PHYSICAL REVIEW A

VOLUME 26, NUMBER 1

Z3 corrections to the scattering of electrons and positrons in atoms
and to the energy loss of fast particles in solids

Néstor R. Arista
Centro Atomico Bariloche,* 8400-Bariloche, Argentina
(Received 18 November 1981)

A calculation of the elastic scattering cross section for the screened Coulomb potential
of a charge Ze provides second-order terms, of relativistic and nonrelativistic origin, that
are proportional to Z*. Here we study the Z* effects in the elastic scattering of electrons
and positrons in atoms and in the energy loss of fast charged particles in solids, for a
wide range of energies. Owing to the Z3 effect, the scattering of electrons in atoms be-
comes always larger than the scattering of positrons. In the relativistic limit this agrees
with the result of McKinley and Feshbach for bare nuclei. The screening effect intro-
duces a nonrelativistic enhancement of the Z3 correction; this increases the asymmetry
between electron and positron scattering. Using the same approach we calculate the con-
tribution from close collisions to the Z3 correction in the energy loss of fast particles in
solids. For nonrelativistic velocities the Z* correction shows a behavior similar to the re-
sult of Ashley, Ritchie, and Brandt, including distant and close collisions; in the relativis-
tic limit we retrieve the result of Jackson and McCarthy. The limitations of this ap-
proach in describing distant collisions, and the validity of the partition rule, are con-
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sidered.

I. INTRODUCTION

The ionization rate of a fast charged particle in
matter differs from that of its antiparticle, as
shown by Barkas and other workers."'? Ashley,
Ritchie, and Brandt®~3 studied this effect by ex-
tending the model of atomic oscillators introduced
by Bohr® to describe the energy transfer from a
fast particle of charge Ze to the target atoms. In
addition to the leading Z? dependence of the
Bethe-Bloch theory, they obtained a nonrelativistic
Z? correction owing to distant collision events.
The contribution from close collisions to the Z3
term was also studied,” —® with the use of the exact
Mott cross section'® for the scattering of relativis-
tic electrons in a Coulomb field and with the use
of the expansion of the differential cross section in
powers of Z given by McKinley and Feshbach.'!
The result, however, becomes negligible for nonre-
lativistic velocities. The contribution from close
collisions to the nonrelativistic Z3 effect in the en-
ergy loss was stressed by Lindhard,'> who estimat-
ed nearly equal contributions from both close and
distant collisions. Calculations of the Z?3 effect us-
ing the free-electron-gas model also supports this
conclusion.!* We can parenthetically notice that,
in an impact-parameter description, close collisions
may not be expected to be free of distant collision
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effects, inasmuch as the orbits of the scattering
particles extend to infinity.

On the other hand, early experiments'* of elastic
scattering of electrons and positrons in atoms indi-
cated an excess of electron over positron scattering,
at large angles 6 and for relativistic energies, as
predicted by theory. The agreement in electron
scattering experiments'>~!7 was also good for all
the elements with Z between 4 and 79. Scattering
ratios of ~ 3, between electrons and positrons in
platinum (for 6=57.6° and kinetic energies ~1
MeV), were measured by Lipkin and White,'® in
agreement with theory but also indicating possible
screening effects. Calculations for extreme rela-
tivistic'® and intermediate relativistic energies®
show important differences between electron and
positron scattering by point nuclei of charge Ze.
For decreasing kinetic energies or for decreasing Z
or O values, these calculations approach Rutherford
cross-section values,? as expected for the bare
Coulomb potential. With decreasing energies,
however, calculations for real atoms should incor-
porate additional screening effects.

The two phenomena previously described belong
to two different experimental areas, but they can
be theoretically described in similar terms provided
that some simplifications are made from the begin-
ning. This is the approach considered in this pa-
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per. First we analyze the effects of the atomic
screening on the elastic scattering and the asym-
metry between electron and positron scattering in
atoms for a wide range of energies. The analysis is
based on Dalitz calculation?! of the second-order
scattering amplitude for the Yukawa potential and
it provides an extension to the relativistic Z>
correction given by the formula of McKinley and
Feshbach. A similar approach is used to study the
contribution from close collisions to the Z3 correc-
tion in the energy loss of fast particles in solids.
The results are compared with previous relativistic
and nonrelativistic descriptions.

II. ELASTIC SCATTERING
OF ELECTRONS AND POSITRONS

The relativistic calculation of Rutherford
scattering using classical mechanics shows a singu-
lar behavior at small distances, as the particle can
be captured by the scattering center’?; but for im-
pact parameters much larger than the capture ra-
dius, the result may be approximated by simply in-
cluding the relativistic mass correction in the dif-
ferential scattering cross section, namely,

dogun  Z%* (1-p%)
dQ m¥* 4sin*9/2 ’

which applies to the scattering of a particle of rest
mass m (in our case the electron mass) and velocity
v=_Pc by a fixed point charge Ze; 0 is the scatter-
ing angle and d()=sin6d0d¢.

