—+[2a(a+c) b][ —
2

Bpz a(b 4ac)'~— Bp2
(A2)

at Ba/Bp2 ——0. The sign of i)'X, /ap', is determined

by the sign of the quantity in brackets since a,
(b 4ac)'—, and i) a/Bpz are all positive. The
proof then consists in showing that

length). Our proof of the inversion theorem con-
sists in showing that all the coefficients

aiv „aiv 2, . . . , ai,ao of the characteristic equa-
tion [Eq. (20)]

b (b 4ac)' +—2a (a +c) b&0—
and

b(b 4ac)' —2a(a+c—)+b &0,

(A3)

(A4)

aN —1+ +aN —2~ + +a1++ao

(81)

which imply that p2 ——+pips is a minimum for X+
and a maximum for g, as indicated in Fig. 2.

The first step in proving the inequalitities (A3)
and (A4) is to show that

are invariant under inversion. This implies that the
eigenvalues of the inverted profile satisfy the same
characteristic equation as the original profile, and
therefore [y J =[y J;„„,„,q.

Let us obtain (81) by elimination. Define

2a (a +c) b& 0, — (A5)

which follows, after some algebra, from the inequal-

ity 1 —S+ST&0. Inequality (A3) follows trivially
from (A5) if b & 0. If b & 0, some algebra is needed,
but eventually it follows from p1&0. Similarly,
(A4) follows trivially from (A5) if b &0. If b & 0, it
follows from ps &0.

pi=

1
p;S; —(lqS;T;) (p; —p; i)——p;

S; S;+ ~
——(P P i)X —P i---

pi

APPENDIX 8

In this appendix we outline the proof of the in-

version and fixed-free theorems. The methods that
we present are not unique and, in fact, there are
several other ways of proving the same theorems.

The characteristic equation, a polynomial of de-

gree N —1, can be obtained either by elimination of
the 5;, or by solving det

~

M A,I
~

=0, where—
A. =gk/y =1/X (not to be confused with wave-

for i =2,3, . . . ,X—1, with p1 ——p1. The charac-
teristic equation then reads ps ——piv, and Eq. (81)
is obtained by expanding this equation. This is an
iterative method in which Eq. (82) is used N —2
times until we reach p1

——p1.
Let us illustrate with X=S. The extension to ar-

bitrary X is straightforward but the expressions get
too long. Unfortunately, no physical insight is ob-
tained by doing these calculations.

The last of the equations in Eq. (19) reads
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1
ps =(ps4) —p4x

(83)

5.

(1—5;)S;
(84)

where we have defined p;i—:p; —PJ, and used the
fact that an alternative definition of p; is

Using Eq. (82) three times, substitute for p4 in
terms of p3, in the resulting expression, substitute
for p3 in terms of p2 and, finally, again using (82),
substitute for p2 in terms of pi ——pi. We now have
an equation in which only the known quantities p;
and t; appear:

P4S4 (1+S4T4) P43/&

p2S2 —( 1+S2T2 )(p21/X —pi )
P3S3 —(1+S3T» P32/&-

S2
1+S2T2 — (p» IX—pi)

p2

1+S3T3—
S3 p2S2 —(1+S2 T2 )(p21/X —p1)

P32/X—
p3 S2

1+S2 T2 — (P21/X —p 1 )
p2

S4
1+S4T4 p43 I—X—

P4
1+S,T, —S3 p2S2 ( 1 +S2 T2)(P21/~ Pl )

P32/&-
p3 S21+S2T2- (p»l~-Pi)

pz

P2S2 ( 1 +S2T2 )(P21/~ P1)
p3S3 —( 1 +S3T3 ) p32/X—

S2
1+S2T2 (P21/—X—p 1 )

p2

After some algebra, we obtain the characteristic equation

a4+ +a37 +aqX +a iX+a0=0

(85)

