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An intracavity two-photon absorber interacting with two coherently driven cavity
modes is studied. The possible stable output configurations of the cavity-mode ampli-
tudes are determined for both the absorptive and dispersive cases. Under certain condi-

tions this system is shown to display optical bi- and tristability.

I. INTRODUCTION

The possibility of realizing multistable transmis-
sion characteristics using a resonator supporting
two or more modes of the electromagnetic field in-

teracting through a nonlinear medium has been
discussed very recently by Kitano et a/. ,

' Hermann
et a/. , ' and Walls et a/. ' Using a rate-equation
approach Kitano et a/. ' have shown that optical
tristability may result from a system of three-level
atoms inside an optical cavity driven with linearly
polarized light. New bifurcation phenomena may
occur using a different nonlinear medium as dis-
cussed by Walls et a/. ' In this paper we wish to
discuss in detail the behavior of an intracavity
two-photon absorber interacting with two cavity
modes. Such a coherently driven cavity interacting
with only one mode of the radiation field was

analyzed theoretically (Arecchi and Politi ) and bi-

stable behavior was predicted. This two-photon
optical bistability was realized experimentally by
Giacobino et a/. When the two photons are ab-
sorbed from different modes of the field, e.g., dif-
ferent frequencies or different k vectors, a regime
exists where the existence of three possible stable

output states (i.e., tristability) for a given value of
the input field may occur. Using equal-amplitude

input fields Walls et al. have shown that random
fluctuations of the cavity fields make the third
stable branch accessible.

Incorporating additional features into the model
(e.g., degeneracies} have been shown by Hermann
and Thompson ' to produce further stable
branches. In general, the greater the order of non-

linearity associated with the driving terms, the
greater will be the possibility of finding additional
stable branches.

II. INTRACAVITY TWO-PHOTON ABSORPTION

The simplest model of two-photon absorption in-
side a cavity ignores the Stark shifts and adopts
the paraxial approximation as well as the mean-
field limit, defined as aL ~0, T~O, C =aL/T
constant (a is the linear absorption, L the active
cavity length, T =1—R the transmissivity of the
mirrors, and C is the cooperativity parameter}.
Omission of the Stark terms represents a somewhat
drastic assumption in the purely absorptive regime
(where the dispersive component of the complex
susceptibility is negligibly small); however in the
dispersive regime, where the net two-photon detun-

ing b, satisfies 6 » 1, such an omission is more
tolerable. As the essential physical features that
we wish to study are already present in the Stark-
free model, and moreover can be treated analytical-
ly in this case, we prefer to omit Stark terms in the
present paper. The coupled steady-state equations
that we will investigate are
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where Yi 2 are the (suitably scaled) input-field am-

plitudes, and Xi 2 are the corresponding output
amplitudes, while Pi 2 are the cavity detunings for
each field (in the absence of the other). These
equations have been derived in various ways by a
number of authors. ' ' The experimental ar-
rangement employs either a Fabry-Perot or a ring
cavity, with two incident beams (frequencies coi

and t02) which are two-photon resonant with atoms
in the cavity. We restrict ourselves to considering
only the fundamental spatial harmonics in the
Fabry-Perot case, so that Eqs. (1) do not accurately
account for the full complement of standing wave
effects in this case.

Considerable simplifications occur when we set

Z» ——Y»(1+dP) ', U»=X»(1+6, ) ', and
D=C(1+5 )

'~ in Eqs. (1):

where Xk ——Xik —iX2k is the intensity-dependent
susceptibility of the kth field, ~ is the cavity de-

gyk(g)
cay time, E» X——»(t)e are the (complex)

i8ktransmitted fields and Eko ——Yke are the inci-
dent fields. Consistent with Eqs. (2), Xi»
=DUi l(1+Ui U2) and X2» =DE Ui /(1+ Ui U2 ).
Some analytical results arising from a simplified
stability analysis of Eq. (4) are shown in Appendix
A. As the case b, =P» =0 can be handled analyti-
cally much more easily than other cases, we will
discuss this first. We will then extend the model
to include nonzero b, and P», in particular for the
equal-input field situation (Yi ——Y2, Oi ——82,

Pi =42).