The first-order Born approximation for relativis-
tic energies gives the following result, both for
electron and positron scattering:

(1)

do'V  dorum
dQ  dQ

The factor (1—3%sin%0/2) is associated with the
electron spin (it would be one for the scattering of
a zero-spin particle); Eq. (2) includes both helicity
flip and helicity nonflip processes. The Z depen-
dence, however, remains unchanged.
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The exact solution to the Coulomb scattering of
a Dirac particle, as given by Mott,'%? is a partial-
wave summation that must be calculated numeri-
cally.’®?® The correct expansion in powers of Z,
as given by McKinley and Feshbach!! for the first
two terms,
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aQ . 4n Bsin’y
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introduces a Z* dependence in the cross section of
relativistic electrons ( 4 sign) and positrons (—
sign).

Let us consider now the effects related to the
screening of the nucleus by the atomic electrons.
The atomic potential will be approximated by

—r

A

where A =g, represents the atomic screening dis-
tance; it could also be written as A=aZ ~'/3, where
a =0.885uag and ay is the Bohr radius. Values of
1 for some elements can be obtained from experi-
ments?*; the values =1 and 3 will be used here
only for illustrative purposes. The approximation
of scattering by a static potential applies from elec-
tron (positron) energies of ~1 keV, where polariza-
tion and exchange corrections are important,?> up
to extreme relativistic energies ~ 10 MeV, where
the finite size of the nucleus must be con-
sidered.?>?® At these high energies radiative
corrections become also important, especially for
large scattering angles.?* In addition we restrict
our discussion to a range of v and Z values con-
sistent with the applicability of the Born approxi-
mation.

The scattering amplitude obtained by Dalitz?!
provides the first two terms in the expansion of the
cross section in powers of Z, which in ordinary
units becomes

) (4)
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where B=v/c, fig=2p sinf/2, y=(1—B*) "2, a=e?/#ic; p=tk =Ev /c? is the momentum of the electron
and E is its energy. The real parts of I and J, calculated from the integrals obtained by Dalitz, become

Re(l):-z—"ztam—‘Fqi2 ,
qK 2k
Rel)e T2 D — T an
(¢ =—7"7 K¢ — 5, _tan
2k2cos?6/2 2k3cos?6/2
where
k=(g}+4g2k*+q%k>)'* . ®)

Relative to the Rutherford cross section, Eq. (1),
the result for finite A, Eq. (5), can be written for
electrons (do_) and positrons (do ) in the con-
venient form

ik v ) ()
- ag)t [— |aily
dogun  (p24p3)? 0 !
Zygo
=L 2 a2(y) ’ (9)
c

where vy =e?/4 is the Bohr velocity, and

ao(y)=l—62y2=1—stin2% : (10a)
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s=(y’+4y5+4y5)'2 .
In these equations we have introduced the notation
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The dependence on B and y, of the functions a;(y)
is implicitly assumed.

For A— o (Coulomb potential), this result con-
tains the previous approximations, Egs. (1)—(3), in
the limiting cases where each of them applies. The

(6)
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term ay(y) in Eq. (9) represents the contribution of
the first-order Born approximation to the differen-
tial scattering cross section. The second-order
terms a,(y) and a,(y) introduce a Z* correction in
the differential cross section. The function a,(y) is
important for the nonrelativistic behavior of Eq.
(9); it is clearly related to the screening and it van-
ishes for A— . The function a,(y) provides an
extension to the relativistic McKinley and Fesh-
bach correction, Eq. (3), for a screened field.

The difference between electron and positron
scattering can be analyzed in terms of the ratio

a,(y)+pBa,(y)
Bao(y) ’

A 1 do_—do,

Za do_ +do,
(12)

as obtained from Eq. (9), with a=e?/#ic =1/137.
This is shown in Fig. 1 for y =sin6/2=0.5 (i.e.,
0=60°); the dash-dot line represents the result for
the case A= o0 (Coulomb potential), i.e.,
1—y
A=mBy gy

obtained from Eq. (3), which corresponds to
a,(y)=0 and a,(y)=my(1—y). Screening effects
are responsible for the differences between the re-
sults for A= o (dashed-dot line) and for finite A
(solid lines for Za=0.2, dashed lines for
Za=0.1). These effects are negligible for
v > 100vy (8>0.7), but they dominate for nonrela-
tivistic velocities where A reaches its highest
values.

