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A recently developed variational principle is applied to the solution of a self-consistent
repeated-ring Kinetic theory of the Lorentz gas in one, two, and three dimensions. Calcu-
lated values of the diffusion constant D, are in excellent agreement with molecular-
dynamics simulation results for d =2 and 3. The theory predicts the existence of “critical

9 ¥

scatterer densities,” p,, above which D=0; for d=1-3, p: =0, 77!, and 3 /2, respective-
ly. The theory behaves well above pf. The behavior of D near p:‘ is examined, as is the
“long-time tail” at densities close to p;, and a comparison of the results to those of other

authors is given.

I. INTRODUCTION

The Lorentz gas (LG) is a relatively simple but
very nontrivial model for tagged-particle motion; a
point particle moves through a universe of fixed
spherical elastic scatterers. In the most tractable
version, which we discuss, the scatterers are allowed
to overlap. In this model, under certain cir-
cumstances, the diffusion constant D vanishes. For
overlapping discs in two dimensions, a “continuum
percolation problem” is defined; above a critical
density p,~0.37 (p* =pa¥, a is scatterer radius, d is
dimension), an infinite, connected cluster of discs
exists.'®  Since free space must then come in
islands,"® the particle is trapped for p* > pj, and D
equals zero. It appears possible that the density
where D vanishes, defined as py, is less than py; all
we can say for sure is p, <p,. From here on, “criti-
cal density” refers to p;. The computer simulation
of Alder and Alley'® shows 0.34 <p; <0.37.

In three dimensions, the percolation density for
overlapping spheres is p; =0.084,1® but there is no
reason to expect that formation of an infinite clus-
ter of spheres will divide space into islands and trap
the particle. A very recent computer'® study of
static percolation for free space found no infinite
cluster of free space to exist above p* =0.81, so we
expect p; <0.81. Moleclar-dynamics results only
exist for p* <0.4,° and calculations at higher density
are needed to probe the critical region. In one di-
mension, the particle is trapped at all densities and
p: =0. Of course, the vanishing of D has nothing to
do with the formation of an infinite cluster of rods.
The one-dimensional behavior is obvious. It is not
trivial, however, to construct an approximate kinet-
ic theory which reproduces this behavior, so perfor-
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mance in d =1 constitutes a valuable test for a pro-
posed theory.

A good kinetic theory of the LG at low scatterer
density clearly involves (except for d =1) no more
than a solution of the Lorentz-Boltzmann equation.
On the other hand, construction of a theory which
shows trapping, i.e., the existence of a critical densi-
ty, is difficult. It would seem that trapping in the
LG is an even stronger localization than the crucial-
ly important “cage effect” for real liquids. Thus,
understanding of the dense LG is a stepping stone
to an understanding of tagged-particle motion in
dense real fluids. In some binary mixtures (H,-Kr),
the LG is actually a realistic model for the light
component. Of course, the motion of a particle
moving through a random medium is of great in-
herent interest.

Theories of the dense LG have been given based
upon mode coupling,’ and moderate density
theories have been derived from kinetic theory;’ it is
possible, as we shall show, to relate these seemingly
different approaches. Two of the mode-coupling
theories show critical densities. The key element, in
any case, is inclusion of “recollisions,” where the
tagged particle collides with a scatterer which it
previously encountered; such events are absent from
the Lorentz-Boltzmann equation. Theories in
which tagged-particle propagation between recol-
lisions is given by a low-density theory do not show
critical densities, while theories where the inter-
mediate propagation is given by the “true” dynam-
ics do show do show critical densities. On the other
hand, the former type of theory can be derived
semirigorously for moderate densities* while the
latter is rather ad hoc, if intuitively appealing.

Non-self-consistent theories have been given,
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based upon the both the ring and repeated-ring ki-
netic equation’; these theories give reasonable re-
sults for moderate reduced densities. Until recently,
the repeated-ring results have been uncertain be-
cause of the approximations which has to be made
to solve the complicated kinetic equations. Howev-
er we have given a variational principle for the
repeated-ring equation,’ based on the developed by
Cercignani et al.,® which appears to produce solu-
tions of great accuracy. The non-self-consistent
variational calculations of the velocity correlation
function are accurate up to p* =0.2 in three dimen-
sions, where p* is the reduced number density of the
scatterers. These calculations show no critical den-
sities.

Self-consistent mode coupling was applied to the
Lorentz gas by Masters and Madden (MM).2®
They found a critical density of p; =3/2 in three
dimensions. They also concluded that the solutions
of their equations became unphysical above p;. In
fact, as we point out later on, their equations do
correctly describe the high-density regime. As we
also show, the MM mode coupling is very closely
related to repeated-ring kinetic theory.

Gotze, Leutheusser, and Yipz“’) (GLY) gave a
comprehensive  self-consistent ~ mode-coupling
theory; their theory is related to ring kinetic theory.
Not only did they find critical densities, p; =2 /7 in
two dimensions and 9/4 in three, but they gave the
behavior of D near p; in two and three dimensions,
and they studied the LG, for the first time, at
p* >p:. In addition, their theory, although not a ki-
netic theory gave an extermely accurate value for
the first density correction to the low density D,
they discussed several other features of the LG as
well.