III. UNEQUAL INPUT AMPLITUDES (Yi Q Yg)

Zk =Uk 1+U) U2

DLUI
+ '6

1 U U

'2

It will be noticed immediately that there are two
orders of nonlinearity in these equations. Thus
Eqs. (2) as they stand are strongly nonlinear, while
for UiU2«1 we have to consider the weakly
nonlinear form

Z»=U»[(l+DUt) +(P» Db Ui) ]. — (3)

+i(4'» ~2»)] (4)

The constraint U~ U2 && 1 is precisely the condi-
tion that the atoms should be far from saturation
(with respect to the populations of the initial and
final atomic states).

The conditions for various types of multistability
may be elucidated by performing a linear stability
analysis on the Maxwell-Bloch equations governing
the dynamics of the two-photon processes (see also
discussion in the Appendices).

Although the problem in its generality requires a
linearization of seven dynamical variables about
the steady state, it was shown in Ref. 2 that the
"good-cavity" limit (where atomic variables relax
to their steady-state values much faster than field
variables) involves only four field variables, and
that the case h=P» =0 reduces this number still
further to two. The deterministic differential
equations formed by adiabatic elimination of the
atomic variables are, in the mean-field model,

A A
=E»o E»[ 1++,»—

dt

In Ref. 2 it is established that Stark-free (o'» =0)
resonant two-photon optical bistability with two
distinct driving fields possesses (in the good-cavity
case) a (2 X 2) stability matrix M, and that the sole
criteria for stability are trM & 0 and detM & 0.
When Y2 is held constant, with Y~ varying over
the domains of interest, the second inequality
reduces to

dYi BY2 dY) BY2
&0

dX, BX2 dX2 BX,

enabling the domains of stability and instability in
the steady-state curves to be mapped out with ease.
Domains of monostability, bistability, and tristabil-
ity have been found for various values of C and

Y2, and the competing mechanisms in these vari-
ous forms of multistability have been elucidated.
Competition between the reaction fields associated
with the two-photon enhanced Kerr effect [the
weakly nonlinear terms in Eq. (3)] provides the
mechanism for bistable behavior by interactive
mode pulling. A third stable state satisfying
XiX2 && 1 also occurs when the strongly nonlinear
effects are taken into account. This saturation
state can compete with each of the two unsaturated
states, thereby generating tristability.

We have made a numerical study of two-photon
optical bistability in the absorptive regime
(5=/»=o»=0), and have mapped out the dif-
ferent types of multistability into areas on a two-
dimensional phase diagram. For convenience we
have taken the two parameters defining this space
to be C and ( —,Y2), with the parameter Y, varying
over the regions of interest, and find five basic
domains within which the following behavior may
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be observed.

I. Monostable only;
II. Kerr bistable (two unsaturated states com-

peting);
III. Tristable (two unsaturated and one saturat-

ed state competing together);
IV. Bistable (saturated state competing separate

ly with unsaturated states);
V. Bistable (only one unsaturated state compet-

ing with saturated state}.

These regions are indicated in Fig. 1.
Note the existence of a critical point P, at which

all of the phases can coexist simultaneously. Sub-
domain IIIA is "weakly bistable" in the sense that
a saturation state with a very short metastable life-
time can occur (when Y2 is slightly smaller than
2V C), which is inaccessible to the two unsaturated
branches other than by chance fluctuations. The
other subdomains, also occuring for Y2 slightly
smaller than 2v C, indicate the existence of a hys-

teresis cycle involving the saturation state with the
unsaturated state (that is to say, the existence of an
S-shaped solution in the transmission characteris-
tic). The line C =2 can be interpreted as a lower
threshold for both Kerr bistability and for tristabil-
ity. The line C =(—,Y2) is an asymptote for the
transition from Kerr bistability to tristability, and
represents the transition stage between a single,
continuous steady-state curve, and two completely
separate steady-state transmission curves. When
C & ( —,Y2) we find that X2( Yt) is confined to2