The ratio between positron and electron differen-
tial scattering cross sections,

do, 1-ZaA
do_  14ZaA’

R(y)

(13)

is shown as a function of the scattering angle 6 in

Fig. 2(a) for A=« and in Fig. 2(b) for A=aZ 173,
according to Egs. (3) and (9), respectively. The Z3
effect shown in Fig. 2(a) disappears for nonrela-
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FIG. 1. Z3 correction to the differential scattering
cross section, as given by the ratio A=(Za)~!
X(do_—do,)/(do_+do,), according to Egs. (10)
and (12), as a function of the velocity v and for scatter-
ing angle 6=60°. The upper scale gives the kinetic ener-
gy of the electrons or positrons. Calculations for
screened potentials, with parameters =1 and p =3, are
illustrated with solid lines for Za=0.2 and with dashed
lines for Za=0.1. The dashed-dot line gives the Z3
correction to the scattering by bare nuclei.

tivistic velocities where R(y)— 1, when approach-
ing Rutherford scattering.’® When screening is
taken into account, as in Fig. 2(b), a stronger non-
relativistic effect develops, which further reduces
the relative scattering of positrons (and increases
the scattering of electrons).

III. ENERGY LOSS OF FAST PARTICLES
IN SOLIDS

We consider now the Z3 effect in the energy loss
of fast particles in solids, with the use of an ap-
proximation that permits one to outline the rela-
tion with the scattering problem. Here we use the
second-order Born approximation for the scattering
by a screened potential, Eq. (4), where the screen-
ing distance shall be regarded as conveying infor-
mation on the dynamical response of the medium;
the appropriate scale of distances is set if we
take?”?® A =yv/gw, where v =fc is the particle
velocity, y=(1—82)~1/2, g is a number of order
unity, and o is an oscillator frequency. An aver-

age over the appropriate oscillator strength distri-
bution could eventually be performed at a later
stage, following the usual approach of considering
the medium in a statistical sense.*?* This is a
standard approach that will not be discussed here.
The energy loss per unit distance can be calculated
from the integral

_dE
§=_==n [ odo, (14)

where n is the density of electrons in the medium
and Q is the energy transfer in the laboratory
frame. The integral can be written in terms of the
center-of-mass variable y =sin6/2, with the use of
Eq. (9) for the differential cross section, where the
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FIG. 2. Ratio between positron (do ) and electron
(do_) differential scattering cross sections as a function
of the scattering angle variable y =sin8/2 for Za=0.2
and for several values of the velocity v. (a) corresponds
to the scattering by bare nuclei as predicted by the for-
mula of McKinley and Feshbach, Eq. (3). (b) applies to
the screened Coulomb potential, Eq. (4), with g =1; here
the asymmetry between electron and positron scattering
becomes important at large angles (close collisions), both
for relativistic and nonrelativistic velocities.
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positive and negative signs in the right-hand side
correspond here to positive and negative values of
the charge of the scattering center. The value of Q
in the laboratory frame, in terms of the spatial
component of the four-momentum transfer
¢*=(q,0) in the center-of-mass frame

(fi| 4 | =2psin6/2=2py, p=ymv), is

Qzﬁl_zﬂi:_zﬁ}ﬂ ,

m - (15)

like in the nonrelativistic case. From Egs. (9), (14),
and (15) we get

where

#i ghw 2
=—= (1—p°).
Yo 2p A 2mu 2 B
The leading term in the energy loss, of order Z2,
can be calculated immediately and for y, << 1 it
becomes

(17

S = 4rnZ%e*
= 2

In|—
Yo

1
) (18)

7|

With the use of Eq. (17) for yy we can check the

S— 4mnZ’* f 1_y'dy agreement with the relativistic Bethe formula,
my? 0 (p24y3)?
4rnZ%* 2my?
Zy =
X I_Bzyzi-_;;ial(y) Spethe my? fiw
Zygv
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il
K.E.(MeV/amu) ,
w? 10 10° 10
‘ T T rprrrr T T T ]
i
AS 5
ZSO

ll_llll

1

FIG. 3. Z? correction to the energy loss AS divided by ZS, from Eqs. (18) and (20). The relativistic limit of Eq.
(21) is indicated with a dashed line and it agrees with the calculation of the close-collision effect (Fermi correction) by
McKinley and Feshbach. The nonrelativistic approximation of Eq. (22), dash-dot line, includes similar contributions

from both close and distant collisions.
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The term In(1—f?) is correctly obtained with
equal contributions from close (y ~ 1) and distant
(y ~0) collisions. The term — <5 in Eq. (18)
comes from close collisions and is only half of the
term —p? in Eq. (19); the other half should come
from distant collisions, but it is not obtained with
this model.

