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Derivation of the Ornstein-Zernike differential equation
from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy
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The theory of inhomogeneous fluids is applied to a d-dimensional system near its critical

point to derive the probability of finding a particle at a distance r from a pair separated by

a distance s, given that r »g»s, where g is the correlation length. When this result is

used in the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, an approximation-free

equation is obtained, from which it follows that the pair correlations for r »g satisfy the

Ornstein-Zernike differential equation.

I. INTRODUCTION

Interest in the use of integral equations to
describe critical phenomena in fluids has been re-
kindled following the report of nonclassical critical
exponents from the Yvon-Born-Green (YBG) equa-
tion in d=3 dimensions. This equation for the
pair-correlation function g2(r) in terms of the inter-
molecular potential is obtained by truncating the
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy with the Kirkwood superposition approx-
imation (KSA). After the report of novel critical
exponents, a sagacious analysis ' of the decay of
the YBG net correlation function h(r)=gt(r) —1

appeared; at the critical point, this decay is charac-
terized by the exponent ri as 1/rd +". For d=3,
two possibilities emerged: Either (a) the YBG equa-
tion has no critical point, in the sense that the isoth-
ermal compressibility ET remains uniformly bound-

ed, or (b) KT diverges to + ac, but ri= 1, which is
much larger than the expected value g=0.03, and
h (r) &0 for r~ ac, which does not seem to be phys-
ical. Further numerical studies of the solutions to
the YBG equation for d=3 support possibility (a).
On the positive side, the analysis of h (r) for d & 4
showed that g=0, and numerical studies for d=6
strongly suggest that the YBG exponents are classi-
cal. Both of these results are in agreement with
current renormalization-group theory.

The problem with the YBG equation, at least for
d &4, is due to the use of the KSA, this being the
only approximation in the theory. The question,
then, is whether the KSA can be improved upon to
provide a better description of the critical region for
d &4. It would also be of interest to understand
why the KSA seems to give the correct upper bor-
derline dimensionality d &

——4. A beginning step in
these directions is to derive the classical Ornstein-

Zernike (OZ) form of h(r) [i.e., the form of h(r) for
r »g, g—+ ac] from the BBGKY hierarchy without

using the KSA or, indeed, without invoking any
closure assumption. The purpose of this paper is to
report such a derivation for arbitrary d.

To be more specific, the derivation requires only
the first member of the BBGKY hierarchy for a
uniform fluid.

—g2 (r) = g2(r)u'(r)

+pfd s r su'(s)gi(r, s
~

r —s
~
),

where p is the number density, u (r)=PP(
~

r
~

) is
the dimensionless intermolecular potential
(P= 1/kit T), and gi is the three-particle correlation
function. From this, the OZ differential equation

'()' h(r)—:h "(r)+ h'(r)=g h(r)d —1

r
(1.2)

is then derived, with the correlation length g given

by

g =(2d) 'pfdrr h(r) 1+pfdr h (r)

(1.3)

Moreover, the entire analysis is done for pair poten-
tials u (r) of finite range, but the results could be ex-
tended to infinite-range potentials which decay suf-
ficiently fast at large distances. The corresponding
extension for the YBG equation has, in fact, already
been carried out.

The derivation shows that the OZ result (1.2) is
correct to leading order in g/r for r »g, as expect-
ed. The treatment, in fact, breaks down when r &g,
and this is discussed in Sec. III. One must, of
course, extend the theory into the region r «g in
order to study properties at the critical point.
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II. DERIVATION

The theory of inhomogeneous fluids can be used
to derive an expression for the correlation function
for three particles when one is far from the other
two. Let p„=p"g„and consider

p2(r+ s, r —s
~

n(x)),

which is the probability density of finding particles
at the positions r+ s and r —s in a system with
nonuniform density n (x ). Taking the latter quanti-

ty to be the density induced in the system by fixing
a particle at the origin 0, one has

(2.1)n(x) =pg2(x) =pg2(x)
so that

p2(r+ s, r —s
~
n(x))=p3(O, r+ s, r —s)/p,

p3(O, r, r —s)=p g3(r s,
~

r —s
~

) .