1 2 3 4,

k~,
*

1

F G. 1. The phase diagram in the parameter space C
—Y2 {for all values of Yl). The regions denoted I—V

are described in the text, and point P is a "critical
point" at which all of the phases coexist.

domains (Y2,X~+) and (X2,0), where

X2 ———,Yz+[( —,Y2) —C]'~: the gap (X2+,Xz )

contains no solutions. Some examples of X2( Yt )

for different values of C and Y2 ——4 are given in
Fig. 2 (the stable branches correspond to those re-
gions of curves where d Yt/dX2 &0). Note in par-
ticular that for C =(—,Y2) the domain (X2+,X2 }
has reduced to the single line X2 ———,1'2.

Although we have specified the mechanisms for
two-photon optical bistability (Kerr effect and sa-
turation) and for tristability, no indication of

C=2

I I I

a b c d e f

C=4 C=1~—

FIG. 2. Diagrams of X2{Y~),for Y2 ——4 and various values of C. The values of Y& marked a, b, c, d, e, and cor-
respond to probability distributions shown in Fig. 3. Note that a sin le as m tote at I =2at a sing e asymptote at 2

—— separates the upper and
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which state actually wins out in a particular com-
petitive situation has been given. In order to gain
some insight into this problem, as well as into the
stability problem in general, we have investigated
the potential function U(X|,X2) defined by

'dXk ldt =—BU/BXk. Apart from an arbitrary
constant this takes the form

fa) (b) (c)

FIG. 3. The two-photon probability distributions
function P(X~,X2)=exp[ —U(X~,Xq) j for increasing F,
values: {a) Y~ ——3.0, {b) Y~

——3.5, (c) Y&
——4.0, (d)

Y]=4.5, (e) Y~ ——5.0, (f) Y~ ——5.5. Other relevant

parameters are C=3 and Y2 ——4.

U(X]yX2)= —,[(X]—Y$) +(X2—Y2) ]

+ —,C ln(1+XfX', ).

The phases accompanying XI, and Yk are assumed
to be locked together here, while a more general
phase-dependent potential is given in Appendix B.
As has been shown in Ref. 4, where random field
fluctuations occur within the cavity a random elec-
tric "force" term rt(t) satisfying (rt (t) }=0,
(rt(t)g(t') }=5(t t') sh—ould be added to the
time-dependent field equations. A time-dependent
probability distribution P (K~,X2, t) satisfying the
Fokker-Planck equation can be constructed, and its
stationary form is generally proportional to
exp[ —PoU(X~,Xq)], where Po determines the scale

of the fiuctuations. In Fig. 3 we show e
for increasing values of the input field Yt, choos-
ing C =3 and F2 ——4 (i.e., within the tristable
domain). The corresponding points in the X2( Y~)

graph are indicated in Fig. 2. The three states,
represented by the maxima of the peaks, clearly
have comparable heights within a narrow range of
values of Y~(-4.0), and thus comparable meta-
stable lifetimes. This represents a strongly tristable
situation, and is to be contrasted with the situation
(described in Ref. 2) encountered in the case
F2 C=4, w——herein the intermediate (saturation)

state always possesses a probability peak much
smaller than the peaks representing the unsaturated
states, although it remains directly accessible to
both unsaturated states as can be verified by con-
structing an extremum path.