All the above suggests that a self-consistent ver-
sion of the variational repeated-ring theory would
be of interest. In previous treatments of inherently
high-density phenomena, the repeated-ring equation
has proven far superior to the ring equation. For
example, the repeated-ring equation gives the
Stokes-Einstein law for self-diffusion at low Knud-
sen number,’” while the ring equation gives unphysi-
cal results.® Thus, one might guess that a repeated-
ring theory is indicated for a study of the dense LG.
Also, self-consistent kinetic theory is automatically
correct at short times and distances, and at low den-
sities, something which is often a problem in mode
coupling.

In this article, we present several results of the
variational self-consistent repeated-ring theory for
the overlapping Lorentz gas. The theory appears to
be remarkably successful.

II. EQUATIONS AND SOLUTIONS
A. The self-consistent repeated-ring equation

In our recent paper,, we wrote down the
repeated-ring equations in the form

[z—pAp (V)] D (¥4,2)

=p [ dr,T12)8(7,,715,2) + V1ol V1) »
(1)

and
(2471 V—pAp(¥V)—T(12)]6(¥,T122)
=T(12)®(V,,z), )

where T'(12) and T(12) are binary-collision opera-
tors, Ty, is the displacement vector between the
tagged particle and scatterer number 2, V; is the
velocity of the tagged particle, ¢o(V;) is the micro-
canonical velocity distribution function which
means the particle has always a constant speed vy, z
is the frequency Laplace-transform variable, p is the
number density of the scatterers, and Ap(V,) is the
Lorentz-Boltzmann operator. For a three-
dimensional Lorentz gas, the action of Ap(V;) on a
function of velocity f(V,) is given by

ka(V'])f(V]): —Vp f(V1)-—¢0(V1)

x [d¥f¥) ], 3)

where vg =mpa’/v, the Boltzmann friction coeffi-
cient, and a is the collision radius of the tagged par-
ticle.

In order to calculate the z-dependent diffusion
constant D(z), defined in d dimensions by (1/d)
times the Laplace-transformed velocity-time corre-
latiog function, we must solve the above equations
for ¢(V,2), and use

1 —_ —
D(z)———gfdvﬁb(v],z)-vl. @

Equations (1) and (2) clearly only give an approx-
imation to the true ®(V,z) which would give the
exact value of D(z) through the above equation.
Let us write the true equation of motion of ®(¥,,z)
in the form

[z—pB(¥1,2)]18(V1,2) =V 160(¥}) , (5

where ﬁ(Vl,z) is the exact kinetic operator which
gives the equation of motion of any function of the
tagged particle’s velocity. If we further write D(z)
in the form
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v3 1 The first equality arises because the number density
D(z )—Fm (6) of the tagged particle is a conserved variable, the
second arises from Egs. (4)—(6) and from noticing
where v(z) is the exact frequency-dependent friction that in a microcanonical ensemble ®(V,,z)
coefficient, we have the results o V1¢po( V).
Py We now consider the first two equations of the
= 7
PB(V12)90(v1) (72) Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
and hierarchy for &(V,z). The first equation is identi-
A oy . cal to that given by Eq. (1). The second is written
pB(¥1,2)910(¥1) = —v(2)V 10(V) - (7b) e g B Y
J
(24, V —pC(¥,,T10,2) — T(12)]6(V, F1,2) = T(12)$(7,2) . (8)

The operator Lok 1»T'12,2) is an exact kinetic operator, involving extremely complicated integral operators. The
approximation that we propose in this paper is to replace C( V1,T12,2) by B 1»2). Thus we have the approxi-
mate equation

2+ V—pB(V,2)—T(12)]0(7,,F1p2)— T(12)B(V1,2)=0 . ©)

Equations (1), (5), and (9) may now in principle be solved to yield an approximate value of ) (V1,2) and hence
D(z). The approximation involves assuming that functions of the velocity of the tagged particle decay on a
much faster time scale than functions of its position. It is clearly a somewhat drastic step which cannot be
strictly justified, but we hope to show in the remainder of this section that it is quite a plausible approxima-
tion both at a low density of scatterers and at those higher densities for which the diffusion constant becomes
small.