S2S3S4
ao —— ps4P43pup2»

p+3P4

S2S3 S3S4 S2S4
a, (1+S4 T4) pssp32P2, +(1+S2 T2 ) p54P43P»+ (1+S3T3 ) P54P42P2,

p2p3 p3p4 p@4

S2S3S4+ P43P32(pslp4 pilp», —
p3

S2 S4 S3
a2 ——(1+S4T4)(1+S3T3 ) p52P21+ (1+S3T3 )(1+S2T2 ) p54P41 + (1+ S4 T4 )(1+S2T2 ) p53p31

pz p3

+(1+S4T4)S2S3p32(p5 lp, p, Ip, ) +(1+S,T,—)S3S4p43(pslp4 pi Ips)—
r

p21 p3 p4 p43 PiPs
+(1+S3T3)S2S4p42(pslp4 pilp, )+S,S,S4 — —p,4+—

p32 + p2P54+ p32
p2 p4 p3 P3P4 p2

(86)
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—a3 ——(1+S4T4)(1+S3T3)(1+S2T2)p5l +(1+S4T4)(1+S3T3)S2p5l +(1+S3T3)(1+S2T2)S4p»

ps pi+(1+S2T2)(1+S4T4)S3p»+ (1+S4T4)S2S3 —
p2l + —p53+p32

p3 pz

pi ps
+(1+S2T2)S3S4 p54+ —P31+P43

p3 p4

ps p& pi ps+(1+S,T, )S2S4 p2, + p,4+p4, +S,S,S4 —p4, +—p„+p5P2/P3 p,p4/p,
p4 p2 pZ p4

S2 S4
a4 —(1+s4T4)(1+s3T3)(1+s2T2)(p5+pl)+plp5(1+s3T3) (1+s4T4) +(1+s2T2)

p2

+ (1+S3 T3)[(I+S4T4)p2S2+ (1+S2T2)P4S'4]+( I +S4T4)(1+S2T2)S3(p3+plp5/p3)

+(1+S2 T2 )S3S4(plp4/p3+ p5P3/p4) +(1+S4 T4 )S2S3 (p3pl /p2+ p5P2/p3)

+(1+S,T, )S,S4(p,p4/p, +p5P2/P4)+S2S3S4(P2P4/p, +p,p5P3/P2P4) .

As a check we note that, by letting any two
thicknesses ~0, we obtain the quadratic Eq. (7) for
the case N =3.

It is straightforward to show that each of
ao, ai, a2, a3, and a4 is invariant under

Pl�pl�&

P2~plPS/P4& P3~plP5/P3& P4~plP5/P2&
pq~p5, accompanied by tz~t4, t3~t3. Hence, the
inverted profile satisfies the same characteristic
equation (81) and therefore has the same roots.
This completes the proof of the inversion theorem
for the case N =5. Extension to arbitrary X will

not be given here. We will report later if we find a
more "elegant" proof.

We now turn to the fixed-free theorem, and first
show that y =+gk are always two possible modes
for a density profile between two free boundaries.
Note that the boundary conditions read

kDN+g 8 =0 (B7)

which is obtained from Eq. (3) by setting

pN
——pi ——0. Note that the same condition is ob-

tained if W(y) and DW(y) are continuous across an
interface. It follows that the two solutions,
W(y)-e++ and W(y)-e ~ throughout the whole
fluid region,

N —1

0(y (t«&, ——g t;,
/=2

satisfy all the boundary conditions if y =—gk and

y =+gk, respectively. That this is true for an ar-
bitrary profile, continuous or stepwise, is clear from a11d

(Bg)

l

Eq. (2) also.
When only one boundary is free and the other is

not fixed we again have one of the modes y =+gk
or —gk depending on whether the free boundary is
unstable or stable, respectively. If one boundary is
free and the other is fixed then, in general, neither
one of these two modes are present unless A, is much
less than the distance between the two boundaries.