Only the saturation states encountered in sub-
domain IIIA are truly inaccessible in terms of
switching processes taking place between the unsa-
turated states. It is of interest to determine for
given Y~, Y2, and C, the relative lifetimes of the
metastable branches. This is generally difficult, al-

though some special cases can be evaluated. For
example, where we may assume that Xi ——Y~, there
are two possible states: (a) the second unsaturated
state, for which Xz « Yq', (b) the saturation state,
for which X2-Y2. The approximate potential
function

U= —,(X2 —Y~) + —,Cln(1+ Y)X~)

reduces in case (a) to U= —,(X2 —F2) + , CY~X—2

The minima of the states are approximately (a)
—, Y2 and (b) —,C ln(1+ Y~ F2), hence for the stable

unsaturated state we have Y2 & C In(1+ FfY2) and
for the stable saturation state F2 & C ln(1+ Y& Y2).
These results demonstrate that for given Y~ and Y2

there is a special value of C (=Yq/ln(l+ Y~ Yz) in
the above example) for which the potential wells

corresponding to the upper (second) unsaturated
state and the saturation state are of equal depth.
The case of comparable metastable lifetimes for
the saturated and unsaturated states discussed
above and plotted in Fig. 3(c) (Y&-Yz-4, C=3)
corresponds to this special value of C.

An alternative, and in some ways more general,
phase diagram can be constructed by placing the
input fields Y~, Yz on an equal footing with
respect to the multistable domains. Thus, we can
construct the volume domains in (C, Y&, Yq)—
space for each of the types of multistable behavior
in isolation. The contour profile diagram in
(Y~, F2) for increasing values of C is very compli-
cated, and consequently we have found it expedient
to plot the various cross sections for C =1, 2, 4
separately (see Fig. 4). The various domains in
these cross sections can be related to the
corresponding domains in Fig. 5. A feature which
emerges most clearly in these cross sections is the
symmetrical disposition of the two domains of bis-
tability representing competition between the sa-
turation state and each of the unsaturated states
separately (designated as 8& and 82). It must be
concluded that there is no essential difference in
nature between the bistable mechanisms character-
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FIG. 5. The phase diagram in C, Y space, for the
special case Y~ ——Y2 ——Y. The monostable region is
designated M, bistable B, and tristable T, while P is a
critical point.

Yg

12—
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(b)

/
/

/
/

/
e,

12

izing regions B& and B2. A11 monostable regions
(designated M) are likewise equivalent. In the

graph for cross section C =4 we see that the tri-
stable region (designated T) represents a common
area in the overlap of the unsaturated bistable re-

gion (designated B») and the saturation-bistable re-

gion (B2+B&). At C=2 it will be observed that
the unsaturated region Bk reduces to a single line
Y, = Y2, while for C &2 the region B» does not ex-
ist and regions B~, B2 separate from each other
(B& is the mirror image of B2 about the line

Y, = Y2). The plane through Y&
——Y2 for varying

C clearly is a very special case, and the properties
of the equations of state when Y&

——Y2 will receive
detailed study in the next section. However, me
can infer that domains IV and V are absent from
the phase diagram for C and Y( = Y&

——Y2), and we
have plotted this special phase diagram in Fig. 5.
Fluctuations of Y~ and Y2 will always be present
in reality, and deviations from the Y& ——Y2 plane
can take the system into the adjacent B~, B2, and

B&+B2 regions.

I

12
l

FIG. 4. Cross sections of the multistability phase di-

agram in parameter space C, Y&, Y2 taken at values (a)
C=4, (b) C=2, and (c) C=1. At C=2, the Kerr bi-

stable region Bk is reduced to a line, and ceases to exist
when C &2. The saturation bistable domains B~, B2 are
mirror images about the Y& ——Yz line. Monostable re-

gions are designated M and tristable regions T.

