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It is shown that the effects of a standing electromagnetic wave of cosinusoidal form on a
neutral two-level atom can be represented by an effective static potential, which is obtained

by a local unitary transformation to dress the atom by the field. The form of the effective
potential is obtained self-consistently by minimizing fluctuations of the atomic kinetic ener-

gy induced by the locality of the dressing transformation. Moreover this effective potential
is shown to depend on the atom-field detuning and on the field intensity, and to exhibit
discontinuities in some ranges of these parameters. The band structure which characterizes
the eigenvalue spectrum of the dressed Hamiltonian is discussed in the spirit of the tight-
binding approximation, and the fluctuations of the kinetic energy near resonance are shown
to induce splitting of the bands, ' a physical interpretation of the atomic dynamics associated
with these splittings is presented. Off resonance the fluctuations are shown to induce ex-

change of real photons and variations of the atomic kinetic energy. The results are com-
pared with those of previous theories, leading to an improved understanding of the dynam-
ics of a two-level atom in a standing-wave field.

I. INTRODUCTION

The problem of the influence of external elec-
tromagnetic fields on the motion of a neutral atom
or molecule has received increasing attention in re-
cent years. The reason for this attention is related
to a wealth of potentially useful applications. As an

example, it is easily perceived that research on
atomic beam deAection by laser radiation' is
relevant for isotope separation and selective excita-
tion of atoms and molecules, while trapping and
cooling of neutral atoms by strong radiation fields
might prove essential for ultrahigh-resolution spec-
troscopy of individual atoms or molecules. In con-
nection with the above experiments, theoretical
models have been devised and investigated. Ac-
cording to these models the atoms have usually been

represented by two-level point systems of finite
mass M, while the electromagnetic field has gen-
erally been taken in the form of a classical travel-
ing ' ' or standing monochromatic wave. The
case of the time-dependent frequency of the classi-
cal wave and the effects of thermal and nonmono-
chromatic fields have also been studied to some ex-
tent. In most of these treatments the role of spon-
taneous emission on atomic dynamics has also been
considered, and it has been shown to lead to dif-
ferent dynamical regimes which can be dis-

tinguished on the basis of the duration of the atom-
laser interaction as compared to the spontaneous
emission time. "'" In most of the cases theoreti-
cally investigated, reduction of the problem to
essentially one dimension has been found feasible
and useful. The theoretical situation, also in con-
nection with the experiments, has recently been dis-
cussed in a review article' whose set of references
summarizes in a remarkably complete way previous
work on the subject.

This paper is devoted to an investigation of the
one-dimensional dynamics of a two-level atom in
the field of a sinusoidal standing wave in absence of
spontaneous emission. The simplest Hamiltonian to
represent this model (with fi= 1 ) is

P +No=1 2

2M

A o
——boa a+cooS, +e'(aS++atS ),

where p = —iB/Bx is the linear momentum of the
atomic center of mass, co is the frequency of the
standing wave, coo is the frequency corresponding to
the internal atomic energy, and

e=eocosgx

is the atom-field coupling constant, whose cosine
form is directly related to the spatial variation along
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x of the amplitude of the electric component of the
standing-wave field ef wave vector Q. We shall
take 0&x &I.. Furthermore, the operators in (1.1)
are creation and annihilation operators pertaining to
the field mode, and the S operators are the usual
pseudospin atomic operators S=—,. The relevant

commutation relations are

mental situations admittedly refer to strong fields
which can be treated classically. We shall see that
this quantization, while it introduces no complica-
tions in the treatment, increases its generality since
it extends the theory to cover cases of relatively
weak fields.

[a,a ]=1, [S+,S ]=2S, ,

[S„S+]=S+ .

The Hamiltonian (1.1), in its semiclassical ver-

sion, ' ' has been used as a basis for previous
treatments of the atomic dynamics, e.g., in connec-
tion with the already-mentioned problem of atomic
deflection. In some of these treatments, the idea
has been more or less explicitly introduced that the
forces exerted by the field on the atom can be
represented by a local effective potential V(x)
which depends on the internal state of the atom it-
self and on the detuning cop —~. The advantages of
this point of view are obvious, since one can then
immediately use the results of the familiar theory of
the motion of a point particle in an external poten-
tial and thereby reduce the problem to a purely
mechanical one. Some difficulties related to the de-
finition of the effective potential in the neighbor-
hood of Np co have arisen, however, since as cop —co

tends to zero the near-resonance potential rather
unexpectedly does not seem to convert into the
resonant potential. A treatment which does not
suffer this drawback is the exact Floquet-
Lyapounov theory, which does not make use of the
effective-potential concept and which leads to a
band structure of the atomic center-of-mass eigen-
value. ' ' The mathematical complications of
this theory, however, tend to obscure somewhat the
physical meaning of the off-resonance results, '
some of which display curious features such as a
splitting of the bands which is detuning-dependent
and which vanishes on resonance for cop ——co. The
aim of this paper is to investigate the possibility of
using an effective potential to describe the effects of
a standing-wave electromagnetic field on a two-level
atom and the limits of this concept. We also wish
to inquire as to the shape of this potential in rela-
tion to the amplitude of the local elastic field and to
the detuning mp —co. We shall see that this investi-
gation also clarifies some of the points which
remain rather obscure in the physics of the results
of the Floquet-Lyapounov theory.

We also remark that, contrary to most previous
theories, the electromagnetic field in (1.1) is fully
quantized, although most of the plausible experi-

II. THE DRESSED ATOM

Perhaps the most natural way of introducing an
effective potential is through diagonalization of A p

in (1.1) with respect to the internal atomic coordi-
nates. A most useful tool for this purpose is the un-

itary dressing operator

T=exp[ —8(4M) ' (aS+ —a S )];
M=o. a+Sz+ 2 ~

(2.1)

which we have introduced previously in connection
with various problems of atom-field interaction. '
In the present case the dependence of 8 on the
atomic position through the x dependence of e in
(1.2) evidences the local character of T. Transform-
ing P 0 by (2.1), we obtain the equivalent Hamil-
tonian

A p=T A pT
1= co(~——, )

+ [(coo—co)cos8+co&sin8]S, ,

(2.2)

provided we choose

CO)
0=arctan; coi ——2aM'

Np —CO
(2.3)

It should be noted that co~ and 0 are not c num-
bers in (2.2) and (2.3), but this difficulty can be easi-

ly overcome since ~ is a constant of motion and
commutes with T; therefore we may limit our con-
siderations to a subspace of the total Hilbert space
characterized by a single eigenvalue of ~, and
within this subspace we may interpret 0, co&, and M
as c numbers. A more serious point, however, is
that 8, as given by (2.3), is a multivalued function
of the two variables coi and cop —co, which may be
represented as double-helix surfaces on the co~,

~p —co plane. The two helices are shifted by m with
respect to each other along the 0 direction and the
step of each helix is 2~, as represented in Fig. 1. To
obtain a single-valued function, which is necessary
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FIG. 1. The portions of the double helix surface on
which 8 is a one-valued function of coo—co and (co~ ) ac-
cording to the choice A ( —m & 0 & 0) and B
( —m/2&8&@/2). The cop —co axis is parallel to the line
of sight. The straight lines on each portion of the double
helix show the intersections of the surface with 0= const
planes, while curved lines on each portion show the inter-
section of the surface with a cop —co=const plane. The
dotted parts of the double helix are seen from below and
the continuous parts are seen from above.

(b)
0

-Tl/2 .