The second part of the fixed-free theorem states
that, if the density profile is invariant under inver-

sion, then

I r'1 r-.= [r'IIfi-d U [gk, gk 1,—

where Iy I f fi d refer to the modes of the same
profile p2, p3, . . . , pN ~, tz, t3, . . . , tN 1, between
two free or two fixed boundaries. This theorem ap-
pears to be an "if and only if" statement, but we
have not attempted to prove the "only if' part,
which is obviously harder, and we leave it as a con-
jecture supported only by numerical experience.

Our proof for the "if" part consists in showing
that the characteristic equation for the free case
reduces to that of the fixed case after we factor out
the two modes 7=+1 and 7= —1. We choose to
calculate the coefficient a; the same way as before,
setting pi ——pN

——0 for the free case and

52 ——00,5N 1
——1 for the fixed case, when the equa-

tion becomes only of order X—3. Let

free yN —]+ free +N —2+ . . + free~+ free 0
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fix gQ —3 + fix ~&—4+ . + fixe + fix
O

be the characteristic equations for the free and fixed
cases, respectively. One way to prove the fixed-free
theorem is to show that, by multiplying Eq. (89) by
X —1, we get Eq. (88) if the profile is inversion in-

variant, i.e., if it does not change under

p;~1/p~+1; and t;~tg+, ;, i =2, . . . , E—1.
Equating the coefficients of equal powers of X in

this way, the problem is reduced to showing that"
fix fix free

Ar —.—z
—Ar —.=ax—

(810)

It must be remembered that a~'" ——0 if I gO or if
I

l &N —3. Of course, riot all of the X equations in
(810) are independent; they incorporate the fact
that 7=+1 are solutions to Eq. (88) which we have
already shown to be true and, therefore,

i =even

free (811)

j =odcl
Q

free
Oj' (812)

These two constraints are valid for any density pro-
file, while Eqs. (810), seen as N —2 nontrivial rela-
tions, are valid only if the profile is invariant under
inversion.

Let us illustrate with the case N =5. The coeffi-
cients alf"' are

00 S2S3S4p43P32/p3 ~

a ~"' (1+S4T4)S2S3p32+(1+S2T2)S3S4p43+(1+S3T3)S2S.4p42

a2"' ———(1+S4T4)(1+S3T3)S2p2 —(1+S4T4)(1+S2T2)S3p3—(1+S3T3)(1+S2T2)$4p4

S2S3S4(p3 +2p2P4/p3 p4 P2 )——

a 3""———(1+S4 T4 )S2S3p32 (1+S2T,—)S3S4p43 (1+S3T3—)S2S4p42,

a 4"' ——(1+S4T4 )(1+S3T3 )S2p2+ (1+S3T3 )(1+S2 T2 )$4p4+ (1+ $4 T4 )(1+S2 T2 )S3p3

+$2$3$4P2P4/P3,
fixa 0 =S2S3 4p43p32/p3 ~

a ~'" ———(1+ $4T4)$2$3P4P32/p3 (1+S3T3 )S—2S4p42 (1+S2T2 )S—3S4p43p2/p3

a 2"——S2S3S4p3+(1+S4T4)(1+S2T2)$3P4P2/p3+(1+S4T4)(1+S3T3)S2p4

+(1+$3T3)(1+S2T2)S4p2 .

(813)

(814)

The five relations from Eq. (8.10) are

fix free fix free
a2 ——a4, a1 ——a3

fix fix free fix freea0 —a2 ——a2, —a] ——a] (815)

fix free—Qp =Qp

One can easily check that these relations are satis-
fied if the profile if invariant under inversion,
which in this case means t2 ——t4, t3 arbitrary, and

p3 ——P4P2/P3, p2 and p4 arbitrary.
In each case, we have tried to formulate our

proof in such a way that extension to arbitrary X is
straightforward (albeit nontrivial). We have chosen

to work with the coefficients a; in the characteristic
equation. Alternatively, one may study the proper-
ties of the matrix M from which the characteristic
equation can also be derived. For example, the in-
version theorem can also be proved by showing that
there exists a nonsingular matrix A such that
M;„„,„,z ——AMA '. Clearly, det

~

M AI
~

=0 is-
left invariant under this transformation. The ex-
istence of 3, however, is not any easier to prove
than the invariance of the coefficients in the charac-
teristic equation, although this alternative approach
might help our intuitive understanding of inversion
symmetry.