IV. EQUAL-INPUT AMPLITUDES (Yi = Yg ——Y)

The steady-state description of the equal-input
amplitudes case (Y~ ——Yz) has been investigated by
Walls et al. ' for the special situation h=P» ——0.
This analysis may be extended to include nonzero
5 and P» as follows. Equating Eqs. (2) we find
that when P&

——P2 ( =P) there are two solutions:
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y'2 DU1 Dh Uiz=
( 1+g2)1/2

=U, 1+
1+U' 1+U' for Xi ——X2 (7a)

p2Z=
( 1 +g2) 1/2 =U) bL

Ui
for Xi+X2

U) U2 ——

1 +f2 (7b)

with A, taking the two values

A, =A+ ———,C+ [(—,C)' —(1+$2)]'/2.

In order to have three distinct curves Z( Ui ) for
all Xi, X2 it is necessary that C & 2(1+p )'/ . The
turning points in the two curves for Xt+X2 are
(U;,Z'), where

U& g( 1+y2) —1/2

Z 1
——2A,[ (I+/ )'

+(1—Pb, )(1+52)—'/'].

We may label these quantities with a + suffix for
specific values of A, . These two sets of points are
also bifurcation points, as well as crossing points for
the curve corresponding to Xi ——X2 [case (7a)]. We
can demonstrate first that the points are crossing
points by equating Eqs. (7a) and (7b), whereupon
the solutions Ui ——Ui are found. Apparent cross-
ing points also appear for sufficiently large detun-

ings. These are not true crossing points however,

but are merely projections onto a plane cutting the
b, axis, and reflect the multiparameter nature of
the equations of state (see the later discussion). In
Figs. 6(a) —6(c) we show the effect of increasing C
beyond the multistability threshold C =2 (at which

point the two curves corresponding to Xi+X2
coincide, and below which the system is mono-
stable only). Also, in Fig. 6(c) we show that for a
relatively large value of b, the turning points
remain crossing points, and that additional ap-
parent" crossing points have appeared.

In order to establish that the two points (U', Z')
are bifurcation points, we return to the stability
criteria for the equation of state (7a). In the case
h=P» =0 we find

Xg

X(

12

12

8
Y

'2

8 12

(1+X')'

Y 2CX
detM =

(1+X')'
cc'x" )0,

(1+X4)4

FIG. 6. Transmission characteristics for Y~ ——Y2 ——Y;
input amplitude Y vs output amplitude X~ for values (a)
C=2.0, b, =/=0, (b) C=2.2, t) =/=0, (c) C=3,
6=10, /=1. When interpreting these diagrams we
note that n —1 unstable states accompany n-fold multi-
stability.
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where X& ——X2 ——X.
Reconciling these inequalities and simplifying,

we have the result

(Xz—A, +)(X —A, ) )0.

This indicates that the domain of instability for
the Xj ——Xq curve is A,

' &X&A,+ . A similar
analysis in the Xi +Xz case also reveals that the
outermost curve [corresponding to A. =A, in Eq.
(7b)] is stable, while the conjugate inner curve
(A, =A,+) is unstable. Hence tristability can occur
when Z & Z+, with bistability for Z' &Z & Z'+
and monostability for Z &Z' . The corresponding
arguments in the more general case in which

Ui = Up(Uz)+CH( Uz)+0(e ). (10)

Using Eqs. (2) in conjunction with (10) we can
evaluate e=Zi —Zz,' equating coefficients of e, it
follows that

dispersive components are present will be left in
detail to a subsequent publication.

Further light is thrown upon these matters by
studying the structural stability of the Eqs. (1)
with respect to small perturbations about Z~ ——Z2.
To this end we can linearize the problem in the
form Zi ——Zz+e, with e a small perturbation.
Thus, it is convenient to set P&

——Pz
——P in Eqs. (2)

and to set

2
DU2 DAU2

H(U, )-'= 1+
'2

2DU2
3 [DUp(1+6 )+(1+UpUz)(1 —hP)](1+Up Uz)

2DUOU2
, [DU(1+hz)+(1+ U, U, )(1—bP)] .