Firstly, we consider the collision sequences that Egs. (1) and (9) take into account. If Eq. (9) is formally
solved for 6(v1,r12,z) and this is then substituted into Eq. (1), we obtain the result

{[Z _P)\-D(Vl)] —pfd?uT( 12)[2 +V1' V —pB(Vl,Z)— T—( 12)]—1T( 12)} C-I—;D(VI,Z)=VI¢0(VI) . (10)
A comparison of this equation with Eq. (5) yields an equation for the operator B (V1,2) in the form
B(¥,2)=Ap(¥))+ fdf}T(12)[z+71-‘7—p§(V1,z)—T(IZ)]_IT(12) . (1

We may obtain a density expansion for the operator E(Vl,z) in the form >, p’ﬁ,(Vl,z) by expanding the in-
verse operator in Eq. (11) about the free-streaming term, and we may compare the results with the density ex-
pansion of the true kinetic operator, as given by Van Lecuwen and Weyland.>® To lowest order, we find
By(Vy,z) is given by the Lorentz-Boltzman operator, which is the exact result. The first-order correction is
given by

Bi(V,,2)= [dTdT3T(12)G,T(13)G,T(12) (12)

where G0=(z+71°€)”‘. This is the three-body ring term which is by far the dominant contributor to the
leading density correction to v [v=v(z =0)] in three dimensions.*®"*> Thus our approximate theory, just like
the repeated-ring equations, yields the first term in the density expansion of v exactly and gives a good ap-
proximation to the leading correction.

The next-order term in the density expansion is given by

By(¥1,2)= [drydTid T T(12)Go T(13)Go T(14)G T(12) + T(12)G, T(13)G, T(12)G, T(14)Go T(12)

+T(12)GoT(13)G,T(14)G,T(13)G,T(12)] . (13)
|
The first term is the four-particle ring term, the tribute to the leading-logarithmic divergence in the
second is a repeated ring, and the third is a term not density expansion of v in three dimensions.
present in the repeated-ring equations, but which The higher-order terms may also be obtained in a

was shown by Van Leeuwen and Weyland® to con- similar way, but the number of collision sequences
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in each term increases rapidly. These terms will not
only contain all the rings and repeated rings, but
also repeated rings within repeated rings and many
other sequences. We note, though, that the operator
ﬁN, which contains collision sequences involving
(14 N) scatterers, does not include, for example,
those sequences in which the tagged particle hits
each of the (1+N) scatterers two or more times.

Thus our approximate B, does not contain the se-
quence

T(12)G,T(13)G,T(12)G,T(13)G,T(12) .

Similarly the true ﬁz will contain a sequence such
as

T(12)G,T(13)G,T(14)G,T(12)G,T(13)
XGoT(14)G,T(12) ,

which describes the tagged particle rattling around
twice in a triangle of scatterers. As discussed
previously,*®»3 including this extra term in the B,
operator only makes about 15% difference to the
coefficient of the leading density correction to the
diffusion constant in three dimensions. The ring
terr;\x, given by Eq. (12) is the most important term
in B;. It is our hope, therefore, that a similar situ-
tation prevails for all other operators By, though of
course this is by no means certain. As we said in
the Introduction, this procedure is somewhat
ad hoc. We offer no fundamental justification for
retaining some collision sequences and disregarding
others, though below we offer some plausibility ar-
guments to indicate the theory may be a good ap-
proximation at densities near the critical density.

We now consider the behavior of Egs. (1) and (9)
at a high density of scatterers, such that v(z) is very
large. In that case 6(V,,T,,2) is given by its hydro-
dynamic form

5(?1,?12,2)
=¢o(V)W(rp){1—[1/v2)]¥, V)
XM(Fipz2) , (14)

where ﬁ(?lz,z) satisfies the diffusion equation
[z—D(2)V?IM(TF5,2)=0, |T1,| >a (15)

and is continuous at | T, | =a. W(r) is the unit
step function, defined by W(r)=1, r>a, and
W(r)=0, r <a. These results were obtained by the
normal Chapman-Enskog procedure _where we
treated Z+ V" V asa perturbation to pB(vl,z) and
made use of Egs. (7a) and (7b). The next term in

the equation for 0 (V,T12,2) is smaller by a factor of
avy/vz). Furthermore, as discussed previously,’
this hydrodynamic form also satisifes the boundary
conditions on the surface of the scatterer, given by
T(12)[®(V,,2)+6(V,T12,2)]=0, both to zeroth-
and first-order in avo/v(z). Thus this hydrodynam-
ic solution is the true solution of our kinetic equa-
tions to first order in avy/v(z), the kinetic boundary
layer yielding only higher-order corrections. The
hydrodynamic solution will give a value for D(z),
valid for z <<v(z), with a fractional error of order
avy/v(z). For a detailed discussion of hydrodynam-
ic solutions and boundary layer effects, we refer the
reader to Ref. 7(b). The explicit results of these cal-
culations are given in the next section.

We note, however, that Eqs. (14) and (15) are just
the equations that one would expect the exact func-
tion 6(V,F1pz), as given by Egs. (1) and (8), to
obey for |Tj;| >>a in this hydrodynamic limit.
Mode-coupling techniques give a more formal justi-
fication for this intuitively obvious result, which
simply states that far from a given scatterer, the
particle diffuses with its full diffusion constant, the
perturbation due to the presence of the scatterer be-
ing negligible. Furthermore, it is clear from Eq. (8)
that the boundary conditions at | ¥y, | =a are ident-
ical to those given by our approximate theory.
Nearby the scatterer, however, there will exist a
boundary layer over and above that allowed for by
the approximate theory, due to the collision se-
quences that we have ignored. Mode-coupling ap-
proximations and our approximate kinetic theory
assume that this extra boundary layer effect is small
and does not contribute to zeroth or first order in
avy/v(z). In conclusion then, our kinetic theory
gives what we believe to be an exact equation, in
this hydrodynamic limit, both far from and right at
the scattering surface, and thus leads us to believe
that the theory might be quite a reasonable approxi-
mation.