FIG. 3. (a) The potentials V, and V, for
4'~/(~o —co) =24 according to choice B. (b) 8 as a
function of x for 4epM/(~p —m) =24 according
choice 8 (cop —co & 0). For cop —m &0 the new g(x) is
given by —0. In the limit cop—+co, V» is characterized by
cusps at points x (m =0, I, . . .,2X —1) and 0 becomes
discontinuous at the same points.

in order to define uniquely the dressing operator T,
we have to limit the variable 8 to any chosen inter-
val of amplitude m. We consider first the two possi-
ble choices —~ & 8 &0 (choice A) and —n /2
&8(n/2 (choice B). With the help of Fig. 1 it is
easy to check that these two cases correspond to

sin8= —sgn(to& )co&/5,

cos8 = sgn(ct)—~ )(cop co )/5—,
sin8= sgn(top —co)co]/b,8'
cos8=

i
cop —co

i
/b, ,

where

b, =[( topee) +4@M]'~

(2.4)

(2.5)

V
Substituting (2.4) in (2.2), we obtain in the two cases
considered

=0

Tl/Q

v

(2N-1)ll/Q

2 m=2N-2

(A) ~p=co(~—
& ) —sgn(to~)bS, ,

(B) ~p=co(~—
2 )+sgn(cop —to)b,S, ,

(2.6)

(b),
3Tl/Q (4N-1) &/2Q L

m'8= ——+arctan
2

2'
No —N

FIG. 2. (a) The potential Vt(x) for
4'.,p /(~p —a) =24 according to choice A.
V&(x)= —Vt(x). (b) 8 as a function of x for
4' M/(cop —co ) =24(a)p —co p 0) according to choice A.
For cop —co & 0 the new 8(x) is given by —0—~.

At the discontinuous points xm
(m =0, 1, . . .,2N —1) the jump in Vt is

~
cop —to

~

and
the corresponding one in 8 is m'. At its extrema,

V, =+—,[(a)p—a)) +4'~]'~
while at the same points

We now meet with a curious situation. In fact, cal-

ling 8~(x) and 8s(x) the two 8's corresponding to
choices A and B, respectively, it is clear that the
two Hamiltonians in (2.6) are fully equivalent, since

they are are related by a canonical transformation

T/ a ——exp[ —(8p, —8n)(4m)'

X(aS+ —a S )] .

On the other hand, the difference between A and
B in (2.6) seems far from irrelevant since the term
in S, in either Hamiltonian is going to play the role
of an effective potential acting on the center of
mass of the atom, due to the x dependence of e
which appears in 6 and in co&. In fact, the potential
of choice A, as a function of x, has the same period-
icity 2n. /Q as e and is characterized by discontinui-
ties of amplitude ~cop —co~ wherever e changes
sign, that is at points
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x~ =(2m +1)m./2Q (2.8)

III. SELF-CONSISTENT
POTENTIAL NEAR RESONANCE

In this section we shall assume that the atom-
field system is in a neighborhood of resonance
where

~
coo —co

~
& 2@0~', and we shall transform

by the operator T in (2.1) also the kinetic energy
term in the Hamiltonian (1.1). We remark first that
for any 8(x),

along the x axis, as shown in Fig. 2, while the po-
tential of choice B, shown in Fig. 3, has periodicity
of n/Q and is continuous as a function of x. Thus
the two potentials are quite different. Still, the two
cases considered must be equivalent in the sense
that the eigenvalue distribution obtained by
transforming (1.1) according to choice A and choice
B must be the same. This paradox is only apparent,
however, since A 0 is only part of the complete
Hamiltonian (1.1). Consequently, one should also T
transform the kinetic energy term in (1.1), and the
resulting Hamiltonian A =T 'A T, if amenable to
an exact treatment, gives the same eigenvalue distri-
bution in case A as in case B. On the other hand, if
an exact treatment of the total Hamiltonian is not
feasible, one of the two choices A or B may be more
appropriate, if it is more easily approximable than
the other. We shall see that this is indeed the case
and that, roughly speaking, choice A is appropriate
for a treatment in the neighborhood of resonances,
while far from resonance choice B provides a better
starting point. We shall discuss the other infinite
possible choices —m +P & 8 &P (P & 0), intermedi-
ate between choices A and B, at the end of the next
section.

=1 2
p +AD. (3.3)

(ii) We look for the choice according to which of
these amplitudes are small enough to have a negligi-
ble influence on the eigensolutions of 4 i, and we
adopt the P ~ of this choice as a good zero-order
approximation for the Hamiltonian of our system.

In this sense we may say that we are adopting a
self-consistent criterion, since we choose the func-
tion 8(x) that minimizes the effects of A 2 and A 3

on the eigensolutions of A ~, which in turn depend
on this choice. Now A ~ contains 4 o, which is
essentially a pseudospin-dependent potential dif-
ferent for different 8(x); consequently, this minimi-
zation procedure leads to a potential which we can
use as a good first approximation to represent in a
self-consistent fashion the effects of the electromag-
netic field on the two-level atom.

In order to apply the procedure outlined above,
we shall estimate separately for the choices A and B
the matrix elements of 4 2 and A 3 between the
eigenstates of A ~. Finally, we shall comment on
the other possible choices of 8(x) intermediate be-
tween A and B.

From (3.2) we see that the T transformation of the
kinetic energy introduces new terms 4 2 and A 3 in
the Hamiltonian. We easily realize that these two
terms differ in cases A and 8 because of the pres-
ence of the derivatives of 8, which exhibit jumps of
amplitude malo. ng lines of the (coi,coo —co) plane
different in the two cases, as it is evident from Fig.
1. Thus we are led to develop the following pro-
cedure to decide the appropriateness of either choice
Aor B.

(i) For each choice we calculate the amplitude of
the matrix elements of A 2 and A 3 between the
eigenstates of

[p, 8]= i 8', [p,—8]= (2i 8'p+—8"),

[[p,8],8]= [2i 8'p+ 8—",8],
[[[p' 8],8],8]=O

(3.1)

where each prime indicates a derivative with respect
to x. By usual expansion techniques, we obtain

A. Choice A

From (2.6) and (3.3)

A i —— p +co(M——
) —sgn(coi)ES, .1

2M 2

(3.4)

2 1T 1 p2T — p +A2+A3
2M 2M

&2
(2i 8'p+8")(aS+ —atS ),CM~'"

We see that A ~ describes a particle of mass M in
the pseudospin-dependent potential

1

V«(x) =+—, sgn(cosQx)[ (ego —cg)2

[2i8'p+8",8] .
8M

(3.2)
+4eo~cos Qx]'~i

(3.5)
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~r,k„~,t), ~r,k„~,&),

Na
N —1 N

2

represented in Fig. 2(a). In this section, an explicit
calculation of the eigenstates and eigenvalues of A i

is not necessary, and we shall postpone it to the next
section. Here we only need to remark that (3.5) is a
periodic potential which reduces to the Mathieu po-
tential' for cup ——co. Therefore we expect the eigen-
functions of 4 i to be of the Floquet form and to
reduce to the solutions of the Mathieu equation on
resonances. ' For any detuning near resonance, we
shall indicate them by

been assumed. The orbital parts
~
r, k, ), and

~
r, k, ), which refer to the motion of the atomic

center of mass, are, in the x representation,

(x ~r, k, )=—q„'„(x),

(x
~
r, k, ) —=4,'k(x) . (3.7)

The eigenvalues of
~

r, k„M, t) are obviously de-
generate with those of

~
r, k„M, t), since V, and

V, are simply shifted with respect to each other by
a/2, and they are distributed in bands, each charac-
terized by a value of r. Within each band k plays
the usual role of wave vector.