(1+Up Uz)

The singularities in H( Uz) (if any) are deter-
mined by solving the polynomial equation formed
by equating the right-hand side of Eq. (11) to zero.
In the case Uz ——Up( = U) we find
U=A(1+/ )

' =U„and the case Uz+Up can
also be solved with somewhat more difficulty to
yield again U= U, . It is significant that the linear
analysis breaks down only at the two crossing
points, indicating that these are bifurcation points
while the "apparent" crossing points are clearly not
bifurcation points.

V. EFFECTS OF THE DETUNINGS
UPON TRANSMITTED AMPLITUDES

The equation of state for single-photon-resonant
optical bistability in a Fabry-Perot cavity has been
thoroughly explored in the mean-field dispersive
and absorptive regimes by Agrawal and Carmicha-
el, ' and also by Carmichael and Hermann' where
spatial effects are fully accounted for (proper treat-
ment of standing waves). Corresponding studies of
dispersive bistability in a ring cavity have been re-
ported by a number of other authors. ' ' The
behavior of these multiparameter steady-state equa-
tions, in particular the aspects of switching and
hysteresis, can be understood on the basis of the

l

format of catastrophe theory. ' Some interesting
behavior occurs when the input-field amplitude
and phase is held fixed and the detunings of the
atoms and of the cavity are varied; in Ref. 16 it is
shown that in these circumstances a succession of
bistability "islands" (which may or may not exhibit
hysteresis) occur as the input amplitude is succes-
sively increased. We will show that similar
behavior occurs in the two-photon system and for
simplicity of analysis we consider only the case of
Yi ——Yz. It will be noticed that Eqs. (7a) and (7b)
may be regarded as equations for Ui as a function
of b, and P with Y fixed, and we have therefore
plotted the curves X&(A) for C=3, Y=4 in Figs.
7(a) and 7(b). The graphs exhibit pitchfork bifur-
cations and domains of mono-, bi-, and tristability.
Considerable distortions occur as P changes from
zero to unity. Note that the crossing points of the
Xi ——Xz and Xi QXz curves are once again turning
points and bifurcation points, similar in nature to
those found in the X( Y) curves. The basic differ-
ence is that 6 may take negative as well as positive
values, leading to multistability islands similar in
nature to those found in the single-photon-resonant
counterparts. In all cases it can be shown analyti-
cally that BXi /Bh is zero at 6=0.

An alternative procedure is to plot X& as a func-
tion of P for fixmi 6, C, and Y. In Fig. 8 we show
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ta)
x
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I

30

FIG. 8. The curves X&(P}for C=3, Y=4
(Y& = Y2 ——Y and /~=$2 P} with b——,=O.

the P —b, plane for fixed C and Y, in analogy to
the single-photon domains given in Refs. 15—17.
In this case it is sufficient to differentiate the
equations of state (7b) for the conjugate branches.

From Equations (9) we have the turning points
given by BY/BXi ——0 as

and the multistable regimes are represented by the
inequalities:

I

-10
I

10
I

20
Us

FIG. 7. The curves X~(h) for C=3, Y=4
( Y, = Y2 ——Y and P~ =$2=/} with (a) / =0, (b) / =1.
In case (a) the curves are symmetric about the X~ axis,
and only positive values of 6 are shown.

Xi(P) for 5=0, C=3, Y=4 and the islands of
tristability are clearly evident for the domain

I+/ & ( —,C) . If Xi( Y} is confined solely to the
intermediate branch (the "saturation" branch), then
we can plot the crossing points Xi, as functions of
P with the other parameters fixed. This is shown
in Fig. 9, from which it can be seen that the upper
and lower points join smoothly at I+/ = ( —,C},
creating areas of multistability. Another alterna-
tive is to construct the domains of multistability in

FIG. 9. Crossing points X~, on the saturation branch
of Xt( Y},plotted as U, =Xi, vs P, with the other
parameters fixed (C =3, 6=0). The adjacent domains
I—III in U( Xf},P space are mono-, bi-, and tristable,
respectively.
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(a) Monostable Y & Y
(b} Bistable Y & Y& Y+',
(c) Tristable Y & Y+.
We have plotted the boundaries of these domains

(Y= Y+) in Fig. 10 for representative values of Y
and C. Alternatively, the turning points given by
Bb,/BX& ——0 again give the multistability boun-
daries as Y= Y+. All of these cross sections in the
hyperspace of parameters Y, C, b, , P (and more
generally parameters Y~, Y2, C, b, P~, P2)
highlight the complexity of the complete phase di-

agram for the multistable domains.