Now assume that the system is near a critical
point, and consider configurations (O, r+ s, r —s )

such that r »g»s. Since n(x) may be expected
to vary significantly only over distances of the order
of the correlation length g, and g »s, the density in

(2.2)

where the right-hand side is the conditional proba-

bility density of finding particles at r+s and

r —s, given that there is one at the origin. Since
the correlation functions for a uniform fluid are
translationally and rotationally invariant, the triplet
correlation function needed for Eq. (1.1) follows

from the right-hand side of Eq. (2.2) by letting
r ~ r —s and s ~ s /2, in succession; that is,

the neighborhood of the particles at r+ s and r —s
is essentially constant, and approximately equal to
n(r)=pg2(r). A reasonable estimate would there-

fore seem to be

an(x) =n(x) —no, (2.4)

where no is the density of the uniform reference

system, i.e.,

np =pg2(r ) =n( r ) (2.5)

This particular choice of no optimizes the conver-
gence of the functional expansion for any given

value of r. '

The computation of the coefficients in the
functional Taylor series is facilitated by making use
of the analogy in which the density deviation is
thought of as having been produced by an

externally imposed field P@(x)=U(x); for Eq.
(2.3), this is just the intermolecular potential u (x).
The variation of p2 with respect to n ( r ) can then be
written formally by means of the chain rule as

p2(r+ s, r s~—n(x))=pz(r+ s, r —s ), (2.3)

where the notation 0 indicates that the right-hand
side is evaluated for a system with uniform density

pgz(r). This is just the density in the nonuniform

system at the point halfway between r+ s and
r —s.

A systematic procedure for improving upon the
result (2.3), whereby it is just the first term in a
functional Taylor series, can be obtained using
methods originally developed by Lebowitz and
Percus. ' The expansion parameter then becomes

p3(O, r+ s, r —s )/p

=pq(r+ s, r —s)+ f dr'
5n(r ')

hn(r ')+
n( x )=no

5 (r+s, r —s ~ U(x))= '(r+s r —s)+fdr fdr- "'+" ' " 'U'"' Z.(;)~."
5U(r ") 5n(r ') n( x )=no

where

(2.6)

5pz(r+ s, r —s
~

U(x))

5U(r ")
= p3(r+ s, r —s, r ")—nop2(r+ s, r —s )

n( x )=no

+p2(r+ s, r —s )[5(r+ s —r ")+5(r—s —r ")], (2.7a)

5U(r ")
5n(r ') n( x )=no

(2.7b)
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As before, the notation 0 denotes functions evaluat-
ed at the uniform reference density no, and c(r) is
the uniform fluid direct correlation function, relat-
ed to h (r) by the OZ integral equation

h(r)=c(r)+p fd s c(s)h(
~

r —s
~

) . (2.8)

The zeroth and second moments of this equation
imply the following results, needed below, for the
compressibility P=p '(Bp/Bp)~ (p being the pres-
sure) and correlation length g:

g =(2d) 'p fdr r c(r) 1 p—fdr c(r)

(2.9b)

hn(r ')= (r ' —r).Vn(r)

Near (but not at) the critical point, the functions
in Eq. (2.7) should decay exponentially on the scale
of the correlation length, and an expansion of n (r ')
about r ' = r in Eq. (2.6) is justified. Since
hn(r ') =n(r ') —no and no ——n(r), one has

—= 1+pfdr h (r)pX

—1

1 p f d—r c(r) (2.9a)

+ —,[(r'—r) V] n(r)+ . , (2.10)
I

whereupon Eq. (2.6) becomes, , after integrating
term-by-term and using the results (2.9),

p3(O, r+ s, r —s)/p= p2(r+ s, r —s)+ z p2(r+ s, r —s)(s s —2$0I):V Vn(r)
& o&o

2 fdr '[p3(r+ s, r —s, r ') —nop2(r+. s, r —s)]
n ohio

X[(r—r ')(r —r ') —2(0I]:VVn(r)+. . . (2.11)