With the help of (2.3), (2.4), and of Fig. 1(a), it is
possible to convince oneself that in case A we may
represent 8(x) explicitly as

(3.6) 8(x)=8, (x)+8s (x), (3.8)

where N is the number of wells in either potential

V„, and where periodic boundary conditions have
where 8,(x) is the usual arctan function which
behaves as

8,(x)= '

and where

1 260~1/2
cosQx ——

3 Np —N

2~ ~1/2
cosQx +—

5 Np —N

3
C00 —CO

2' m'~'cosgx

2epM'

Np —N
cosgx —,(cosgx ~0)

'5
Np —N J Np —N

+2epM'~ cosgx 3 2epM'~ cosgx
(cosgx ~1)

(3 9)

1 (y»)
8s(x)= —irH[sgn(cop —co)cosgx], H(y)= '0

( 0) . (3.10)

Hence we find after some algebra

8,'(x) = —2epW' g sin(gx)
(cop —co) +4epMcos Qx

8s(x) =ir sgn(cop co) g ( ——1) 5(x —x ),
(3.1 1)

where x~ has been defined in (2.8). It is interesting to remark that

lim 8' (x)= sgn(cop —co)2'~—Q sin(gx)ir5(2'~ cosQx)
Q)0~+)

sgn(cop co) g.
( —1)~—+'5(x —x~ ) =—8s(x) . (3.12)

As for the matrix elements of A 2, first we obtain from (3.11) and for any f(x)

~/g
&/2

~/Q COp —COf f(x}8,'(x)dx = 2epM'~ Q f— f(x)sin(gx)
2 2 2

dx
0 C p (cop —co) +4ep~cos Qx

—260.&1/2
COp

—0)
fU»

2& ~yl/2 (co co)2+~2

Consequently, iff(x) is sufficiently smooth and for
~

cop —co
~

&2'~'~, we have



G. COMPAGNO, J. S. PENG, AND F. PERSICO

~/Q Ze, m'/2

I f(x)8,'(x)dx= —2f(n. /2Q)arctan
0 0

T

Np —CO=—f(m/2Q) n sgn(coo co—)
&0

(3.13)

In the final result of (3.13), terms nonlinear in (coo—co) have been neglected. Thus

(m /1)7r/g CO0 —COI f(x)0,'(x)dx = g I f(x)0,'(x)dx= nsg n(.co o ro) — — g ( —1) +'f (x ),
m=0

(3.14)

where I. is the total length of the standing wave (0&x &I.) and the m integers number the discontinuities in
either potential V» at points x as shown in Fig. 2(a). Moreover, from (3.11),

I f(x)0g(x)dx=rrsgn(~oo —ro) g( —1) f(xm) ~ (3.15)

which together with (3.14) yields

I f(x)0'(x)dx=, g( —1) f(x ) . (3.16)

Furthermore, integrating (3.14) by parts and using the same approximations, we get

(3.17)

whereas integrating (3.15) by parts

I f(x)0z'(x)dx =sr sgn(coo co) g (——1) +'f'(x ) . (3.18)

From (3.17) and (3.18), we find

I f(x)0"(x)dx=, g( —1) +'f'(x ) .
AM'

On the basis of (3.16) and (3.19) it easy to obtain

(3.19)

(r,k, ~(2i0'@+0")
~

r', k'„)=, z J,&', , J,z', ——g( —1)~j,z', (x ), (3.20a)

p — rk rk k
(r,k,

~

(2i0'@+0")
~

r', k' )=, J„, ', J„, ' = g( —)j~„,„(x ),
l

(3.20b)

where the out of diagonal matrix elements of the density current jb(x ) are given by

j„g «)=l'p', *I ( p."',a )' —('p',*a )' 'p'', a 1 =
m

(3.21)

Using (3.20), we obtain the matrix elements of 4 z between the eigenstates (3.7) of 4
&

as

(3.22a)

(3.22b)
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We now turn to the evaluation of the matrix elements of 4 3. From (3.1) we have

(r,k„~ l
i
P 3 i

r', k', ,M t &
= g [ (rk,

i
(2i8'p+8")

i
r",k,"&(r",k," i

8
~

r', k', &

SM

—(r,k, i
8

i
r",k,"&(r",k," i

(2l8'p+8")
i
r', k', &] . (3.23)

Now we observe that, because of (3.1), we may write

2i8'p+8"=[8,p ]=2M[8,A 1] .

Thus, using (3.24) in (3.23), we find after some algebra

&r,k„m, & im„~ r', k'„m, t&

(3.24)

g I (rk,
~

8
~

r",k," & (r",k,"
~

8
i
r', k', &[2E(r",k,",M t) E(rk„—M l) —E(r', k', ,M 1)]j,

"k"P

(3.25)

where E(ta]) is the eigenvalue of P'& corresponding to the set Ia] of quantum numbers. An order-of-
magnitude evaluation of (3.25), which should be good particularly for large fields, is easily performed, since
near the bottom of each well, where presumably the wave functions of the lowest bands are concentrated,
cosQx —1 and 8(x) in choice A differ from n./2 only by quantities of the order of (cop —co) according to (3.9).
It follows immediately that (3.25) is of the order of (cop —co), and must be neglected with respect to (3.22)
coherently with our previous approximations.

B. Choice B

Using (2.6) and (3.3) again, we find

p +co(M——,)+sgn(cop —co)b,S, .= 1 2 1

(3.26)

A i now represents the motion of a particle of mass M in the pseudospin-dependent potential of Fig. 3(a),

V~g(x}=+
& [(cop—co) +4epMcos Qx]' (3.27)

Contrary to the situation originated by the previous choice, it is obvious that the orbital part of the wave func-
tions must be very different for up and down pseudospin, at least for small cop —co. Moreover, the number of
wells in each potential (3.27) is now 2N, the distance between two neighboring wells being m/Q and the total
length of the chain l. =Na as before. We also use the same symbols

~

r, k„M, t & and
i
r,k„Mt & for the

eigenkets of (3.26), although the Brillouin zone of the system is doubled, since

k= (l = N+1, . . ., ——1,0, 1, . . ,N).
Xa (3.28)

because of the new periodicity of V». The orbital part of the complete eigenkets are denoted by
~

r, k, & and

i
r, k, &, which can be x represented as

(x
I
r k &—:@',l, (x) (x

l

r k &—=@',k(x) (3.29)

Using (2.3}, (2.4), and Fig. 1(b). we obtain that 8(x) coincides in case B with 8, (x) as given by (3.9). Thus
we may use the main results of the previous subsection, and by neglecting terms linear in (cop —co) we find
from (3.14) and (3.17)

2N —1

f f(x)8'(x)dx=nsgn(cop co} g (
.—I)™+—1f(x ),

m=0

f f(x)8"(x)dx= nsgn(cop —co) g ( —1—) +'f'(x~ ) .
L

(3.30)
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We remark that the integrals in (3.30) do not vanish as coo —ro, whereas the corresponding integrals of choice
A did. Introducing the matrix elements of the density current

J, k (X )=[@',*k(~"',k )' —(@,",k)'@."',k ] =

J'k', ~(x ) =[~'!,k(@ ', k') (@!k)@ ', k'1

and using the same expressions for Jf, in terms of jt', (x ) as in (3.20), we obtain

(r,k,
~

(2i8'p+8")
~

r', k', }= ms—gn(roo ro)—J„"k', ,

rk
(r, k„~ (Zi8'@+8")

~

r', k', }= ms—gn(coo ro)—J„j', ,

(3.31)

(3.32)

The sought-for matrix elements of 4 2 can be im-
mediately obtained from (3.32) as in the case of
choice A. We remark that the ambiguity in the sign
of the amplitude for (mo —co)—++0 is without phys-
ical consequences, in view of the fact that any phys-
ical quantity, such as energy shifts or transition
probabilities, should depend on the modulus of
these amplitudes.