VI. CONCLUSIONS

An analysis of an intracavity two-photon ab-
sorber interacting with two coherently driven cavi-

ty modes has been given. The possible stable out-

put configurations of the cavity modes were deter-
mined. For weak driving fields (unsaturated medi-

um) two stable output states are possible. For
higher values of the driving field (saturated medi-

um) a third possible stable state exists. Competi-
tion between these states results in regions of bi-
stable and tristable behavior.

In the purely absorptive case the domains of sta-
bility are determined as functions of the driving-
field amplitudes Y& and Yz and the cooperativity
parameter C. In this case a steady-state solution
for the probability distribution of the mode ampli-
tudes exists. This enabled the relative lifetimes of

FIG. 10. The domains of multistability in the P-6
plane, given by Y= Y+, with parameter values C=3,
Y=4.

the metastable branches to be deduced. In the
dispersive situation a linearized stability analysis
was required. The domains of stability were deter-
mined as of function of C, the cavity and atomic
detunings P and 5, and the driving-field amplitude
Y (where we have chosen Y~ ——Y2}. This analysis
reveals the rich variety of behavior that may occur
in this two-mode multiparameter system.
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APPENDIX A

A general linear stability analysis of two-photon
optical multistability and bifurcations is very com-
plicated, particularly when two field modes are in-

volved in the two-photon resonance and when
Stark terms are included in the equations of mo-
tion (an indication of the level of complexity is
providmi in Ref. 2). However, considerable insight
as well as analytic solutions can be extracted by
restricting the model in various ways. As a guide
to this process, we can make use of the stability
analyses of the two-level homogeneously broadened
model of single-photon-resonant optical bistability.
As well as showing that regions in the Y(X) curves
with negative slope are unstable, these studies
clearly show that instabilities of the self-pulsing

type can be expected in the saturation
branch' 2 2 and can be explained in terms of
coupling between adjacent cavity modes. We
would not expect cavity modes other than the
resonant mode to be relevant to the dynamics of
two-photon unsaturated Kerr bistability, and there-
fore the mean-field model should suffice in this
case. We also note that recent investigations of
self-pulsing in dispersive bistability by Lugiato '

appear to show that this phenomenon can be ex-

pected to be virtually absent from a purely disper-
sive system (for which the essential requirements
are & » 1, P& »1, P/6 « 1), and it is reasonable
to anticipate similar behavior with regard to the
two-photon saturation branch. Two-photon optical
bistability experiments have hitherto been restricted
to this regime.
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The appropriate stability matrix for two-field
modes can be derived by linearizing Eq. (4) about
the steady state. In this connection we intend to
explore only bistable behavior between the unsa-

turated states of the system. Stark terms are once
again ignored. In drawing attention to this regime,
we emphasize that tristability arises when bistabili-

ty by the unsaturated Kerr mechanism competes

with bistability by the two-photon bleaching
mechanism, and that stability aspects of the latter
have already been discussed. ' %riting
Ek =Xk, +iXI,&, ~

Ek
~

=Xk we find that the stabil-

ity matrix M can be easily calculated upon separat-
ing real and imaginary parts of Eq. (4} and apply-
ing standard procedures, yielding

g~ a+bb c+bd
b —ba d —bc

M= a+bc b+bd A2—
c —ha d hb ——g2

where, for unsaturated states only, we find

Ak ——1+DX(, gk =pk D~),—I (Qk) = 1,2

D=CI(1+6')

a = 2DX„X—2„b= 2DX)I X—2„c= 2DX),X—2b, d = —2DX)bX2b.