We now turn our attention to how one can obtain
a value for D(z) from the self-consistent repeated-
ring equation for all values of p and z. This may be
done analytically for low density and for densities
where v(z) is large, but in between we need to intro-
duce a simplifying approximation for the operator
B~ V1,2). We follow GLY,*® and write

pB(¥,,2)f(V))
—2) |[f(V)—o(V)) [dVf ()

a Bhatnager-Gross-Krook (BGK) approximation
that retains the properties of the exact operator
given by Egs. (7a) and (7b). We note that if this ap-

(16)
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proximation is substituted into Eq. (9) and if the
term T(12)0(v1,r12,z) is dropped, we would then
have exactly the same self-consistent equation con-
sidered by GLY — a form of ring kinetic theory.
Again we cannot strictly justify this approximation
for these intermediate densities, but we can make
some plausibility arguments. Firstly, we consider
the low-density limit. As discussed previously the
true operator B should reduce to the Lorentz-
Boltzmann operator Ap in this limit. The low-
density limit of the BGK approximation for Bis
obtained by replacing v(z) in Eq. (16) by the
Boltzmann friction coefficient vz. In three dimen-
sions, therefore, the right-hand side (RHS) of Eq.
(16) does indeed reduce to the exact Lorentz-
Boltzmann operator, given by Eq. (3). The BGK
approximation does not affect the first two coeffi-
cients in the density expansion of v. In two dimen-
sions, however, this is no longer true. The exact
Lorentz-Boltzmann operator is not of the form
given in Eq. (3). Thus, the true low-density expan-
sion for v in two dimensions is given by*®

v=8p*/3—(32/9)p**logi0* + * - * , a7

whereas Eq. (16) yields the same result found by
GLYZ(b)

v=8p*/3—(32/9)(8/3m)p*log;p* + -+,  (18)

so that Eq. (16) predicts the coefficient of the lead-
ing density correction to be a factor of
(8/3m)=~0.85 times smaller than the true value.
Thus, at low density, we expect Eq. (16) to become
exact for the three-dimensional gas, and to give a
fair result for the two-dimensional case. At densi-
ties close to the percolation threshold, we expect the
solution of the equations to be given by the hydro-
dynamic form discussed previously. This hydro-
dynamic solution, though, will be the same whether
one uses the exact B or the BGK approximation,
and as we show later, the hydrodynamic solution
alone is sufficient to calculate the percolation
threshold density, the form of the approach of the
diffusion constant to zero from below the threshold
and the small z form of D (z) just above the thresh-
old. Thus the BGK approximation will give identi-
cal results to the exact operator in this high-density
limit for the above properties in all dimensions.
Hence we believe that as the BGK approximation is
good both at low density (especially in three dimen-
sions) and at or above the critical density, it might
be a reasonable approximation at all densities. This
could be checked, in principle, by- modeling the

operator to give the memory functions of both
(V(29) and (V=30 D@)FV—1021))
correctly, solving the resulting coupled equations
for these memory functions, and then seeing wheth-
er the results for D are significantly changed, but
we have not so far carried out this procedure.

With this extra BGK approximation we can now
obtain numerical results for D(z) for all densities
using the variational method we used previously,
and also obtain analytical results for the behavior of
D(z) near p;. For further convenience, from now
on we work in dimensionless units, measuring
lengths in units of @, and measuring times in units
of a /vq.

B. The variational method revisited

For details of the variational solution to the
repeated-ring equation denoted VRRA (variational,
repeated-ring approx1matlon) the reader is referred
to our recent paper.” We found in three dimensions
that

v(z)=vp+p*(vg/47*)(E,3) , (19)

where (g,S) denotes the integral of g-§ over all
space exterior to the scatterer. The function g is a
solution of the equation

g=dg-3,
where 4 is an integral operator and 'S a source. In
the VRRA, A contained vg, while the self-
consistent theory is simply obtained by replacing vy
by v(z). Upon writing

g=2+8%, (20)

where g is a trial function, Egs. (19) and (20) yield

A

(8,3)=(8,E—AE+23)— (58,8 —458)
(21)

given that Ais symmetric. So Eq. (21) is just the
statement that g=7 is a stationary value of the
functional J

()=, 8—Ag+23). 22)

The working equation of the variational method
follows,

v(z)=vg +p*[V(z)/47*] StatJ . (23)

In the VRRA we used, as we do here, a “hydro-
dynamic” trial function
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E=afh,(idr), (24)
where
8=[z/D(2)]'?,

h, is a spherical Hankel function, and «a is the
parameter to be determined. For p*—p},
w(z =0)— 0, corresponding to the vanishing of D.
Then, the value of a in the optimized E can be
shown to be —2mv(z)/[i8h}(i6)] for small z, where
hi(x)=dh(x)/dx. The resulting function is denot-
ed gy,, and is correct to O(v), with an error of
o(v™ F The theory obtained by using gy, in Eq.
(23) is equivalent to that obtained by simply project-
ing the original repeated-ring equations onto their
hydrodynamic modes. Consequently, we have

StatJ =StatJy, +0(v=?) , (25)

and the error is obtained by using Stat Jy, in Eq.
(7) is O(v—2); the term O(v™!) is obtained correctly.
It is possible to obtain Stat Jy, analytically for
large v(z), and, consequently, we can find an analyt-
ic expression, correct to O(v~!) from Eq. (23). This
point is essential to our detailed treatment of the
critical region.