C. The intermediate choices.

We can already draw some qualitative con-
clusions from the foregoing analysis. First we re-
mark that the results (3.22) and (3.25) ensure that in

an appropriately small neighborhood of resonance
and for choice A, the matrix elements of A p+P 3

between the eigenstates of A
&

are small enough to
be negligible in a first approximation, so that the
eigenvalue distribution of the total Hamiltonian 4
should be reasonably similar to that of P

&
as given

by (3.4). On the contrary, results (3.32) show that
the matrix elements of A 2 for choice B do not van-

ish on resonance so that there is no guarantee that
4 2 may be treated in this case as a small perturba-
tion near resonance and that the eigenvalue distribu-
tion of 4 is approximately represented by that of
4 t as given by (3.26); a calculation of the matrix
elements of A 3 for choice B is superfluous in view

of this result concerning A z. Therefore we are led
to conclude that the appropriate pseudospin-

dependent potential for representing approximately
the effects of the standing electromagnetic wave on
the atoms sufficiently near resonance is the periodi-
cally discontinuous one given by (3.5) and not the
continuous one given by (3.27). We remark that the
periodic discontinuities of potential (3.5) are associ-
ated with the discontinuities of 8(x)=8,(x)+8&(x);
the latter has the interesting property that in the
limit coo ——m the singularities in 0,' compensate ex-
actly those of 8z, as is evident from (3.12), and this
cancellation effect is responsible for the vanishing

Xp hatt, X

m=2 m=2
I

(a) The potential V(x) for
4~o~/(~o —&) =24 and coo—co &0 according to the in-
termediate choice m. +P&8&P (—P=~/4).
V&(x)= —Vt(x). (b) 8(x) for 4eoM/(mo —Q)) =24 and
coo —co ~ 0 according to the intermediate choice—m+P&8&P (P=m/4). The discontinuities in Vand 9
take place at points xs Qx . At points x, 8'(x) has a
relative maximum or minimum and V, develops new re-
lative minima. As P increases from 0, each point xa
(for No —co+0) moves towards the nearest multiple of
2m. /Q, thereby progressively changing the potential V, of
the intermediate choice into the V, potential of choice B.
The transformation is complete when P=arctan[(roo —a) )/2' m'"].

I

of the matrix elements of 4 2+M3 in choice A and
for the vanishing of the discontinuities in the effec-
tive potential. Out of resonance, due to the fact
that the position of the maxima of 8,' coincide al-

ways with the position of the singularities of Og, the
cancellation is only partial, leaving terms of the or-
der of

~
coo —ro

~

in the matrix elements of
2 +A 3 On the other hand, according to choice

8 it is 8(x)=8,(x), and for coo—+co there is no can-

cellation of the singularities of 8,'(x), so that the
matrix elements of A 2 remain finite in this limit.

We have now to inquire whether a choice for 8(x)
intermediate between A and B, such as
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—a+P & 8 &P (P & 0) could yield matrix elements
of 4 2+4 3, which, near resonance, are smaller
than those of choice A. In Fig. 4 we have
represented the case in question for P=a./4 and for
V=V, . We see that the rather exotic potential
which is obtained in this case for cooQcg is charac-
terized by the appearance of new relative maxima at
points x . It is obvious that no simple way of cal-
culating the eigenfunctions and eigenvalues of 4

&

exists in this case, contrary to those of choices A
and B where we may devise, e.g., suitable versions
of the tight-binding approximation. Thus we shall
have to rely on qualitative considerations in order to
estimate the magnitude of the matrix elements of
cP 2+@ 3 between the eigenstates of P

&
~ From Fig.

4(b) we see that the maxima of 8,' at x =x do not
coincide with the singularities of Og, at least for
coo+c0, which indicates that the partial cancellation
of case A cannot take place. In fact, it is possible to
convince oneself that in the intermediate case at
hand

8s(x) = i—rH [ sgn(coo c—o)[cosgx —cosgx p] },
COp —Cg

cosgx p = tanp
2e (3.33)

8s(x) =ir sgn(cop —.co) g ( —1)~$(x —xp ),

where xp m are the points which satisfy to

whereas 8,(x) is still given by (3.9), 8,'(x) having its
maxima at points x . Thus, developing the calcula-
tions for the matrix elements of 4 2 as previously
and neglecting terms linear in

~

cori —co ~, we obtain

=1 Q)p —CO

xp ~ —— arc—os, &2
tanP; lim xp ~ =x~,2'~ P~p ™m

(3.34)

J f(x)8'(x)dx =m. sgn(co, —co) g ( —1) [f(xp ) f(x )],—

J f(x)8"(x)dx =m sgn(coo —co) g ( —1) +'[f'(xp ) f'(x )], —
L

(3.35)

which show that in general the matrix elements of
A 2 may not be negligible due to the likely existence
of maxima of the eigenfunctions of A i at points x~
of Fig. 4; these maxima make terms such as

f(xp~) f(x ) in (3.35) —presumably large and

very difficult to evaluate. In the rest of this paper
we shall be content with these qualitative considera-
tions and we shall concentrate on the extreme cases
of choices A and B.

Finally, we wish to discuss briefly the physical
meaning of some of the results we have obtained,
and in particular the physical origin of the terms

2+Pl 3 defined in (3.2) ~ Consider first the dress-

ing of the atomic momentum

T 'pT=p+i(4M) '~ 8'(aS+ —a S ),
(3.36)

which can be obtained from (2.1) and (3.1). Expres-
sion (3.36) indicates that the dressed atomic velocity
is modulated by the transitions between opposite
pseudospin eigenstates of the dressed atom. Such a
modulation can be understood as follows. Each
change of the internal state of the dressed atom en-
tails a change in the effective potential from V, and

V, or vice versa; since the maxima of V, coincide

I

with the minima of V, for any choice of 8, each
internal transition of the dressed atom favors a dis-
placement by a finite amount the pattern of the
center-of-mass wave function whose maxima tend
to coincide with the minima of the potential. This
explains qualitatively the velocity modulation.
Moreover, Eq. (3.36) shows that this modulation is
proportional to 0', and we have seen that according
to choice A the singularities in 0' tend to cancel for
coo sufficiently near to co, while no such cancellation
operates according to choice B. This means that
choice A entails a minimization of the frequency of
switching from V, to V, and vice versa: the
dressed atom sees the same potential over a long
span of time. The opposite is true for choice B,
which in the neighborhood of up=et) entails large
values of 0' at points x with a consequent high
frequency of switching from one potential to the
other. This is precisely the physical reason why the
matrix elements of A 2+4 3, which arise in
T '(p /2M) T because of the presence of the
second term in the right-hand side (RHS) of (3.36),
are very small for choice A in the neighborhood of
resonance: they describe processes of tunneling of
the total system (dressed atom effective potential)
between two equivalent configurations displaced
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with respect to each other over a distance
m/Q=a/2, and the tunneling frequency tends to
zero as coo~co because 0 tends to —m/2 in this lim-

it. On the contrary, choice B gives a 9(x) which

jumps discontinuously between 0 and a high tunnel-

ing frequency. Thus choice A yields an effective
potential for the atomic center of mass which is
"good" in the sense that it remains the same for a
long time (infinite for coo ——co), while the potential of
choice 8 changes frequently between V, and V„
and it should therefore not be used for a good zero-
order approximation description of the atomic
motion. It is also appropriate to emphasize that the
discontinuities active in inducing the velocity
modulation and the switching of the internal

dressed configuration are those associated with V»,
as is evident from (3.2) or (3.36); indeed, according
to choice 8 we have for coo-co a continuous poten-
tial and a high frequency of switching, while the
opposite is true according to choice A in the same
region of detuning.