(Al)

These parameters also could be calculated to higher orders of the nonlinearity to allow the full complement
of multistable effects to be studied. The general aim is to determine conditions for which the real parts of
the eigenvalues of M are all negative, thereby satisfying the criterion for stability. We will discuss two ex-
treme cases.

(1) In the purely absorptive case (5=/» ——0)M is effectively 2X 2 and there are only two eigenvalues,

p ),2= —1+—,D t
—(X) +Xp )+[(Xf +X2 ) + 12XfX2]

'~2 j. (A2)

Where X~ ——X2, we find that (A2) provides the stability conditions for two different physical situations: (a)
for the field-degenerate case the equation of state is Y=X+DX and we have

p& ———d Y/dX = —(1+3DX ), indicating only monostability; (b) for the nondegenerate case with

Y&
——Y2 (=Y), we find two branches of Y(X&}corresponding to X&QX2 and X, =X2, respectively. The

eigenvalue p2
——DX& —1 indicates that the X& ——Xz branch is unstable when DX» 1. Simple analysis of the

equations of state reveals that the point on Y(X~) where DX~ ——1 is both a branch crossing point and a
minimum of the X~QX2 branch.

(2) The purely dispersive case corresponds to setting A,k =1 in (Al) and retaining only terms proportional
to 6 in the off-diagonal submatrices. The four eigenvalues p„,satisfying det(M —pI) =0 are given by

p,„,=—1+rl[—8+e(8'+q )'"]'", 8= , (g', +f',)—
y=gg2(a +b +c +d —g&g2), r)=+1, @=+1. (A3)

p„,,=—1+q[D'U' (P DU+ eDU)2]'—~'. —(A4)

The two sets of signs in (A4) are independent;
furthermore the eigenvalue subsets corresponding

This simple result has been made possible by virtue
of the property that the determinants of the off-
diagonal submatrices (in this case ad-bc) vanish
identically. Note that this property is quite general
for a two-photon system. Pertinent to Sec. IV is
the case where P~

——P2 ( =P) and U~ ——U2 ( = U);
here g~

——g2 and (A3) becomes

to @=+1and e= —1 describe different physical
situations, as in the absorptive case. Thus the
eigenvalues with e= —1 provide the stability con-
dition for the degenerate two-photon dispersive

system. Here the equation of state is

Z=U[l+(P DhU) ]-
and equation (A4} becomes
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Where a=+1, we are again concerned with identi-

fying the bifurcation point of the nondegenerate
case with Zi ——Z2 ( =Z), thus

~,, += I+-~(D'Ui ~')'"

indicates that stability in the U~
——U2 branch

ceases when D Ui & I+/, and the point in Z( Ui )

where D Ui ——I+/ is easily shown to be both a
crossing point and a minimum.

APPENDIX B

dXk Q U

dt axk
(Bl)

f'k ~ 2 BUd

dt

plitudes only, in accordance with the assumption
that the phases yk and Ok are always locked to-
gether. More generally, Eq. (4) can be expressed as
as the set of equations

The deterministic two-photon potential

U(X&,Xz) of Eq. (6) is a function of the field am-
with the potential function

'p2) —
g (Xi +X2 )+ —,&»( I +XiX2 )

—Xi eicos(yi —8i ) —X2 I'2cos(qr2 —82). (B3)

If one wishes to make a quantitative prediction, it
will be necessary to integrate over the phases in ac-
cordance with the above equations. Thus, for the
same value of C and the same set of input ampli-
tudes, the relative weights of the branches can
differ markedly from those calculated under the

simplifying assumption that the phases are strong-
ly locked onto their deterministic values (see Sec.
III). The qualitative predictions are identical how-
ever (information to this effect derived from nu-

merical computations by Mr. C. Savage is ack-
nowltxlged).
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