III. THREE DIMENSIONS
A. Numerical calculations

We solved the combined Egs. (23) and (24) nu-
merically for z=0 and 0.4>p* >0, the range of
densities studied in the molecular-dynamics simula-
tion of Bruin.’ Our results for D/Dy (Dp is the
Boltzmann diffusion constant), and those of the
simulation, are plotted versus p* in Fig. 1. Agree-
ment between theory and experiment is very good,
although the theoretical points fall somewhat below
the simulation as p*—0.4. Of course, the simula-
tion becomes difficult at these densities. It must be
stressed that the theory is working well at densities
where the Lorentz-Boltzmann equation is hopeless,
and where the non-self-consistent theory, also
shown in the figure, has substantially broken down.

B. Approach to the critical density

As p; is approached (assuming the theory has a
pe), v must become infinite. It is possible to evalu-
ate the first terms of an expansion of Stat Jy, in
v~!, which should then be rapidly convergent. We
find

_ 27 ey (1= -2 (26)
v=vp+ 3 PV 1 o sz +0(v™7)
and, since vg =mp*,
wr 18 &
v="—"- 1+— [+0(v™). 27
3PV :

As discussed in VRRA, the explicit cancellation of
vp just demonstrated for large v is an important
feature of the correct solution of a repeated-ring
theory. Many previous papers, including GLY,
found that the zero density vz (or Dy in a theory
for D) still contributes to v at large p* or v. We be-
lieve that the cancellation is correct; an empirical
argument is that it is needed to produce the Stokes-
Einstein law for the motion of a large tagged parti-
cle.
Canceling a factor of v, we have

21 18
1= * 11+ — (28)
3°f 52
thus, a critical density exists,
* 3
= 2
Pc [y (29)

and we have included the point (D=0, p*=p;) in
the figure. For large but noninfinite v, using
D =1/3v, Egs. (28) and (29) yield

1 s
=3(7)I/261/2, P*—>P: (30)

/

!
/i
/
/
/

D/Ds
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/
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O
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U 00 DI.OB 0.16 0.24 0.32 0.40 0.48 0.56 0O.64
Reduced density

FIG. 1. The density dependence of the diffusion con-
stants in three dimensions. The crosses show the molecu-
lar-dynamics results of Bruin, the dashed line shows the
results of the RRA and the full line shows the results of
the self-consistent approximation.
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where
e=(p; —p*)/pz -
Defining the critical exponent 3,
D«éP, p*—pt (31

we obtain f= %

C. High density

Above the threshold, we expect D=0, v=co.
However, this does not mean v(z)= «, only that
lim,_,o only that lim, ,gv(z)= . Thus, following
GLY, we look for a solution to our z-dependent
equations with v(z)xz~! as z—0; the hope, of
course, is that this solution exists only for p* > p.
The expansion of StatJ(z) yields the equation

. 4r  (1-98) i
- T2 Lo h, (32
M= ey O
where
8=[3zv(2)]'"?; (33)

under our hypothesis, 8 is O(1). Equation (32)
yields

% X
5—25 1—3’_{’— +2 1—@-39— —0
or
d=e€+(e2—2¢)'2. (34)
Now, 8 must be real, so
(e—=1)2>1; (35)

thus, we require € >2 or € <0. A negative density is
needed for € >2, so €<0, or p* >p;. Also, § is posi-
tive, so

d=e+(e?—2¢)'"? —.(2]€] )72 (36)
€—> .

It follows from Eq. (31) that
wz)=2|€]| /3z, €e—-0. (37

Our equations do, then, have a solution with
viz) xz ™!, or D(z) xz, for p* > p}; this solution de-
scribes the high-density LG, where D (z)=0 due to
trapping of the tagged particle. Equation (37) sug-
gests that we define a characteristic frequency z, by

the relation

2 Zc

L el
z

v(z)=

)

w

where  has no critical anomaly. Then,
z,x | €| e>0"

and z, is the frequency below which the effect of
trapping appears in the tagged-particle motion.

D. Discussion of d =3 results

Our result p; =3/2m~0.477, was found by Mas-
ters and Madden®®; GLY found p} =9/47~0.716.
The true critical density for the LG in d =3 is un-
known, although it is surely plausible that the free-
space percolation threshold, p* =0.81, is a good ap-
proximation to p;. This number, and also a linear
extrapolation of the molecular-dynamics results for
D /Dg, would favor the higher GLY value of p},
while our theory predicts that D/Dg should bend
down sharply below the linear extrapolation for
p*>0.4. A simulation at higher density would be
most valuable.