X X
me

X m

X +3/p

X i

/
I

I
I

I
I

I
I

I
/

X

X

IV. THE TIGHT-BINDING TREATMENT

%e now wish to make our treatment near reso-
nance rather more quantitative than it has been up
to now. In particular, we may ask what are the lim-

its of validity of choice A in terms of various
parameters of the theory, such as the detuning

coo —cu. In fact, we have shown that our treatment,
in Sec. III, is valid for ~coo —co

~

&2eoM', but
this is only a necessary condition, as is obvious, to
make choice A more appropriate than choice 8 in
the vicinity of coo ——co. We are also interested in
finding the sufficient condition to establish quanti-
tatively the region of the parameters in which
choice A prevails over other choices. In order to
achieve this aim it is necessary to obtain explicit ex-

pression for the matrix elements of the density
I

FIG. 5. The adjacent wells on either side of x . (a)
For m =me~ xj'=x~ —a/4, x~+a/2=xm +a/4. (b)e m

For m =mo, xj —a /2 =x —a /4, xz
——x +a /4.

current appearing in (3.22) for choice A, and for
this we need the explicit form of 4'„"'z(x) introduced
in (3.7). One of the most simple treatments of a
particle in a periodic potential can be obtained in
terms of the tight-binding approximation, ' which
we shall adopt here because it is sufficient for our
aims. Thus for any

~

coo —co
~

&2eo~'/, we define
%„(x—xj ) as the localized eigenfunction belonging
to the rth eigenvalue of the well whose minimum is
at points xz 2' /Q (j =——0, 1, . . ,N 1) fo.r-
V= V, (x) as in Fig. 2(a), whereas P„(x —xj —a/2)
is the equivalent localized eigenfunction for V, (x).
In terms of these localized eigenfunctions

'0„"k(x)=~ ge 'iti„(x —xj), iP„'k(x)= ge ' P„(x —
x&

—a/2),
J J

which are properly normalized and which we may use to calculate,

(4.1)

E(r k„~,1)= (r k„~,t ~A i ~r k„~,1)=co(~——, )+ J qi„'*k p +V„(x) iP„'kdx

1 +~=co(~—1/2)+ —g 1(*„(x—xj ) p + V„(x) 1{t„(x—x )dx
zmJ

2 +co
+—coska g 1(*„(x—xj —a) p + V, (x) 1{t„(x xj )dx, —

2m1
(4.2)
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where the overlap between eigenfunctions localized in nonadjacent wells has been neglected and where transla-
tional invariance has been assumed. In the spirit of the tight-binding approximation, we introduce the local
potential V, (x), which differs very little from V, (x) for x-xj and which we take to satisfy the localized
Schrodinger equation

T

2M p + V~ (x) 1(t„(x xj )—=E„f,(x xj—) . (4 3)

Using (4.3) and V, = VJ +.( V, —VJ ) in (4.2), we arrive at

E(r,k„~,t)=co(M , —)+E—„+—g I p'„(x —x )[V,(x)—V~(x)]1(„(x—xj)dx
J

2 + oo

+—coska [NE,P„+g J g'„(x —xj —a)[ V, (x)—VJ (x)]g„(x xj )dx—,
J

(4.4)

(4.6)

Consequently, we obtain

where we have put
+ oo

P„= 1(t*„(x xj a)—g„(x—x» )dx—. (4.5)

The first integral on the RHS of (4.4) can be neglected because we assume
~ p, (x —x.)

~

2 to be sharply
peaked at x =x~, where V, and V, practically coincide. We also assume that the product
P*,(x —x —a)P„(x —x ) is peaked at x =x +a/2, so that we may approximate

+ 00

f'„(x —xj —a)[V, (x)—VJ (x)]1(t,(x —xj )dx =p„[V, (xj +a /2) —VJ (xj +a /2)] .

E(r,kM, &)=co(M , )+E—„+2p—,[E„+V, (x~+a/2) —VJ (xj+a/2)]coska, (4.7)

which clearly displays the band like features of the eigenvalue distribution of 4 &( &). The corresponding dis-
tribution for A ~( 1) is equivalent to (4.7) as remarked at the beginning of Sec. III A. An important parameter
that we wish to extract from the foregoing analysis is the bandwidth 8', of the rth band,

~„=
~
4p„[E„+V, (x~+a/2) —VJ(xi+a/2)]

~

. (4.8)

We have now to find an expression for the matrix elements (3.22) in terms of the states (4.1). The current
density (3.21) contains products like

(4 9)
J J

Among the N terms appearing in the double sum in (4.9), it is reasonable to assume that the dominant contri-
bution should come from the product of two wave functions localized in adjacent wells, symmetrically placed
about x . From Fig. 5(a), it is easy to see that for even m—:m, the above contribution to (4.9) comes from the
product with xj+a/2=x~ +a/4, xj'=x —a/4, whereas for odd m:—mo it comes from the product with

xj+a/2=x~ —a/4, x» ——x~ +a/4. Neglecting all other contributions which come from pairs of wells more

distant from each other or from x, we obtain immediately

—ik(x~ +a/4) ik'(x —a/4)
[+r~a(q'r a') ]»-» —— e ' g"„(—a/4)e '

1(,'(a/4),X=X

—ik(x —a/4) ik'(x +a/4)[,,a(q'r, l )']»=„=—e ' g*„(a/4)e ' p„',( —a/4) .

(4.10)

Using the above ideas and approximations, one eventually arrives at the following approximate expressions
for the matrix elements of the density current (3.21):
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—i(k —k')x
j„"k, (x )=—e 'e '"+"'~ [g'„( a—/4)g„'(a/4) p—„*'(—a/4)g„(a/4)],

—i(k —k')x
j„'k', (x )= —e 'e'"+" ' [P'„(a/4)P'„( a l—4) f*„—'(a/4)P„( —a l4)] .

(4.11)

Introducing (4.11) into (3.20a), summing separately over x~ and x~, and using

e
me —i(k —k')a /4

—i(k —k')x
=e

m

mo

—i(k —k')x.' =&&kk
j=O

we find

rk ~ rr'
Jr'k') ~k ~kk' ~

Ak = e ' [ 1()*, ( —a/4)g„'(a/4)

—P„*' ( —a/4)1(„(a/4)]

—i(k —k')x.' =&4k
j=0

e
mo i(k —k') 3a/4

—i(k —k')x~

~=e (4.12)

agonalize for each k the very simple 2&2 matrix

COO
—CO

E(r k„M1,Ak
4M@ M'/

NO —N
Ak E(r,k„M, t)

4M@ M'/

(4.16)

COO
—6)

+ Ak.
4M AM'

(4.17)

where E(r,k„M, t)=E(r,k„M, &), as remarked

previously, and where Ak is real. We remind -the

reader that the corrections of A 3 are of the order of
(coo—co) and must be neglected. The eigenvalues of
(4.16}are simply

A+(r, k,M) = E (r, k „~,t )

—e' "[1("„(a/4)lt„',(a/4)
—g*, '(a/4)g, ( —a/4)] . (4.13)

As for J„"k'„it is easily seen from (3.20b) and (3.21)
that it can be obtained from J,'k', by the operations
of sign change, complex conjugation, and exchange
of (r, k} with (r', k'). Performing these operations
on (4.13), we obtain

rk t rr'
Jrkg= —~k &kk (4.14)

substituting (4.13) and (4.14) into (3.22), we finally
obtain

(r,k„~t [~,[r',k;,~, t)
=(r,k„,m, t

~

m,
~

r', k'„,m, 1)
COO

—6)
5

4M ~)g2 k kk' . (4.15)

The selection rule evident in (4.15) is interesting,
since it can be exploited in a perturbative treatment
of A z to simplify the calculations. In fact, (4.15)
shows that A 2 connects only states with opposite
pseudospins and with the same k; consequently, if
one adopts a perturbation approach and neglects the
matrix elements of 4 2 with r+r', one is led to di-

Thus the bands of V, and V„which are degenerate
in zero-order because these two potentials are sim-

ply shifted by a/2 with respect to each other, are
split off resonance by the action of A 2. We remark
that the splitting vanishes on resonance and this
feature is shared with the splitting obtained by the
Floquet-Lyapounov theory which we have men-

tioned in the Introduction. ' ' We are, however, in
a position to investigate the physical meaning of
this splitting. In fact, suppose that at time t =0 we

put the atom in a wavepacket with average position
(x ), and velocity

BE&r,k„M;))
jBk,

in the V, potential. After a time t, neglecting
dispersion and in the absence of A 2, we still find
the particle in the V, potential with velocity (v )0 at
the average position (x )0+ ( V)ot Equation (4.1.7)
tells us that the action of 4 2 is such as to displace
periodically the particle from V, to V, with fre-
quency (A, + —A, ). Consequently, after time
t =(A,+ —A, ) ', the average position of the particle
is shifted by the quantity a/2 with respect to the
position (x )0+ (v )ot. This is another aspect of the
velocity modulation experienced by the dressed
atom and discussed at the end of Sec. III C. We are



SELF-CONSISTENT POTENTIAL FOR A TWO-LEVEL ATOM IN. . . 20?7

led to conclude that the band sphtting of the
Floquent-Lyapounov theory is due to this velocity
modulation effect.