Terms nonlinear in b,n( x) in Eq. (2.6) are neglected in deriving this result, as are terms involving fourth- and
higher-order derivatives of n (r ). In view of the anticipated exponential decay of n (r), terms of the first type
lead to entirely negligible corrections in the regime r »g; terms of the second type are also negligible in this
limit, as they ultimately lead to corrections to the OZ differential equation of, at most, relative order 1 /g [1
is given in Eq. (3.1)]. The quantity I is the unit dyadic.

Since the triplet function in Eq. (1.1) is required at the density p, all quantities evaluated at the density no
on the right-hand side of Eq. (2.11) must be expanded about no p, and al——l nonlinear terms in no pand —its
gradients may be neglected. When the resulting expression is simplified using the isothermal density deriva-
tive

Bp2(s, —s)
Bp

and the result that

2p2(s, —s)+ fdr '[p3(s, —s, r') —pp2(s, —s)]
pX

(2.12)

fd r '[p3( s, —s, r ') —pp2( s, —s )]r 'r '=f~(s)I+f2(s)s s,
where

(2.13a)

and

f~(s) = fdr '[p3( s, —s, r ') —pp2( s, —s )]
~

r ' —r 's s
~d —1

f2(s) =fdr '[p3( s, —s, r ') —ppz( s, —s )](r ' s) —f~(s),

(2.13b)

(2.13c)

the following equation is then obtained:

Bp2(0,2s )
p3(O, r, r —2s)/p=p2(0, 2s)+ p[g2(

~

r —s
~

) —1]
Bp

+ [p2(0,2s)s + —,f2(s)]ss:VVg2(
~

r —s
~

)
pX

p Bp2(0,2s )
+' f, (s) gp —— V—g, (

I
r —s

I
)+

2 pX Bp
(2.14)
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It is convenient at this point to rewrite Eq. (1.1) in the form

—gz(r) =g2(r)u'(r)+p fd s u'(s)(gs(r, s,
~

r —s
~

)cos8),

with r s=cos8 and

(gzcos8)= fdQg, cos8 fdn,

(2.15a)

(2.15b)

where 0 is the d-dimensional solid angle. The potential u (r) is assumed to be of finite range, so the first term
on the right-hand side of Eq. (2.15a) vanishes for sufficiently large r Fu.rthermore, this finite range limits s to
fimte values so that, for r »s, g2(

~

r —s
~

) may be expanded about s =0 in Eq. (2.14). Since this expansion is

simply

2

g2(
~

r —s
~
)=g2(r) sg2(r)co—s8+ —,s gz'(r)c so8+g2(r)

——,s Igz"(r)cos 8+[gz(r)/rj'3sin 8cos8I+. . . (2.16)

the quantity (gicos8) becomes

&pi(0, s )
(g3 (r,s,

~

r —s
~

)cos8) = — sg2 (r) —
t g2"(r)+ (d —1 )[g'(r)/r ]'

J g(s) +
2pd Bp

where g(s) is a function with dimension (length) given by

3 s' ~Pi(0 s) Ps' - PsP(s)=„„'+, p, (0,s)+, f,(s/2)
d d+2 48p Bp 8pg 4pg+, fi(s/2) —+2 Bp2(0, s )

2d 2p g p Bp

(2.17a}

(2.17b)

Only every other term in the expansion (2.16) sur-

vives the angular integration; the higher-order terms
in Eq. (2.16) would therefore lead to corrections in

Eq. (2.17a) involving fifth- and higher-order deriva-
tives of g2(r).