It is of interest that the mode-coupling approach
of Masters and Madden gives the same critical den-
sity as the repeated-ring theory. Their theory in-
cludes effects usually ignored in mode coupling; in
particular, they treat (“k'£k’), or intermediate
wave vector mixing, terms. As MM showed, these
terms are necessary if mode coupling is to produce
the correct coefficient (47) in the Stokes-Einstein
law.!® A related fact is that they are needed to
prevent the bath fluid from unphysically penetrat-
ing the large tagged particle. In kinetic theory, the
collision events needed to produce the above desir-
able features are the repeated rings.

In short, the MM mode-coupling theory bears a
striking similarity to repeated-ring Kinetic theory.
We suggest that the theories are equivalent. The
GLY theory appears related to a “ring” Kkinetic
theory.

Our value for B (B= %) differs from the result of
GLY, B=1. This difference is a consequence of the
perfect cancellation of vp by a term in StatJy,
which occurred in Eq. (26); as we stated there, the
cancellation is an essential feature of the repeated
rings. Without the cancellation, assuming p; still
existed, B=1 would be obtained. The cancellation
is absent from ring theories, so we expect =1 for
such theories.

The behavior which we found above p; has ident-
ical € dependence to that found by GLY, although
some coefficients differ. Note that, since v(z)—
as z—0 for all p* > p, the results in Sec. IIIC hold
for small z at all p* > p}, not just for the critical re-
gion.
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E. The long-time tails for d =3

At low density, Ernst and Weyland*® showed
that the velocity correlation function (VCF) exhibit-
ed a negative ¢ ~>/2 long-time tail. Thus

(V1(2)V,)=—(6mD} /p*)(4wDyt) "%,
t—>o (38)

where Dy is the Boltzmann diffusion constant.
This an exact result, the tail arising from ring-
collision sequences. If the effects of repeated rings
are also taken into account, as in Egs. (1) and (2), it
is fairly straightforward to show that the coefficient
of the long-time tail in Eq. (38) is multiplied by a
factor of [1+(4mp* /3)(Dg /Dg)]?, where Dy is the
diffusion constant obtained from solving the
repeated-ring  equations.’® At low density,
Dg =Dpg, and the result becomes the same as that
obtained by Keyes and Mercer,® and the low-
density result of GLY.2® We make no claim,
though, that these results yield the true first-order
density corrections to the long-time tail coefficient.

Unfortunately, however, we have not so far been
able to explicitly extract the long-time tail coeffi-
cient at all densities from the self-consistent equa-
tions (1), (5), and (9). The reason for this failure is
that because the operator B(V,,z) has eigenvalues
that are nonanalytic in z, the long-time behavior of
the VCF does not simply arise from the hydro-
dynamic modes, as is the case in normal ring or
repeated-ring theories and this complicates the
analysis severely. It is possible, though, to calculate
the long-time behavior from the self-consistent
theory in certain limits. Firstly, it is clear that as
the operator B reduces to the Lorentz-Boltzmann
operator Ap at low densities, the self-consistent
theory yields the same low-density coefficient for
the tail as given in Eq. (38). At higher densities
where v(z) >> 1, the form of the long-time behavior
may be extracted by making use of the BGK ap-
proximation Eq. (16), and Egs. (23)—(25) for finite
z. These equations yield the result

Az 18 (1-82/2+8°/2)
5P Tt —p 0" 8 /2—p*8°/2)

(39)

valid for p* <p; and z, 8 <<1<<v(z). For p* <p,
we may expand the denominator in inverse powers
of (p; —p*), which yields eventually an expansion
for v(z) and hence (V(z):V) in powers of z. This
result may then be inverse Laplace transformed to
yield

pt
¢ =572

Ty D P
(V1(2)-¥, 47 Dt —p)

b

t—>o (40)

where D is given by Eq. (30). Thus, as p*—p; from
below, there still exists .a negative t 372 tail with a
coefficient that becomes very large near the critical
density. The conditions on the magnitude of z in
order for the expansion of Eq. (39) to be valid, show
that this long-time tail will only be observed at
times ¢, such that ¢>>1/€>/%, where € is defined
after Eq. (30). This result is qualitatively in agree-
ment with that obtained by GLY.

We may also examine the long-time behavior for
p*=pe. In this limit, it is clear from the definition
of 8 and from Eq. (37) that 8—0 as z—0, whether
pe is approached from above or from below. Thus
the conditions for the validity of Eq. (39) still hold
for sufficiently small z, and it can then easily be
shown that for small z

(V(2)V)=(5/12)"32173) p*=p% . 41)

This leads to a negative ¢ ~*/3 long-time tail in the

VCF, a result that differs from the negative ¢ —3/2
tail obtained by GLY. The reason for this differ-
ence is again associated with the perfect cancella-
tion of the Boltzmann friction coefficient v in Eq.
(26) in the hydrodynamic limit of a repeated-ring-
like theory, a cancellation not present in ring
theories.