We may now inquire more precisely than we did
at the beginning of Sec. III C about the limit of va-

lidity of the self-consistent procedure that has led
us to identify "the best" zero-order potential for our
problem in the neighborhood of resonance as the
discontinuous one of choice A defined by (3.5). We
shall adopt a quantitative self-consistent criterion
by requiring that the average splitting induced by
A 2 on the eigenvalues of A

~ be smaller than the
average splitting which is characteristic of the un-

perturbed spectrum of A ~, as measured by the
bandwidth W„given by (4.8). In practice we shall
require that

( ~A, +(r,k,M) —k (r, k,~)
~
)(IV, , (4.18)

where the average on the left-hand side (LHS) of
(4.18) is taken over all possible values of k belong-
ing to the same band r. The form of (4.18) suggests
an interesting interpretation of the self-consistency

criterion in terms of the velocity modulation previ-
ously discussed. In fact, the inverse of the LHS of
(4.18) is proportional to the average time for an
atom in the rth band to switch from the V, to the
V, potential, while 8' ' can be interpreted as the
average time for the same atom to move over the
distance between two neighboring wells in the V«
potential. Thus if the former is much larger than
the latter, the atom during its motion through the
periodic potential shall see the same potential for a
long time, which is just another way to say that the
potential of choice A is self-consistent enough. On
the contrary, if the two sides of (4.18) are equal, the
potential of the atom shall switch between V, and
V, at the same rate at which it is hopping from one
well to the next, and a look at Figs. 2(a) and 3(a)
will clearly show that the effective potential seen by
the atom in these conditions is equivalent to one of
the two potentials of choice 8, which is a symptom
of lack of self-consistency of choice A.

In order to extract more information from (4.18),
we have to specialize in a definite model for the lo-
cal potential VJ (x). A convenient choice might be

(cop —co) (p —)
V( )=— M' 1+ + 1 — Q(0

8@0M
(4.19)

which reduces to V, for x~xj up to terms of order
of (x —xj) and (cop —co) . When using (4.19) in
(4.8), however, we must remember to discard terms
of the order (cop —co) coherently with all previous
approximations. Thus we find

I

polynomials, respectively. ' Within the same ap-
proximation we obtain

~ rr (k /2} —Mn(a/4)4. 1
k 2'r f

V, (xi+a/2} —VJ, (x~+a/2) = , nap~—'/.
and

(4.20) XMQH„(&MQ a/4)

X [2rH„~(&MQ a /4)

Q=[(2e ~' )(Q /2M)]'

in terms of which it is possible to prove that

—z2/2' g s —{z—+MQa)
~n 2"r!

(4.22)

XH, (z —&MQa)dz

—Mna /4I (MQg2/2) (4.23)

where H„(z} and L„(z) are Hermite and Laguerre

E,= —op~ 1/2

+(r+ —, )[(2'~'/~)(Q~/2M)]~/z (421)
while the f,(x —xj } are the usual eigenfunctions of
the harmonic oscillator of frequency

—v'MQ (a/4)H„(v'MQa/4)] . (4.24)

In principle, results (4.20) —(4.24) can be substituted
in (4.18), which is then expressed in terms of the
basic parameters of the system. In practice this is
not very useful due to the complicated form of the
results, and it is convenient to resort to more ap-
proximations to improve the transparency of the
theory. We point out, however, that the r depen-
dence of P, and Ak imply that (4.18) itself is r
dependent, which opens the interesting possibility
that the potential of choice A may be self-consistent
for some of the bands that it originates, and not for
others. To investigate this possibility, we observe
that for large intensity of the standing wave it is
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likely that

v'MQ a=v'2m[(2e&M' )/(Q /2M)]' =V 2~R'

[R =(2ecM'i )/(Q /2M)] (4.25) Tl/Q 21l/Q

V,

vl/g 2m/Q

is larger than 1 since R is the ratio between the
depth of the effective potential and the recoil energy
of the atom for a single absorption process. Thus
for r not too large we may appropriate the orthogo-
nal polynomials in (4.23) and (4.24) as'

ll/o
2 Tl/g

m/Q 2m/g0 ~ ~ . =x

1.„(z)-(—1)'z"/r!, H„(z) -(2z)"

and also

E„=—ac~'~ [1—2(r + —,)R '~ ]

= —AM 1/2

Because of (4.26) we obtain

2P
P„——(v'MQa/2) "exp( —MQa /4),r!

(4.26)

(4.27)

(b)

FIG. 6. (a) The potentials V„(x) for
4EOMI(&0 M)—'= 0 2(.continuous line) and 0 (broken
line), and 8(x) for 4epM/(~o —~) =0.2 according to
choice 8. (b) The potential V, (x) for
46@.~' /(cop —N ) =0.2 (continuous line) and 0 (broken
line), and 8(x) for 4epM/(mp —) =0.2 according to
choice A. V, (x)= —V, (x).

V. SELF-CONSISTENT POTENTIAL
FAR FROM RESONANCE

(
~
gk

~

) — (V'MQa/2) '+

)(exp( —MQa /16) . (4.28)

X exp( —3m R '~2/8), (4.29)

With approximations (4.27) and (4.28), (4.18) can be

put into the form

In this section we shall discuss the choice for the
appropriate 8(x) in (2.1) when the detuning of the
standing wave from the bare atomic Larmor fre-
quency in large, i.e., for 2ecM' &

~

cue —to ~. We
shall first argue qualitatively that in these condi-
tions choice 8 is the appropriate one. For this we
may rely on past experience and on the clear-cut
limiting case 2ecM' /~co —c co

~

~0. In fact, in
the latter limit (which we can think of as being at-
tained for ac~0) we expect that the bare Hamil-
tonian coincides with the dressed Hamiltonian; con-

whose surprisingly simple r dependence illustrates
the fact that for large ratio of R, choice A is self-

consistent for low-energy bands, provided

~

coo —tu
~

/2ecM'~ is small enough. Moreover,
(4.25) shows that a small R corresponds to a situa-

tion in which the spread (MQ) ' of the localized
ground-state wave function Pc(x —x& ) is larger than
the wavelength of the standing field, and in these
conditions the tight-binding approach becomes
questionable. It is likely, however, that a sizable re-

gion of intermediate values of R exists in which the
tight-binding approximation is valid but the oscilla-
tions of 1.„(z) and H„(z) in (4.23) and (4.24) call for
different self-consistent potentials in different
bands. This may occur also if the approximate ex-

pression (4.29) is valid; for example, assuming

~
mc —tu

~
/(Q /2M)=7. 10, then (4.29) is satis-

fied for any band if R =1, whereas if R =1.5,
(4.29) is not satisfied for the r =0 band.

FIG. 7. Approximate eigenvalue spectrum of A ~.
1E ( k ~ 7 l ) co(~
2 ) ~ The points connected by

the discontinuous segments of length Q correspond to
eigenstates of A

&
with the same energy of k differing by

+



26 SELF-CONSISTENT POTENTIAL FOR A TWO-LEVEL ATOM IN. . . 2079

sequently, there should not be any physical justifi-
cation for the discontinuities of V»(x) induced by
choice A at points x and evident in Fig. 6(b).
Moreover, the gentle slopes of 8(x) according to
choice B for 2'~'~ /

~

cop —co
~
~ 0 but small [see

Fig. 6(a)], imply small values of the matrix elements
of 4 z and A 3, which depend on the derivatives of
8(x), as is obvious from (3.2). In contrast, the
discontinuities in 8(x) introduced by choice A indi-

cate large values of the matrix elements of 4 z and
A 3 between the eigenstates of A &. We are thus led
to conclude that for 2epM' &

~
cop —co ~, choice B

is the best and the associated potential V„,(x)
shown in Fig. 6(a) is the most convenient starting
point for a perturbation treatment of A z and A 3.