We repeat that both theorems are valid for arbi-
trary wavelengths 2m /k of perturbations. The
proofs are trivial for very short or very long wave-
lengths.

Finally, we state a corollary to the inversion
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1

4

through Eq. (33). Except for the case of two fixed
or two free boundaries, x is found by (numerically)
solving a transcendental equation. Since only x
enters in Eq. (33), we need to consider only positive
values of x or of z where x =iz. We will use case E
as an illustration in which case x is found from Eq.
(52),

2xe
tan(x) =

x +d —e
(Cl)

n'/2

l pole

1 I

3m/2 27r

X

5~/2 3~
tanh(z) = 2ze

—e —z
(C2)

We will also assume that P, and therefore d, is posi-
tive.

Let us first consider the imaginary solutions of
(Cl) since these are few in number. Setting x =iz,
Eq. (Cl) becomes

FIG. 7. Intersections of the continuous curves

y =tan(x) with the broken curves y =2ex/x +d —e

determine the values of x in Eq. (33). Case (1) is for
e & —1+(1+d )'; case (2) is for —1+(1+d )'~

&e &d; case (3) is for e =d; and case (4) is for e &d.
Here e =kt and d =Pt/2. Density profile is exponen-
tial, p=poe~~, with p=po for y &0 and p=poe~'=p, for
y & t [Fig. 5(e)].

theorem which clarifies the relationship between
these two theorems: The spectrum of a density pro-
file between two free boundaries is identical to the
spectrum of the inverted profile between two fixed
boundaries, except for the two modes y =+gk
which are present in the free case but not in the
fixed case.

The proof is similar to the proof of the fixed-free
theorem which can be viewed as a special case of
this corollary.

APPENDIX C

For an exponential profile p(y) =poe~", 0&y &t,
the parameter x determines the growth mode y

There is only one solution which occurs if d & e and
e & —,(d —e ) [case (1) below].

The situation is different for real x. There are al-

ways an infinite number of solutions, the large x
solutions being approximately given by mm, where
m is a (large) integer. However, the large x values
are not interesting since they give only the slowly
growing modes. The faster growing modes have
small values of x and we can find four possibilities.

Case (1). e & —1+(1+d )'r . The smallest
value of x is between rr and 3tr/2.

Case (2). —1+(1+d )' &e &d. The smallest
value of x is less than m/2.

Case (3). e =d. Then x;„&m /2 again.
Case (4). e & d. Then /n2 & x;„& trNote that

the right-hand side of Eq. (Cl) has a pole in this
case. If the pole occurs before tr/2, i.e.,
(e d)'r &n./2, —then x;„&m/2.

In Fig. 7, we show graphically the solutions to
Eqs. (Cl) for each of the above four cases. The
growth modes y/Vg quoted under continuous in
Table II were calculated numerically by finding the
intersection points of the curves in this figure.
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9Since an overall scale for p is immaterial, inversion can
be defined as p; ~1/p~+ ~; followed by interchange of
thicknesses.

Only the eigenvalues y remain invariant under the in-

version of the profile; the associated eigenstates W~(y)
are different.

'~The RHS of Eq. (B10)can be multiplied by an arbitrary
constant since the roots of a polynomial equation are
not changed if all the coefficients are multiplied by the
same constant. Similarly for the inversion theorem all
that is needed is to show that (a;);„„,„~——constant

~ (~i )original ~