In conclusion, therefore, our self-consistent
theory predicts a negative ¢ ~>/? asymptotic long-
time tail for densities less than the critical density.
As the density nears p;, the long-time tail sets in
only at increasingly longer times. At earlier times
there will be a negative, preasymptotic ¢ ~*/3 tail.
Eventually, for p°=p}, this t ~*/3 tail persists inde-
finitely. Finally for p* >p; the theory predicts no
long-time tail whatsoever—a result also found by
GLY.

IV. TWO DIMENSIONS

Two dimensions currently provides the best test
for a theory of trapping in the LG. The percolation
density p‘*,, is known (~0.37), and the computer
simulation of Alder and Alley!‘® makes it clear that
0.37 > ps >0.33. Despite the difficulty in precisely
pinning down p;, the combined simulations of
Bruin and Alder and Alley make d =2 the best-
characterized case for the LG. The predictions of
the theory, and the data from the simulations, are
plotted in Fig. 2; agreement is even better than in
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FIG. 2. The density dependence of the diffusion con-
stant in two dimensions. The crosses show the
molecular-dynamics results of Bruin, the stars the
molecular-dynamics results of Alder and Alley, the
dashed line the RRA, and the full line the self-consistent
theory. Alder and Alley also reported a value for D/Dj
of —0.04 at p*=0.37, but this point is not shown on the
figure.

d =3, while the test of the theory is more rigorous
as the simulations run all the way up to the critical
region in d =2.

The theoretical points in Fig. 2 were obtained nu-
merically from the two-dimensional version of Eq.
(23). In this case the hydrodynamic trial function
2, is of the form a#K(8r), where K, is a modified
Bessel function and, as before, a is the parameter to
be determined from the variational principle. The
definition of 8 is the same as that given after Eq.
(24). The methods of Sec. III B then predict a criti-
cal density pf =7'~0.32 and show that as p* —p;
from below, D =(1/8)!/%¢!/?, where € is given after
Eq. (30). Thus, as in three dimensions, we find that

=<. The theory of GLY gave p;=2/m~0.64
and f=1.

For p* > p;, the methods of Sec. IIIC again may
be applied. Thus we find in this limit that

1TK1(8)
—p* — ov7lz) |, 42
wz)=p*v(z) K\(5) +O0(v
, dKl(x) .
where K| (x)= o A property of the K’s is
6K 1(8)=—Ky(8)—K(8) . (43)

Hence, if v— o as z—0, Eq. (42) becomes

mp*K(8)

T K(8)+K,(3) “4

or

Kot®) Lo —1) 45)
= mp*—1).
Ki(8)+Ko(8)  mp* "

Now, 6 >0, and consequently, Ky(8), K(8)>0,
and
1

*

(mp*—1)>0; (46)

thus, as before
p*>1/m=p, (d=2). (47)

In other words, only for p* > 1/7 does a v(z) exist
which diverges as z—0. The resulting v(z) is just
82/2z with & obtained by solution of Eq. (44).
Hence, as in three dimensions, the theory predicts a
zero diffusion constant for p > pg.

Finally, we use the methods of Sec. III E to inves-
tigate the long-time behavior of the VCF in two di-
mensions. This has been extensively investigated in
the simulation work of Alder and Alley. At low
density, Ernst and Weyland*® showed that there
was a negative ¢ 2 tail. Thus

(Vi(0)V))=—(1/4mp*)t 72, t—> o0 . 48)

The repeated-ring equations may be shown to modi-
fy the above result by multiplying it by a factor of
(147p*Dg /Dg)*, where Dy and Dy are the repeat-
ed ring and Boltzmann diffusion constant, respec-
tively. The self-consistent theory reproduces Eq.
(48) at low density. As p*-—»p; from below, it
predicts that

(V) V)=—€t72 t>w . (49)
For p* =p;, the theory yields

(Vi(2) V) = —(1/3)3(z Inz)/? (50)

for small z, which leads to a negative ¢ ~*/3(In)'/3

long-time tail.

Thus the theory predicts a negative ¢ 2 tail at
densities below p;, which sets in at increasingly
later times as p; is approached. At earlier times it
predicts a preasymptotic, negative ¢ ~*/3(In)!/? tail,
although in practice the logarithmic dependence
will prove hard to detect. For p*=p}, the ¢t ~*/
(In)'”? tail will persist for all times, and for p* > p%,
no long-time tail is predicted, as is the case for
d=3.