More quantitatively, we assume that R defined in
(4.25) is large. Moreover, from (3.27) and for
2ep~' &

~

rop —co ~, we approximate

4&p~ l zi x -~i x
2

V„(x)=+—,
~

rop —ro
~

1+ —(e '~"+e '~"+2)
(cop —ro) 8

(5 1)

The effect of the periodic terms in (5.1) is to open gaps in the free particle spectrum of the atomic center of
mass at points such as k =Q. These gaps, however, are very small, being of the order of
(2ep~' /

~
cop —co

~
), and we shall neglect them. Consequently, we further approximate (5.1) simply to a

constant potential
1V„(x)=+—,

I
~op —ro

I (5.2)

and neglect the band structure of A ~. Thus we label the eigenfunctions of P &, with V«given by (4.2), as

/

k,~, tl):—
f
k)

/
~, t l) with

(x
~

k) = e'~, k= (1=0,+1,+2, . . .),I. ' 1. (5.3)

where we have imposed periodic boundary conditions at points O,I.. The corresponding eigenvalues are obvi-
ously

E(k,~, t t)=ro(M , )+,
~

cop ——a—)
~

+
2M

(5.4)

and are represented in Fig. 7.
Coherently with the above approximations, and according to choice B, we take 8 from (2.3) as

2'~'
8= cosQx .

Np —N
(5.5)

Elementary differentiation and integration lead to

e m'"
(k

~

(2i8'p+8")
~

k') =— Q [(Q+2k'@k,k —g+(Q —2k'@k,k+{?] (5.6)

Consequently, we obtain the matrix elements of A ~ between the eigenstates of A
&

as

2e M'~
I [k' —(k —Q)']4, k {.+[k' —«+Q)']~k, k+{.) (5.7)

while the matrix elements of A 3, being proportional to t9', are obviously of the order of
(2ep~' /

~
rop —ro

~
) and must be neglected.

Equation (5.7) shows that 4 q connects states of A
~

with opposite pseudospins and subject to the selection
rule k —k'=Q. For most of these states A q can be treated by second-order perturbation theory, which yields

the following shifts:
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(k
.

)[
o~ 1 [k —(k —Q) ]

(cop —co) (4M) +
I
a)p —co

I
+k /2M —(k —Q) /2M

[k2 —(k+Q) ]2

+
I

cop —co
I
+k /2M —(k +Q) /2M

(5.8)

Usually these terms should be neglected, being of the same order as 8', except near where either of the energy
denominators vanish. This happens for k near to

M
koi =+ —

I
~o—~

I2

kp, ——+ —+
I

cop —co
I

M

(pseudospint )

( pseudospin $ ).

(5.9)

With the help of Fig. 7 and of (5.7), it easy to see that this implies real processes in which the dressed atom ex-

changes a photon with the standing-wave field to change both its internal state and its center-of-mass kinetic

energy, the overall energy being conse~ed. Since (5.8) diverges, however, the effects of these process~ on the

eigenvalue spectmm of A.
l must be evaluated exactly by solving secular equations of the fo~

E(k,~,&) X —(k,~, iI~, Ik —Q,~, t)
(k —Q,~, t

I
4,

I
k,M, z) E(k —Q,~, t) —A,

(5.10)

A straightforward calculation which uses (5.4),
(5.7), and (5.9) yields, for k =

I
kp, I, the result

ings, and seems to indicate that choice B is self-
consistent at least throughout all this domain.

A+ E(
I ko~

I

~—, L ) +e'o~'~'/2 . (5.11) IV. COMPARISON
WITH PREVIOUS THEORIES

If we compare the relative shift A, + —A, induced by
A 2 with the splitting

I ~o—co
I

characteristic of the
eigenvalue spectrum of A &, we obtain

EpM (
I

rop —co
I

(5.12)

which may be interpreted as the condition for the
validity of our approach, and consequently as the
sufficient condition for the self-consistency of
choice B for large detunings. We remark that (5.12)
is less restrictive than 2'~' &

I
rop co I, by-

which we have defined the domain of large detun-

In this section we wish to compare our results
with those previously obtained by other authors.
The problem of representing by a suitable potential
the effects of a standing electromagnetic wave on
the dynamics of a two-level atom was taken up
rather explicitly by Kazantsev and collaborators.
Using a semiclassical approach for the motion of
atomic center of mass and the bare atom representa-
tion, he concluded that the effective potential is of
the form

+EpM cosQx'[(cop —co ) (2' A QU /77]

+ —,[(coo—co) +4epMcos Qx]'~ [(cop—co) &2ep~' Qu/m']
(6.1)

where we have expressed his results in our notation,
and where U is the velocity of the atom. While the
lower part of (6.1) coincides with the results of our
choice 8 off resonance, we see that in the quasiclas-
sical approach the discontinuities of choice A near
resonance are entirely lost, since the upper part of
(5.1) coincides with the exact resonance potential.

I

Moreover the expression for the critical detuning
which separates the two cases of (6.1) seems to
differ both from our result (4.18) near resonance
and from (5.12) off resonance. Here we shall show

that the critical detuning in (6.1) can be obtained as
an approximation from our off-resonance case of
Sec. V. In fact, approximating 8 as in (5.5) and us-
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ing p =m v with constant v in a semiclassical
fashion, we obtain from (3.2)

2'M
A 2

— (2iQMu sinQx+Q cosQx)
4M

'~ (aS+ —atS ) . (6.2)

This operator may change the potential from V, to
V, and vice versa along the classical trajectory of
the dressed atom, particularly near points x. (if
u »Q/M), where 4 2 takes the form

As a glance at Fig. 6 will show, however, a change
from V, to V, at any point x~ has the interesting
result of transforming the potential from that of
choice B to that of choice A; consequently, if the
transition amplitude induced by (6.3) between states

l~, t) and l~, t} is small with respect to the
splitting —

l
cop —co

l
between these eigenstates of

we should expect that choice 8 is appropriate
and that the self-consistent potential is that of Fig.
6(a). Otherwise the potential of choice A represent-
ed in Fig. 6(b) is a better approximation to the real
situation. The condition for the validity of choice 8
is quantitatively expressed as

Qu& l~p
Np —N

(6.4)

which coincides within a factor of n./2 with the
Kazantsev expression for the critical detuning.
Thus we see that Kazantsev's result implies neglect
of the fluctuation in the kinetic energy, and that the
critical detunings turn out to be rather sensitive to
this approximation.

We now compare our results with those of the ex-
act Floquent- Lyapounov theory. From a qualita-
tive point of view, we may now explain the physical
origin of the doubling of the Brillouin zone of the
system (when going from cop —co=0 to cop —co+0),
which was obtained by Letokov and Minogin, ' '
as follows. For cop ——co, the effective potential is
simply cosinusoidal of period 2n/Q and.
~2+P 3 0; consequently, the Brillouin zone is de-

e M' ~2

A 2(x )=(—1) i QuM ' (aS+ —a S ) .
Np —CO

(6.3)

fined for —Q/2 & k & Q/2, as is evident from (3.6).
For cop —co+0, but within the limit of choice A, the
potential acquires the discontinuities evident in Fig.
2 and its period is still 2m /Q; in an exact treatment,
however, this symmetry is broken by A 2 which in-
duces transition to a final potential shifted over a
distance a/2=m. /Q with respect to the initial po-
tential, thereby introducing some doubly periodic
features in the forces acting on the atom and enlarg-
ing the first Brillouin zone to —Q & k &Q. We re-
inark that in view of our approximate treatment of
A 2 in choice A, we have found it natural not to
change the amplitude of the first Brillouin zone.
The doubling of the Brillouin zone in our treatment
becomes evident for large detuning such that choice
B is appropriate; in this case in fact the effective
potentials are of period n/Q and of the same form
as those represented in Figs. 3(a) or 6(a). We may
conclude that our treatment has succeeded in relat-
ing the dimensions of the Brillouin zone to the form
of the effective potential acting on the atomic
center of mass. Another feature of the exact
Floquet-Lyapounov theory whose physical origin is
not clear in the Letokhov-Minogin treatment is the
splitting of the bands. In our treatment this split-
ting is to be associated entirely to the action of 4 z
near resonance where choice A is valid, and to the
combined action of 4 i and of the detuning for

l
cop N

l
&E—pM . 4 g originates from the fact

that the kinetic energy does not commute with the
unitary operator T of (3.1) which performs a local
dressing of the atom; consequently, we see that the
appearance of A 2+4 i is ultimately related to the
impossibility of performing a local dressing without
simultaneously changing the atomic velocity by an
unpredicted amount, and that from a quantitative
point of view the complementarity between momen-
tum and the atomic dressing, which is impossible to
eliminate, is entirely contained and represented in