The Z3 correction to the stopping power is given
by

3,4 1 3 v
AS = 41mZze f g} dy2 . *(lal(y)
mv O (yo+yo) | v
VoVl
+—a, | ;
c

(20)

this reduces to the relativistic and nonrelativistic
results, in the appropriate limits, as illustrated in
Fig. 3. For f—1 we retrieve the “Fermi correc-
tion” as calculated by Jackson and McCarthy,’
namely,

4rnZ3e*

mv2

T Vol

ASBZIE 5 7 y (21)

which is entirely due to close collisions with a bare
Coulomb potential. For 8 << 1 we obtain a
characteristic v ~> dependence in AS /ZS, similar
to the result of Ashley, Ritchie, and Brandt,* but
including now close collisions, as given by

muv?

21/3gﬁw

4rnZ3e*

mv2

2ge’w

mv3

ASg 1= In

(22)

These two limits are indicated in Fig. 3 with a
dashed line, Eq. (21), and with a dash-dot line, Eq.
(22).

It is also illustrative to divide the range of in-
tegration in Eq. (20) between distant collisions for
0<y <y, and close collisions, y. <y <1, where
Y. =#/2mvyr,., and we take’ r,=(#%/2mw)'’?,
which is the amplitude of the quantum-mechanical
harmonic oscillator. This separates nearly equal
contributions to the leading term Sy, as required by
the partition rule of Bohr.*® As for the Z* term,
this calculation yields a contribution from close
collisions that may be larger than 50% at nonrela-
tivistic energies and increases up to 100% for rela-
tivistic particles. This prevents application of the
partition rule to the Z3 term in the energy loss,
with close collisions predominating at high ener-
gies.

The role of close collisions is further emphasized
if one considers the Z effect on the straggling of
the energy-loss distribution, which is obtained
from*

Q=n [ Q%do

2 (' ydy
=2/20% fo T

Zv
X 1—B2y2i70a1(y)

Zvgv
2 az(y)
c

+ , (23)

where Q% =4mnZ%* is the value of the straggling
calculated by Bohr. This integral is easily evaluat-
ed when y, << 1, both for the relativistic and non-
relativistic cases, with the results

Vgl
0% =70} 11—1’—'2—2%1, (24a)
4
2Ze*
03_,=03} 11:8—15—“’ (24b)

Thus, the Z* correction for the straggling has a
velocity dependence similar to that of the stopping
power illustrated in Fig. 3, but it is due to close
collisions over the whole velocity range. This
behavior can ultimately be traced back to the velo-
city dependence of the differential scattering cross
section in Fig. 1.

Because of the restrictive assumptions made in
this calculation of the energy loss, we will not push
these results much further. We can just recall that
consistent analyses of energy-loss experiments can
be carried on by including both distant- and close-
collision contributions to the Z* term and an addi-
tional higher-order Z* correction.!?3!:32

IV. CONCLUSIONS

The asymmetries in the scattering of fast elec-
trons and positrons in atoms and in the energy-loss
rates for fast particles and antiparticles in solids,
can be studied in analogous ways using a second-
order analysis of the scattering cross section for
the screened Coulomb potential. This introduces
correction terms of order Z3, which distinguish the
scattering of each particle according to its sign.

The Z* correction for the elastic scattering of
electrons and positrons in atoms always increases



the scattering of electrons relative to that of posi-
trons. The effect is especially pronounced for large
angles of scattering (“close collisions”) and it may
be of interest for single- and multiple-scattering ex-
periments. In particular, measurements of
particle-beam attenuations in thick solid foils give
larger transmissions for positrons than for elec-
trons>>3* in the relativistic energy range where
theories have been advanced.’>3® The analysis of
this paper indicates a nonrelativistic enhancement
of the asymmetry in the scattering of such parti-
cles. A thorough study of the final effects on the
penetration of each particle beam should also in-
clude the differences in the energy-loss distribu-
tions for electrons and positrons™’; this study has
not yet been made for the nonrelativistic case.
The scattering cross section was here applied to
the calculation of the energy loss of fast charged
particles in solids. The treatment connects previ-
ous results dealing with separate relativistic and
nonrelativistic Z3 effects and it indicates a signifi-
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cant contribution from close-collision events. This
model is, however, less appropriate to describe ex-
citations produced in distant collisions; in particu-
lar, it introduces an effective cutoff for distant ex-
citations through the adiabatic parameter
A=7v/gw, where the value of g can not be calcu-
lated by this approach. On the other hand, this
resembles the situation of previous distant-collision
treatments,**>7 where an inner cutoff distance
must be introduced. Although these two ap-
proaches seem to complement each other, a proper
matching of them cannot be obtained here. This
remaining problem could only be solved by a more
comprehensive description of close and distant col-
lisions.
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