Substitution of the result (2.17a) into Eq. (2.15a)
now leads, upon using the virial theorem for the
pressure, ' to the following differential equation:

I

g,"(r)+ g,'(r) 1 =P g'(r),d —1, 2 Bp

r Bp

(2.18a)

li P
~P =g
Bp

(2.20)

Upon substitution of this in Eq. (2.19), the desired
result is thereby obtained

I

equation (1.2).
To complete the derivation, the relationship be-

tween 1 /P(Bp/Bp) p and the correlation length must
be established. This is most easily accomplished by
multiplying Eq. (1.1) by r and integrating by parts.
This leads, after further manipulation, to the identi-

ty

where the length parameter l is defined by

I =pfd s u'(s)g(s) . (2.18b)

(2.21)h "(r}+ h'(r)=g h(r),d —}
r

whose solution for r »g has the well-known form

Letting h(r)=g2(r} —1 and integrating, we there-
fore obtain

h (r)-exp( r/g)/r'd— (2.22)

h "(r)+ h'(r) =1 13 h (r), (2.19)

which is identical in form to the OZ differential

III. CONCLUSIONS

A notable quantity in the preceding derivation is
the length 1 defined in Eq. (2.18b); from Eqs. (2.9)
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and (2.20) and the fact that X=p '(Bp/Bp)ii, it fol-
lows that uo ——+fd s su'(s)gi (s), (3.2b)

I =(2d) 'p fdr r c(r), (3.1)

so l is essentially the second moment of the direct
correlation function. Whether this quantity
diverges at the critical point is of central impor-
tance in the theory of critical phenomena. ' lf
l & Oo at the critical point, as is believed to be the
case for d &4, the OZ differential equation should
be valid not only for r »g, but also for r «g, in
which case Eq. (2.21) would imply r) =0. It would
therefore be of considerable interest to provide a
convincing derivation for r «g, perhaps by includ-

ing quadratic nonlinearities and analyzing the re-

sulting equation along lines similar to Fisher and
Fishman's analysis of the YBG equation. If I
diverges at the critical point, as is expected for
d &4, the OZ differential equation describes the
correlations only for r »g, i.e., it breaks down as
the critical point is approach for any fixed, large
(but finite) value of r Inde. ed, terms nonlinear in

the density difference b,n(x) cannot be neglected
when r «g, as they lead to terms of the same order
as the left-hand side of Eq. (2.18a). This difficulty
has not yet been circumvented, and the extension of
Eq. (2.21) into the region r «g thereby obtained.
Within the context of the I.ebowitz-Percus theory
of inhomogeneous fluids, perhaps a different refer-
ence density, one depending nonlinearly on pgi(r),
should be considered. Alternatively one might at-
tempt, at least formally, to identify and resum the
dominant nonlinear terms.

The YBG theory also gives rise to an equation for
h (r) of OZ form (for r »g), but due to the use of
the KSA, g in Eqs. (2.21) and (2.22) must be re-

placed by

fdss u'(s)g2 (s) .
2d(d +2) (3.2c)

This result may best be compared to the exact g by
writing @so in the form

2 2 Bp
(YBG= l YBG P

Bp
(3.3)

1 —uo=(1+A)P Bp

Bp
(3.4a)

where

2

A = f d s su'(s)g2 (s)
2d

X fdrh o(r)h (~ r —s i),

(3.4b)

the YBG analog of Eq. (2.18b) is

Ivso ——u p/( I +A ) . (3.5)

This quantity plays the same role in the YBG
theory as does l in the exact theory. Finally, it
should be noted that the third moment of the YBG
equation yields, through the definition (1.3), yet
another correlation length fvao which differs from
CYBG'

where the YBG compressibility must be calculated
from the compressibility integral (rather than from
the virial pressure). Since the first moment of the
YBG equation yields, after an integration by parts,
the result

- YBG

gvsG ——u2/(1 —uo)
2

where

(3.2a)

where

vso gBo+B/(1+—A ), (3.6a)

2
B= fds su'(s)g2 (s) fdrh (

~

r+ —, s
~

)Ii ( (
r ——, s

~

)(r +2r r s+ —,s ) . (3.6b)

The physically relevant length, however, is gvBG since it characterizes the decay of the correlation
function explicitly through the Oz differential equation.
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