2+% 3 For cop ——co, 8(x) in T becomes a constant
equal to —m/2, independent of the atomic coordi-
nate, and the dressing can be performed exactly
without perturbing the atomic momentum. We are
thus led to the conclusion that the splitting of the
bands near resonance is intimately related to the
quantum-mechanical features of the atomic dynam-
ics. As for a quantitative comparison of our split-
ting with that obtained by the Floquet-Lyapounov
theory, we remark that it must be done on a numer-
ical basis, since the closed analytical form of the re-
sults of the latter theory is too complicated. More-
over, Letokhov and Minogin have produced numer-
ical examples only for the following values of the
parameters ' ':
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2~ ~1/2
R = =13,

Q /2M

No —CO =+0.4 and R =10,
Q /2M

COO
—CO

=0.5 .
Q /2M

(6.5)

VII. CONCI. USIONS

In summary, we have taken up the problem of a
two-level atom in a standing-wave field with the
aim of showing that the effects of this field on the
atom can be represented by a suitable effective stat-
ic potential. We have shown that a class of canoni-
cal transformations exists which formally eliminate
the off-diagonal atom-field interaction from the
Hamiltonian, dressing the atom by the standing-
wave field. These canonical transformations, how-
ever, act also on the external degrees of freedom of
the two-level atom, introducing new off-diagonal
operators A q and A 3 in the kinetic energy of atom-
ic center of mass. The member of this class of
canonical transformations which is most suitable
for the purpose of defining the effective potential is
chosen in a self-consistent fashion as the one which,
for a particular set of parameters (such as detuning
and field amplitude) minimizes the matrix elements

Unfortunately all these examples fall out of the
reach of our approximations, since on the one hand
the relatively large values of R in (6.5) yield very re-
stricted limits of validity of (4.29) for choice A, and
on the other hand the relatively small value

~

cop —co
~

/op~' =0.1 makes choice B question-
able because of (5.12). In spite of these limitations,
however, it is possible to deduce from the dispersion
curves of Letokhov and Minogin that the band
splitting turns out to be of the order of eoM'
which is of the same order as the band splitting of
our choice B discussed in Sec. V; this is not un-

reasonable since the parameters in (6.5) correspond
to situations nearer to choice 8 than to choice A.
Finally, we wish to comment briefly on the localiza-
bility of cold atoms at particular points of the
standing-wave field. As it is obvious from Fig. 2,
near resonance our effective-potential approach im-

mediately yields the antinodes of the standing wave
as plausible sites for localization, while off reso-
nance and within the domain of choice B, the nodes
or the antinodes of the standing wave become pre-
ferred sites for excited and ground-state dressed
atom, respectively.

of A z and A 3 between the eigenstates of the rest
and the total Hamiltonian. This procedure

yields, for each range of detunings

~
cop —co

~ & 2'~'~, 4, in the form of the Hamil-

tonian of a two-level atom in an effective
pseudospin-dependent periodic potential V»(x)
which may be taken as representing in a first ap-
proximation (that is, neglecting A q and P 3) the ef-
fects of the standing-wave field on the atom.
Roughly speaking, the features of V»(x) as a func-
tion of the detuning can be described as follows.

(i) For cop=co the effective potential is of a pure
cosine form and of period a =2m. /Q equal to that of
the standing wave field, V, and V, being related by
a simple shift over the distance a /2.

(ii) For
~

cop —co
~

&2ep~'~ and small enough,
the period of the potential is still a and V, and V,
are simply related as in (i), but the self-consistent ef-
fective potential turns out to be periodically discon-
tinuous.

(iii) For
~

cop —co
~

& 2'~'~ the potential is
periodic and continuous, but its periodicity is a/2;
moreover V, and V, are different and not related to
each other by a space translation. For each of the
above ranges, approximate eigensolutions of A ~

have been obtained which satisfy the Floquet
theorem and which on resonance approximate the
periodic solutions of the Mathieu equation. In par-
ticular, for

~

cop —co
~

&2epM' the tight-binding
approximation has been used to study the low-

energy solutions, which have been shown to consist
of a set of bands for V„and of an identical set of
bands for V„degenerate with the first; for

~

cop —co
~

&2ep~' the free-atom approximation
has been adopted as a reasonable starting point and
has been shown to yield two free-energy spectra, one
for each V„, displaced in energy from each other
by the quantity

~

cop —co
~

. All these eigensolutions
of A

&
are self-consistent in the sense discussed

above. In a second approximation, we have shown
that the effects of P 3 on the self-consistent solu-
tions of A

~
are negligible in all the ranges of detun-

ing studied, while the effects of A z are the follow-
ing.

(a) For cop=co, A z ——0 rigorously.
(b) For

~
~p —co

~
&2'~' ', A, yields a split-

ting of the degenerate low-energy bands of A ~ due
to a modulation of the atomic velocity, which in
turn is caused by the periodic change between V,
and V, of the potential seen by the dressed atom.

(c) For
~

cop —co
~

&2epM', Pi z may induce real
processes which involve exchange of a photon with
the field, change of the internal state of the dressed
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atom, and change of its velocity, the total energy
being conserved in each process; these processes
turn out to be resonant in the neighborhood of par-
ticular values of k and cause anomalies in the free-
atom dispersion relations of the order of @0~'

The limit of validity of our procedure have been
obtained in each range of detuning by requiring that
the splittings and shifts induced by 4 2 be smaller
than the typical energy differences of the 4 i eigen-

value spectrum. For
~
bio —co

~

&2eoM'~ this cri-
terion gives different limits for different bands,
opening the possibility that in this range of detun-

ing some of the bands see an effective potential dif-
ferent from the others. On the other hand, for

~
coo —co

~

&2eoM' the criterion has been shown
to be satisfied for any energy of the quasifree atom.
The above criteria for self-consistency of the dif-
ferent forins of the effective potential have been

compared to that yielded by a semiclassical ap-
proach for the motion of the atomic center of mass,
which we have obtained from our treatment as an
approximation valid when the changes in the veloci-

ty of the dressed atom due to the effective potential
can be neglected. Moreover, considerations of the
results of the Floquet-Lyapounov exact theory in
the limit of those of the present theory has been
shown to yield a better understanding of the former,
by relating the form of the eigenvalue distributions
to the effective forces acting on the dressed atom
and to the dynamical features of the atomic motion.

Finally, we take up briefly the question of the

quantization of the electromagnetic field. It is in-

teresting to point out that the self-consistency of
our approach, up to Sec. III, is entirely independent
of the commutative properties of the field operators
a and a . This is also true in principle for the ap-
plication of the tight-binding approximation of Sec.
IV, although the practical limitations to the magni-
tude of the coupling constant make the validity of
this approximation questionable for small photon
numbers, since it may prove difficult to obtain
8 &1 with small M. Thus we may conclude that
our results on the shape of the effective potential in
the different ranges of detuning are valid in princi-
ple also for small intensities of the driving field,
where the effects of field quantization are usually
important. It is perhaps worth emphasizing that
the discontinuities in the effective potential that we
have found necessary to introduce near resonance
are not due in fact to the field quantization, but to
the quantization of the atomic center-of-mass
motion, as we have already discussed.
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