The computer simulation of Alder and Alley
showed that if the VCF data was fitted to the form
at B where a and B are constants, for times be-
tween 15 and 50 mean collision times, then the
value of B dropped monotonically from its initial
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value of 2 down to a value of 1.34 at p*=0.37. At
still higher densities, the value of 3 started to in-
crease again. GLY were able to account for the
trend from their theory by arguing that because the
true, asymptotic long-time tail only starts after such
long times at higher densities, the observed value of
B reflects some sort of average of the preasymptotic
and asymptotic long-time tails. Furthermore, by
numerically calculating the VCF from their theory,
they were able to show quite good quantitative
agreement between their theory’s prediction for S
and the simulation results. Unfortunately numeri-
cal difficulties have prevented us so far from ob-
taining accurate numerical predictions for the VCF
from our theory, but if indeed the simulation is
yielding an effective, preasymptotic, value for B,
our theory would predict 1.33<B<2, p* <p;, the
value of B reaching 1.33 at p*=p; and increasing
again for p* >ps. Thus although we cannot as yet
make any quantitative comparisons, we suspect our
theory is in reasonable qualitative agreement with
the simulation and our prediction for the value of 3
at the critical density is gratifyingly close to the ob-
served value.

V. ONE DIMENSION

In one dimension, the methods of Sec. III C give
v(z)=p*v(2)[6"'+0(v 1], (51)
where, now, 8=[zv(z)]'/2. Thus, if v— o as z—0,
8~p* ; (52)

that is, a solution to Eq. (51) with v— w0, z—0, ex-
ists for all p* >0, and

pe=0, (d=1). (53)
We immediately obtain
v(z)=p**/z, (d=1) (54)

so the characteristic frequency z., varies as p:2 [or
equivalently (o* —p})?] in one dimension; Eq. (54)
holds for all p* as z—0. In view of these results,
there is obviously no point to an analysis for
p* <pe.

Of course, the exact percolation threshold is
pe=0 in one dimension, so our answer is correct.
The unusual nature of percolation for d =1
represents a real test for approximate theories, and
we are extremely encouraged by this result. We do
note, though, that the usual repeated-ring equations,
using the true one-dimensional Lorentz-Boltzmann

operator instead of a BGK approximation, also
predict a zero diffusion constant at all densities.
This was shown by Weijland.®
It is straightforward to solve for the one-
dimensional YCF exactly. The tagged particle un-
dergoes ceaseless oscillations between two scatterers,
the scatterers being rods each of length two reduced
units. Thus the VCF may be calculated by averag-
ing the product V(¢)-V over all starting positions be-
tween two scatterers a fixed distance apart, and then
averaging over all distributions of the distance be-
tween the two scatterers, such that they do not over-
lap. For small z, the value of (V(z)-V) is given by
ze %"
12 p*2

(Vi(2) V)= (14-20* +4p*2) . (55)

Thus, the leading z dependence is the same as that
predicted by Eq. (54), and the p* dependence is the
same in the limit of small p*, though Eq. (54) is in-
correct even then by a factor of 12. For a thorough
account of the one-dimensional Lorentz gas, we
refer to Ref. 12. The reason for the discrepancy be-
tween the self-consistent theory and the true result
is evidently due to the fact that the binary collision
sequences that we have taken into account allow the
tagged particle to leak out from its initial cage.

Finally, we repeat that the calculated values of
the critical densities in all dimensions arose from
the hydrodynamic solution of our approximate Egs.
(1) and (9). The “extra” BGK approximation [Eq.
(16)] was only used to obtain information about the
diffusion constant at densities below pj.

VI. SUMMARY

We have unearthed some features of the self-
consistent variational repeated-ring theory in this
paper. Our most important results are in Fig. 2,
which shows that the theory works extremely well,
from low density to the critical density in d =2.
Two dimensions provides the best test of the theory,
as only in d =2 do the computer studies reach the
critical density. Agreement of theory and simula-
tion is also quite good in d =3, where the simula-
tions only reach p*=0.4. The theory of GLY may
be superior to ours at higher density in d =3, but
the definitive computer study of this regime
remains to be done. In one dimension, reassuringly,
the theory gives the true answer, p; =0. Although
this result is obvious, other approximate theories,
such as that of GLY, do not find it. Insofar as our
theory is successful, it confirms our contention that
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the repeated-ring equations, at least, are needed for
dense systems. Masters and Madden did not work
out all the consequences of their theory, but it is ba-
sically equivalent to ours and should give almost
the same results; the exception is that without the
variational principle, their theory is less able to
work at intermediate and low densities.

Of course, calculation of static percolation
thresholds, with no reference to dynamics, is a ma-
jor problem. Our theory, that of GLY and that of
MM extract thresholds from formulations which
simultaneously provide a wealth of dynamical in-
formation. A related theory has been given by one
of us for exciton migration in two-component crys-
tals.!?> The exciton can only hop about the “sublat-
tice” composed of one of the components. That
sublattice is analogous to empty space in the LG,
while the other sublattice is analogous to space oc-
cupied by scatterers. Systems which show both
“diffusion” and “localization” phases have an ex-

tremely rich structure, and are also relatively unstu-
died. Application of theories to such systems pro-
vides the most rigorous test imaginable for the
theories, and also provides an intriguing marriage
of concepts from dynamics and phase transitions.
We hope that the theory presented here represents a
first step in general treatment of particle and fluid
motion in random media.
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